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ABSTRACT 

 

Twenty-first century climate change threatens biodiversity, ecosystem services, and human 

welfare. The diversity of responses and climate sensitivity among species and ecosystems 

presents a challenge for forecasting, conservation, and resource management. This paper 

explores several biotically informed analyses of current climates and future climate projections 

for California, and their implications for biological conservation. Section 1 examines shifts in the 

distribution of freezing events, mapping areas that are no longer projected to experience freeze 

events of various magnitudes by the end of the twenty-first century; whereas, they have 

experienced freezes in the past. These areas may be sensitive to vegetation shifts, as plants that 

are not cold tolerant expand their ranges northward and to higher elevations. Section 2 

examines expanding, novel, shrinking, and disappearing climates of California, based on the 

areal extent occupied by different combinations of climatic conditions. Under more severe 

climate change scenarios, large areas of the desert and Central Valley regions may experience 

expanding and novel climates, while conditions along the coast and in the High Sierra are 

forecast to shrink in extent, and in some cases disappear. Such analyses provide a general 

framework for forecasting impacts of climate change on species and vegetation types that 

occupy these regions. Section 3 examines the climatic heterogeneity of California's protected 

area network, encompassing State and National Parks, National Forests, and other public and 

private conservation lands. Climatic heterogeneity is expected to enhance conservation in the 

twenty-first, promoting diversity of species that tolerate different conditions and allowing for 

dispersal along climate gradients in response to climate change. Large reserves, especially those 

spanning broad elevational gradients, are critical to encompass a broad range of present and 

future climates. These results highlight the value of large, connected areas for conservation in 

the face of climate change. 
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Introduction 

Rapid climate change in the twenty-first century threatens biodiversity, ecosystem services, and 

human welfare. While climate change per se is a pervasive feature of earth history, the pace of 

change currently forecast for the next 100 years is virtually unparalleled in its speed, magnitude, 

and global extent (Barnosky 2009; see Willis et al. 2010). If the rate of change exceeds the pace of 

biological response, especially the capacity of populations to migrate or undergo adaptive 

evolutionary change, impacts on species distributions, community structure, and ecosystem 

function may be profound. Projecting the magnitude and distribution of these impacts poses a 

considerable challenge, requiring integration of theory and observation from a range of 

disciplines, including paleoecology, ecophysiology, population biology, and biogeography.  

While rapid advances have been made in this regard, numerous uncertainties remain. One of 

the central challenges in understanding impacts on biodiversity is diversity itself, whether 

measured in terms of genotypes, species, or ecological communities. Ecological and 

evolutionary research has documented that species exhibit distinct responses to abiotic 

conditions and interactions with other taxa. An understanding of the vulnerability of individual 

species or ecosystems to climate change requires the synthesis of specific understanding of 

individual systems with general principles of conservation biology (Williams et al. 2008; Glick et 

al. 2011; Klausmeyer et al. 2011). While these analyses are critically important, it will not be 

possible to conduct detailed studies on more than a handful of species or ecosystems.  

The vulnerability of natural and human systems to climate change can be considered a function 

of three components (Füssel and Klein 2006; Williams et al. 2008):  

1. Exposure: Which components of climate are changing? What is the magnitude of the 

changes projected? And how fast will they occur? 

2. Sensitivity: What is the intrinsic sensitivity of the system (i.e., population, species, 

ecosystem) to change, based on underlying physiological and ecological functioning? 

3. Adaptive Capacity: What are the mechanisms and potential for the system to adapt to 

these changes and mitigate the impacts? In other words, what changes could occur 

that will reduce exposure or sensitivity over time, and what are the ecological and 

evolutionary processes that will promote such changes? 

For plants, animals, and the ecosystems they inhabit, these three components are influenced 

both by human actions and features of the natural world. Exposure is primarily driven by the 

rate of climate change, which varies in different parts of the world due to the nature of the 

global climate system. Climate change mitigation efforts aim to reduce exposure, primarily via 

reduced greenhouse gas emissions, and provide the only direct and globally effective strategy to 

minimize climate change impacts. Sensitivity (of natural systems) is primarily a function of 

organismal physiology, population biology, and ecological functioning (e.g., thermal tolerances, 

reproductive rates, ecological interactions); at a landscape scale, environmental heterogeneity, 

dispersal barriers, and habitat loss will influence sensitivity as well. Adaptive capacity may arise 

from individual plasticity, evolutionary adaptation, or dispersal ability, allowing organisms to 
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adapt and move across the landscape as climate changes. Climate change adaptation strategies 

consist of conservation and management activities that can reduce sensitivity or facilitate 

adaptive responses (e.g., reserve acquisition, corridors) and minimize the eventual impacts of 

changing conditions. 

Several recent studies have examined aspects of climate change and the existing conservation 

lands network to address general aspects of the vulnerability framework above in a spatial 

framework, independent of the particular species or communities involved. Williams et al. 

(2007) quantified the magnitude of projected climate change across the globe relative to 

historical climate variability, on the assumption that ecological systems will experience greater 

impacts if future climates exceed the historical range of variability. They also mapped the 

distribution of novel climates, i.e., climatic regimes projected for the future that are not observed 

now (either regionally or globally), and disappearing climates, regimes that occur in the present 

but are not observed under future scenarios. Understanding the nature and distribution of novel 

climate regimes is critical, as we do not have analogs in current ecosystems that can be used to 

project ecological responses to such conditions. Ackerly et al. (2010) and Wiens et al. (2011) also 

conducted analyses of disappearing and novel climates, using different approaches (see further 

discussion below). 

Loarie et al. (2009) introduced the concept of the velocity of climate change, based on the speed at 

which climatic isoclines are projected to move across landscapes. Climate velocity is calculated 

as the ratio of the rate of projected climate change (e.g., °C/year) divided by the spatial gradient 

of climate at each point on the landscape (°C/kilometer [km]), resulting in a measure of velocity 

(km/yr). For temperature, rates of temporal change in California, under an ensemble of twenty-

first climate scenarios, vary from 0.04–0.06°C/year. Spatial gradients, on the other hand, vary 

enormously due to topography, from less than 0.01°C/km in flat areas such as the Central Valley 

to as high as 5°C/km in mountainous terrain. As a result, the velocity of climate change can vary 

from less than 0.01 km/yr in mountains to almost 10 km/yr in flat areas (see Figure 1 in Loarie et 

al. 2009 and Figure 5 in Ackerly et al., 2012; Burrows et al. 2011 compare velocities in marine 

versus terrestrial ecosystems). This wide range emphasizes the critical influence of topography 

on biotic responses to climate change. In mountainous terrain, dispersal distances required for 

species to move and track changing climates are much shorter, and microclimate variation on 

small-scale topographic gradients makes them shorter still (Luoto and Heikkinen 2008; Randin 

et al. 2009; Ackerly et al. 2010; Scherrer and Körner 2011). Based on these velocities, there will be 

little or no overlap between present and future climates in most of the world's protected areas, 

except for the largest reserves and those in highly varied terrain (Araujo et al. 2004; Loarie et al. 

2009; Ackerly et al. 2010).  

Klausmeyer et al. (2011), focusing on California as a model system, brought together several 

approaches to produce an integrated measure of climate change impacts and implications for 

conservation at a regional scale. They quantified: climate stress as the magnitude of projected 

changes relative to historical variability (using a different algorithm than Williams et al. 2007); 

landscape exposure, based on topographic diversity, connectivity and distribution of water 
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sources; and adaptive constraints, based on habitat loss and fragmentation. From the various 

combinations of low and high levels for each of these features, they then discuss implications for 

regional conservation strategies, ranging from pursuit of current strategies (when all three 

factors are low) to a reassessment of conservation goals (when all are high).  

These studies illustrate various approaches to the analysis of spatial and temporal patterns in 

historical and future climate data that can inform conservation planning, without reference to 

specific taxa or ecosystems. This paper builds on such analyses to assess the pattern and 

magnitude of climate change in California, based on projections from the 2008 California 

Climate Impacts Assessment, and the climatic diversity of the conservation lands network. The 

overall objective is to examine existing climate change projections from perspectives with well-

defined biological and conservation implications. Section 1 examines spatial shifts in the 

distribution of freezing events, one aspect of climate that is known to have important impacts on 

ecological systems. Section 2 presents an analysis of novel and disappearing climates (following 

Ackerly et al. 2010) for California and surrounding areas, under a range of future scenarios. 

Section 3 examines the current climatic diversity of the existing conservation lands network, and 

the climatic overlap between historical and future climates within individual reserves in 

California (building on a similar analysis for the San Francisco Bay Area in Ackerly et al. 2010). 

Figure 1 illustrates ecoregions of the Western United States and the spatial domain of the 2008 

California Climate Impacts Assessment. All analyses in this paper were conducted on publicly 

available data sets using spatial libraries and statistical tools in the open source and free R 

programming language (R Development Core Team 2006). Analysis scripts are available at: 

tinyurl.com/CECscripts. 

 

file:///C:/Users/Mark/AppData/Local/Smith%20Micro/Temp/Ackerly_Future%20Climate_2_23/tinyurl.com/CECscripts
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Figure 1. Ecoregions of California, Nevada and Surrounding Areas, from Olson et al. (2001). Black 
rectangle shows the spatial domain of the 2008 California Climate Change Impacts Assessment. 
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Section 1: Changes in the Distribution of Freezing 
Events under Future Climates 
Cold temperatures have an important influence on the distribution of individual species of 

plants and animals, as well as on major habitats and vegetation types (Woodward 1987). While 

many plants avoid cold by dropping leaves or remaining dormant below ground, woody 

evergreens continue to function through both cold and dry unfavorable seasons. Extreme cold 

can impact plant function in two main ways, either by damage to living tissues or by causing 

embolisms (air bubbles) in the water-conducting xylem elements (Sperry and Sullivan 1992; 

Davis et al. 1999; Stuart 2007]). The minimum temperature a plant can experience depends both 

on the extent of evolutionary adaptation to cold, as well as short-term acclimation responses. 

Exposure to cold induces “cold-hardening,” increasing resistance to subsequent cold events. As 

a result, plant sensitivity to cold depends on both long-term historical climate, shaping 

evolutionary adaptation, and short-term weather events, influencing acclimation. As plants 

adapt to the “normal” range of historical climates, extreme cold events can have strong effects 

almost anywhere in the globe. For example, some chaparral shrubs in southern California 

demonstrate an unexpectedly high degree of sensitivity to unusual cold events, leading to leaf 

death and shoot dieback (Davis et al. 1999; Davis et al. 2007). Cold also has strong effects on 

many crops, and can limit the growing areas for tropical and subtropical crops such as citrus 

and avocado. 

Several measures are available to translate climatic data and projections of future change to 

biologically relevant parameters. Growing-degree days (cumulative degrees above a threshold, 

summed over a season) are widely used in horticulture and agriculture, and can provide 

informative estimates of temperature effects on plant growth. Crops such as stone fruits 

(peaches and plums) have a winter chilling requirement, so climate warming presents a threat 

due to insufficient cold temperatures (see Luedeling et al. 2009). This study focuses on changes 

in the distribution of freezing events of varying severity, as plant and animal species differ in 

their minimum temperature tolerances. The distribution of frosts is particularly interesting in 

regions such as California where the strong marine influence results in infrequent frosts in 

coastal areas, and the expansion of the frost free zone raises the potential for qualitative shifts in 

vegetation and agriculture under future climate scenarios.  

Understanding the role of cold, and forecasting future distribution of cold events, is difficult 

using standard climate data, which report mean monthly temperatures. This study’s objective is 

to determine the relationship between mean monthly temperature and the frequency and 

intensity of freezing events, in order to develop transfer functions for use in geographic 

information systems (GIS), and in association with future climate projections. The frequency and 

distribution of freezing events (and other climate extremes) can also be obtained from the daily 

output of general circulation models (GCMs) and regional climate models, though analysis of 

these model outputs across large spatial domains is computationally demanding. 
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Methods 

The objective of this analysis was to map shifts in the distribution of extreme minimum 

temperatures under future climate projections. The primary challenge was that climate 

projections are usually provided as monthly means of daily minimum temperatures, following 

standards for climatological norms. The methods presented here provide an approach to 

generate projections for minimum temperatures, combining historical records of daily minimum 

temperatures with standard output from downscaled climate projections (in this case, using the 

scenarios of the 2008 California Climate Change Impacts Assessment, hereafter CA2008). 

Historical climate station data: Daily minimum temperature data was obtained from the U.S. 

Historical Climate Network for the seven western states (Washington, Oregon, California, 

Arizona, Nevada, Utah, and Idaho), comprising a total of 245 stations, with data starting from as 

early as January 1, 1900, and running through December 31, 2010 (locations shown in Figure 2a). 

Exploratory analyses indicated a fairly high frequency of suspicious data points, usually marked 

by one-day excursions to unexpectedly low temperatures (e.g., 12°C, -10°C, 14°C on successive 

days). These were handled by removing all data points with more than a 12°C change from the 

previous day. The 12°C threshold was chosen based on visual inspection of obvious outliers, 

while seeking to maintain fluctuations that represent actual variation in day to day 

temperatures. In addition, several months in values for all days = -17.78°C (= 0°F) were removed, 

as it appears that 0°F was entered instead of missing data. Subsequent analyses were conducted 

on this edited data set, and only months with no missing data were used. 
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Figure 2. Mean Monthly Tmin for the Coldest Month in the 1971–2000 Historical Period, from the 
PRISM Interpolated Climate Surfaces. Solid dots show the position of climate stations in the U.S. 



 

 

8 

 

Historical Climate Network. B. Minimum daily Tmin for the corresponding month in panel A, 
calculated from Equation 1.1. 

For each month, the following statistics were calculated: mean, standard deviation, and 

minimum for daily Tmin values, and the percent of days in the month that were less than or equal 

to four critical values: -10°C, -5°C, 0°C, and +5°C. Minimum and mean monthly Tmin values are 

referred to as Tmin-min and Tmin-mean, respectively (Table 1). The resulting data set contained a total 

of 209,134 monthly climate station records spread fairly equally across the 110-year time span, 

particularly from 1920 onwards (Figure A1). A plot of Tmin-mean vs. Tmin-min exhibits slight convex 

curvature, and an increase in the variance of Tmin-min at cold temperatures (Figure 3). Quadratic 

regression was used to obtain a predictive model for the expected Tmin-min as a function of 

monthly Tmin-mean (standard errors of coefficients in parentheses): 

 Tmin-min = -6.816 (0.006) + 1.22 (9.7E-4) * Tmin-mean - 7.634E-3 (6.7E-5) *Tmin-mean (1.1) 

 N = 209134, R2 = 0.93 

In data sets of this magnitude, random partitions into training and test data sets will give 

indistinguishable results, so this step was not conducted. 

 

Table 1. Abbreviations Used for Minimum Temperature Analysis 

 

Parameter Definition 

Tmin Minimum daily temperature 

Tmin-mean Monthly average of minimum daily temperatures (the conventional method for 
calculating monthly Tmin values in climatological data) 

Tmin-min Minimum Tmin value over the course of a month (i.e., the coldest minimum 
daily temperature measured in that month) 

Tmin-mean-30 Coldest mean monthly Tmin value observed in a pixel over a 30-year period 

Tmin-min-30 Coldest monthly minimum Tmin value observed in a pixel over a 30-year period 
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 Figure 3. Plot of Minimum vs. Mean Daily Tmin (Tmin-min vs. Tmin-mean) for All Monthly Data from 
Western States in the U.S. Historical Climate Network (N = 209,134). The red line shows the best fit 

quadratic regression (see Equation 1.1). 

 

This function can be used to predict the average coldest temperature expected in a month, as a 

function of mean monthly minimum temperatures (which are available in climatological 

summaries and climate projections). At Tmin-mean = 0°C, the expected Tmin-min is -6.8°C, descending 

to an extreme Tmin-min of -34.3°C when Tmin-mean = -20°C. In predictive modeling, this extreme 

minimum value of -34.3°C was then used for all Tmin-mean ≤ -20°C, due to the paucity of data 

points at the lower end of the historical distribution. Because these analyses focused on shifts 

occurring under global warming scenarios, rather than cooling, the lack of additional data at the 

cold extremes does not present a problem. In addition, few species exhibit differential responses 

at these extreme cold temperatures, so changes in Tmin-min at these levels are probably not 

biologically relevant. The calibration data include all months of the year, so they fully span the 

range of temperatures around 0°C; as a result, projections under future warming do not involve 

extrapolations. 

Several other approaches to analysis of the historical data were considered. Analyses of 

individual stations, or of data aggregated by month of the year, did not reveal consistent 

patterns in the resulting regression coefficients. Thus, all data were pooled, and all of the 
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monthly data points were treated as independent observations. This approach does not take into 

account spatial or temporal variation in the underlying patterns, which potentially could be 

incorporated in the interpolations to the regional climate map at the next step. However, it does 

have the advantage of simplicity, and provides a starting point for other studies that may want 

to explore minimum temperature patterns if local calibrations from weather stations have not 

been analyzed. 

This study also explored quantile regression to obtain predictive relationships for the minimum 

temperature that would be expected with a specified frequency. In other words, the 99 percent 

quantile regression would provide an upper threshold, such that the Tmin-min value would be at 

least that cold in 99 percent of months with a given Tmin-mean. This approach worked well for the 

upper quantiles, as the upper edge of the distribution is quite smooth. However, at the lower 

edge a quadratic quantile regression had strong curvature, leading to inappropriate 

extrapolations to very negative values at the lower end. A refined statistical approach to fit a 

predictive function to the lower bounds of this distribution may be warranted. 

The percent of days exceeding critical Tmin thresholds exhibited a sharply non-linear relationship 

with Tmin-mean (Figure 4). As expected, approximately 50 percent of the days in a month 

experience Tmin values <= Tmin-mean. These relationships can be fit fairly well with descending 

logistic curves (not shown). If desired, these functions could be used to map changes in this 

statistic across the spatial domain, but these analyses are not pursued further here. 
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 Figure 4. Plot of the Proportion of Days per Month in which Tmin < Tcrit, vs. Mean Monthly Tmin. 
Tcrit = 0°C (black points), -5°C (green points), or -10°C (blue points). For clarity, only N = 20000 

points are shown, drawn randomly from the full data set.  

 

Historical norms for mean and minimum Tmin: The 2.5 arc-minute (~4 km) PRISM1 data set for the 

1971–2000 historical period (Daly et al. 2008) was used to map the current distribution of 

minimum temperature values for California and adjacent regions, over different time periods 

(the spatial domain used here follows the area covered by the 2008 California Assessment). Most 

analyses of seasonal minimum and maximum temperatures focus on January and July or winter 

versus summer quarters, respectively, often relying on 30-year averages for climatological 

norms. A slightly different approach was used here to model extreme minimum temperatures 

over 30-year periods. Using the raster library of R (Hijmans and van Etten 2011), a stack was 

constructed with all 360 monthly Tmin-mean PRISM layers, from January 1971 to December 2000. 

The minimum value was then extracted from the stack for each pixel. The result is a map of the 

coldest Tmin-mean observed over the 30-year period in each pixel, regardless of the month or year 

                                                      
1 Parameter-elevation Regressions on Independent Slopes Model (PRISM) 
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in which it occurred (Tmin-mean-30, Figure 2a). Equation 1.1 was then used to convert these values to 

the expected Tmin-min that would have been observed in that month, providing a map of the 

coldest temperature expected over the 30-year historical period (Tmin-min-30, Figure 2b). A second 

stack was then created with Tmin-min values for each month, based on Equation 1.1. In each stack, 

the number of months in which Tmin values were less than or equal to three critical values 

(0°C, -5°C, -10°C) was calculated, and then divided by 30 to obtain the average number of 

months per year in which mean or minimum Tmin temperatures fall below these levels. 

Shifts in the distribution of freezing events under future climate scenarios: The 2008 California Climate 

Change Impacts Assessment (CA20008) scenarios were used to evaluate changes in the 

distribution of freezing events under historical versus future climate scenarios. The CA2008 

scenarios include the Intergovernmental Panel on Climate Change (IPCC) B1 and A2 emissions 

scenarios, and are derived from four general circulation models: CCSM3, CNRM, GFDL, and 

PCM1,2 downscaled to a 7.5 arc-minute (~12 km) spatial grid (Cayan et al. 2008) .3 The historical 

data from these simulations start from 1950 and have been calibrated to match general features 

of historical climate, but they are not directly tied to interpolated historical records. It is 

necessary to use the simulations for both historical and future periods to ensure that the 

differences reflect climate change projections, rather than differences between observations and 

projections for different periods.  

The historical period was defined as 1971–2000, and future periods as early (2010–2039), mid 

(2040–2069), and late (2070–2099) twenty-first century. Results reported here focus on the late 

twenty-first century period. For historical and future periods, the same methods were used for 

analysis, as outlined for the PRISM data above. In each period, the 360 monthly Tmin-mean surfaces 

were stacked, and then converted to a Tmin-min stack using Equation 1.1 (under the assumption 

that the relationship between mean and minimum Tmin values will be the same under future 

climates). The coldest Tmin-min value over each 30-year period (Tmin-min-30), and the average number 

of months per year in which Tmin-min values are lower than critical values (Tcrit) of 0°C, -5°C 

or -10°C, were then calculated from this data stack. The resulting maps for the historical period 

under each CA2008 scenario were compared with the corresponding PRISM maps to determine 

the similarity in the respective historical baselines. 

To assess changes under future climate projections, two sets of maps were then constructed, 

under each of the four GCMs and the B1 and A2 scenarios, and the three Tcrit values. The first set 

showed areas in which Tmin-min-30 values were either above Tcrit or below Tcrit at least once in both 

the historical and future period, versus areas where temperatures fell below Tcrit in the historical 

                                                      
2 Community Climate System Model (CCSM3), Centre National de Recherches Météorologiques (CNRM), 

Geophysical Fluid Dynamics Laboratory (GFDL), and the National Center for Atmospheric Research 

(NCAR) Parallel Climate Model (PCM1). 

3 For complete information on CA2008 scenarios, see: http://tenaya.ucsd.edu/wawona-

t/cec_adaptation/cec_adaptation_downscaled_data.html. 

http://tenaya.ucsd.edu/wawona-t/cec_adaptation/cec_adaptation_downscaled_data.html
http://tenaya.ucsd.edu/wawona-t/cec_adaptation/cec_adaptation_downscaled_data.html
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period but are not projected to fall below Tcrit in the future period. The latter areas are those that 

will experience a relaxation of freezing events. The second set of maps was similar, but showed 

the regions that experienced these three conditions on average one or more times per year, 

rather than at least once in the 30-year period. As the four GCMs were generally similar, the full 

results are shown in the appendix, and results of the CCSM3 GCM are illustrated in the main 

paper. 

Results 

Historical norms for mean and minimum Tmin: The distribution of the coldest monthly Tmin-mean 

values for the 1971–2000 period, based on PRISM, is shown in Figure 2a, and the corresponding 

values for Tmin-min, based on Equation 1.1, are shown in Figure 2b. The overall pattern in these 

two maps is virtually identical, as the predictive equation is nearly linear, with a shift towards 

colder minimum temperatures for Tmin-min. As expected, the mildest Tmin values occur along the 

coast (especially in the San Diego-Los Angeles region and the San Francisco Bay Area) and in 

the warm Sonoran desert areas. Tmin-min values are below zero across almost the entire region, 

except for portions of the south coast and Imperial Valley, reflecting the fact that the entire area 

has been subject to at least occasional frost under historical climate conditions. The border 

between the Mojave and Sonoran deserts roughly follows an isocline of Tmin-min ~ -8°C, and 

between the Mojave desert and Great Basin at Tmin-min ~ -20°C. The sharp transitions from the 

Central Valley to chaparral woodland and Sierra Nevada forests also mirror a steep gradient in 

minimum temperatures. 

The number of months per year in which Tmin-mean and Tmin-min have fallen below various critical 

values are shown in Figure 5. As seen in Figure 5b, there are fairly extensive regions of the high 

mountains and Great Basin in which freezing temperatures are expected in 10 or more months 

of the year. Freezing events below -5°C, and especially below -10°C, are rare or absent across 

most of coastal California and the Mojave and Sonoran deserts (Figure 5d, f).  

PRISM climate layers were aggregated to match the resolution of the CA2008 scenarios, to allow 

a pixel-by-pixel comparison across the spatial domain. The 30-year Tmin-mean values from the 

CA2008 scenarios tend to be lower than the corresponding values from the PRISM interpolated 

layers, especially for the CCSM3 GCM (Figure A2). These discrepancies were greatest in high 

elevations and interior regions (Figure A3), indicating that the GCMs tended to infer relatively 

colder temperatures in these areas. As there are few climate stations at high elevations, the 

PRISM interpolations are known to be less reliable in the mountains, so from this analysis it is 

not apparent which values are closer to being correct. It does mean that the CA2008 analyses 

start from a cooler baseline, especially in the mountains, which should be considered when 

looking at the projected shifts in freezing patterns. 
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 Figure 5. Number of Months per Year (Averaged over 1971–2000) in which Monthly Tmin Values Fall 
below Various Critical Levels. a, b: 0°C; c, d: -5°C; e, f: -10°C. a, c, e: Mean monthly Tmin; b, d, f: 

Minimum monthly Tmin. 

Changes in the distribution of freezing events under future climates: Figures 6 and 7 illustrate the 

projected shifts in the distribution of freezing events across California and adjacent areas, 

comparing 1971–2000 to 2070–2099 for the CCSM3 A2 projections (full results from all GCMs are 

in Figures A4–9). These maps are all based on the expected Tmin-min values, calculated from 

Tmin-mean values in the CA2008 climate layers together with Equation 1.1. The six panels show 

freezing events below critical values of 0°C, -5°C, or -10°C (32°F, 23°F, or 14°F), occurring either 

at least once in the 30-year period (Figure 6) or at least once per year (on average, Figure 7). On 

each map, blue indicates areas that have experienced temperatures below Tcrit in the historical 

period, and will continue to in the future; gray are areas that have not experienced temperatures 

below Tcrit, and will not experience them in the future; and red shows the transitional zones, 

which have experienced freezing below Tcrit in the past, but are not projected to experience these 

temperatures in the future.  

As expected, warming leads to larger areas being relieved from freezing events under the higher 

emissions A2 scenarios, compared to B1 (right versus left, respectively, in Figures 6, 7, and 

A4-9). Variation among the four GCMs is relatively minor. 

Virtually all of California and surrounding areas have experienced freezing temperatures 

(Tcrit ≤ 0°C) at least once during 1971–2000 (Figure A4) and will continue to at the end of this 

century. Small areas along the south coast and in the Imperial Valley are projected to be entirely 

frost free under the A2 emissions scenario. With the exception of these same areas, most of the 

region has also experienced freezing events at least one month of the year (Figure A5). In the 

future, especially under the A2 scenarios, increasing areas of the Sonoran desert, the south and 

central coast, and (under some scenarios) the Central Valley, will be frost free in at least some 

years. 

The south coast and Sonoran desert areas have not experienced freeze events < -5°C in the 

historical period (Figure A6), and expanding zones around these areas are projected to be 

entirely free of freeze events below this temperature. Most of southern and coastal California 

(except at high elevations) and the Central Valley have not experienced freezes ≤ -5°C on an 

annual basis. This zone expands into the western and northern Mojave desert, up the western 

slope of the Sierra Nevada, and under most A2 scenarios up into the Coast Range mountains 

between the Bay Area and Santa Barbara (Figure A7).  

The distribution of freeze events < -10°C once in 30 years is similar to <-5°C once per year 

(Figure A8 versus A7). Under CCSM3 A2, freeze events of this magnitude are modeled for the 

historical period in the Central Valley, but this is not observed in the PRISM historical layers 

(Figure 5). At this temperature, a growing area of the northwest coast is projected to no longer 

experience freeze events in the future. Most of California, except for high mountains, does not 

experience events < -10°C each year (Figure A9). With warming temperatures, narrow bands 

around the edges of the Mojave desert, along the western slope of the Sierra, and around the 
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Klamath-Siskiyous, where such events have occurred historically, will no longer experience 

them each year. 

 

 

Figure 6: Changes in the Distribution of Freeze Events Occurring at Least Once per 30 Years, from 
the 1971–2000 Historical Period to the 2071–2100 Future Projections, for the CCSM3 GCM. a, b, d: 

B1 emissions scenario; c, e, f: A2 emissions scenario. a,b: Freezing events less than critical 
temperature (Tcrit) = 0 °C; c,d: Tcrit < -5 °C; e,f: Tcrit < -10 °C. Blue areas have experienced a freeze 
less than the indicated Tcrit values in the past, and are projected to continue to experience these 

events in the future. Red areas have experienced these in the past, but are not projected to 
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experience these in the future. Gray are areas that have not experienced a freeze at this 
temperature in the past, and will not in the future either. 

 

 

Figure 7. Same as Figure 6, for Freezes Occurring on Average One or More Times per Year  

Discussion 

Overall, the areas that will experience a relaxation from freeze events of a particular severity and 

frequency are relatively small (the red areas on the maps). For plants and animals sensitive to 
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frost (both native and alien taxa), these bands represent key transitional areas in which range 

expansions and vegetation type transitions could be observed over time. At Tcrit < 0°C, these 

transitional areas are primarily in the Sonoran desert and along the coast. At colder 

temperatures, a zone along the western slope of the Sierra Nevada warms above the critical 

temperatures, along with portions of the Mojave desert, the southern and central coast, the 

Coast, Transverse, and Klamath-Siskiyou Ranges, and the Central Valley. To the extent that 

Mediterranean-type vegetation (e.g., chaparral) is limited by occasional freeze events, this may 

represent opportunities for upslope migration. On the western slope of the Sierra Nevada, 

vegetation transitions have been observed in the twentieth century, with oak woodland 

spreading upwards, displacing pine forests (Thorne et al. 2008). Such transitions are expected to 

continue, though the relative role of changes in winter cold versus summer heat and drought, 

and succession following land-use changes are difficult to unravel. 

Changes in the distribution of freezing events have potentially significant implications for 

agricultural production as well. In Southern California, the appearance of frost-free areas could 

allow the introduction of tropical crops. Like native vegetation, crops with particular 

temperature requirements, or sensitivity, may need to be moved upslope. In contrast to the 

focus on freezing events here, stone fruits have a well-defined chilling requirement and 

warming trends may greatly shrink the areas in which they can be produced, especially in the 

Bay Area and Central Valley (Luedeling et al. 2009). 

There are several important points to keep in mind regarding interpretation of these projections. 

First, for simplicity, this study focused only on the extreme minimum temperatures over the 

entire year, or over 30-year periods. Of necessity, these values may only be directly relevant for 

woody plants, and for animals active or at least exposed to winter temperatures. It is well 

known that cold and freezing sensitivity in plants and animals exhibit striking seasonal 

acclimation, with greater tolerance developing during cold periods (Kalberer et al. 2006). As a 

result, unseasonal cold or freezing events, such as a late spring or an early fall freeze, can have 

much greater negative impacts on plants and animals, even if they are able to tolerate colder 

temperatures during winter (Gu et al. 2008). Modeling climate change impacts of such 

unseasonal extreme events is possible in principle, but the analyses would be most useful if 

calibrated to known physiological sensitivity of a particular species.  

A second point to note is that these analyses utilized downscaled climate projections at a 12 km 

grid cell size. Thus, the patterns reflect only broad mesoclimate trends across geographic and 

elevational gradients. At finer scales, topographic phenomena such as cold air pooling can 

generate local freeze events that are substantially decoupled from regional climate (Lundquist et 

al. 2008). These topographic inversions influence vegetation distributions, in some cases leading 

to exclusion of cold-sensitive species from low-lying valleys (Davis et al. 2007). In southern 

California, mortality of cold-sensitive chaparral shrubs has been observed in valleys, even fairly 

near the ocean, during unusual cold spells (Davis et al. 2007). Inversions have well-known 

effects in agriculture, as cold-sensitive crops can sometimes only be grown on along the slopes 
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of low-lying valleys, and not at the bottom. These effects will be important to consider in 

modeling landscape-scale climate and climate change impacts on biota. 

The approach used here, combining the daily records of historical climate stations with the 

mapping of mean temperatures, is valuable as a first approximation of minimum temperatures 

experienced over different time scales. However, it is important to note that the estimation of the 

minimum Tmin values (Tmin-min) was based on the expectation of the coldest temperature 

experienced in a month, as a function of mean monthly Tmin (Tmin-mean) (Equation 1.1). As shown 

in Figure 3, Tmin-min has a range of 10°C to 20°C (50°F to 68°F) around the mean, with especially 

cold Tmin-min (relative to the expectation) occurring at low mean monthly Tmin. As a result, the 

mapping of areas as entirely frost free (especially over 30-year periods) is only approximate, and 

rare cold events are still inevitable. This is one reflection of the general problems encountered in 

projecting the frequency and distribution of extreme events.  

In general, discussions of climate change impacts tend to focus on the increase in abiotic 

stressors impacting natural and human systems, such as heat waves, drought, and extreme 

precipitation events. The changing distribution of cold temperatures, and especially freezing 

events, lies on the opposite end of the spectrum; cold is a factor that may have restricted some 

species from occupying regions historically, and this restriction will now be relaxed. This raises 

the question of what ecological processes may contribute to biotic responses to this relaxation. 

For example, if there are tradeoffs between cold tolerance and growth rate, or competitive 

ability, then less cold-tolerant plants may be able to invade new sites and gradually outcompete 

existing vegetation. However, in the absence of factors that directly and negatively affect 

existing plants, such direct competitive displacement could be impeded by priority effects and 

the absence of opportunities for establishment of new taxa. Alternatively, replacement of cold-

tolerant by less cold-tolerant taxa may primarily occur following disturbances, such as wildfire 

or drought-induced mortality of existing vegetation (Allen et al. 2010). Of equal importance, 

relaxation of freezing limits will allow for expansion of cold-sensitive crops (e.g., vineyards, 

avocados) into undeveloped areas, leading to new patterns in land-use change. Observational 

studies of vegetation dynamics in coming decades will be critical to better understand the 

mechanisms underlying climate change impacts on natural vegetation.  

Section 2: Mapping Disappearing and Novel Climates 
under Future Climate Scenarios 

The climate of a particular place on the globe reflects long-term average values for individual 

climate variables (minimum and maximum temperatures, precipitation, length of dry season, 

etc.) as well as the frequency and intensity of extreme events. While plant and animal 

distributions, physiology, and demography are clearly influenced by climate, we often do not 

know which aspects of climate affect which species. This uncertainty has led to development of 

methods to map and quantify the overall severity of climate change as a guide to the magnitude 

of potential impacts (Williams et al. 2007; Loarie et al. 2009; Ackerly et al. 2010; Klausmeyer et al. 

2011; Davison et al. 2012).  
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One principle guiding these analyses is the idea that the impacts of a particular aspect of climate 

change should be scaled by the historical variability in the parameter of interest, on the 

assumption that biological systems will exhibit a certain amount of resilience in response to 

“normal” levels of historical variability. At a local scale, if future climate exceeds the range of 

historical variability in one or more parameters, we can say that organisms will experience a 

novel climate, though the exact threshold used to specify “novelty” will depend on the time 

frame and measures used to quantify historical variability. At a regional (or global) scale, future 

climates that exceed the historical range observed anywhere in the spatial domain can be 

considered novel at that scale; i.e., climate conditions projected for the future do not resemble 

the climates currently observed anywhere in the region. Similarly, by quantifying the extent of 

particular climate types, we can also classify certain climates as shrinking, expanding, and 

disappearing, when comparing a future period (under a particular climate change scenario) 

with the historical baseline. 

Due to the multivariate nature of climatic variation, only a small number of the possible 

combinations of different factors will actually exist. For example, in California there are very hot 

areas (in the deserts) and very wet areas (in the northwest), but the combination of hot and wet 

(which would correspond to a tropical rain forest environment) does not exist. Jackson and 

Overpeck (2000) coined the term “realized environment” to refer to the combinations of climate 

conditions that exist at a given time. Changes in the availability or distribution of realized 

environments are likely to have significant biotic impacts at a regional scale, as organisms may 

no longer find suitable conditions, or may not be able to disperse rapidly enough to track 

rapidly changing conditions. Novel climates pose an additional challenge, because we have no 

analogs (at least within the domain of interest) to use as a basis for projecting the kinds of 

species or communities that would be expected under the novel conditions. 

Williams et al. (2007) pioneered the analysis of novel climates. They calculated the multivariate 

standardized Euclidean distance (SED) between the climates of each pixel, globally, relative to 

all other pixels, using four climate variables, where the distance for each variable was scaled by 

its interannual standard deviation from 1980–1999. Novel climates were classified as those 

points where the future climate was more than 3.22 SED units from any point on the globe at 

present, averaged over several GCMs for the late twenty-first century. Conversely, disappearing 

climates were those in which the current climates exceeded this threshold, relative to any future 

value. They also mapped locally novel and disappearing climates, by comparing each pixel to 

those within a radius of 500 km. At a global scale, under the A2 scenario, novel climates were 

primarily located in tropical lowlands, and disappearing climates in tropical mountains. One 

pixel that appears to be near the San Francisco Bay Area is classified as novel. When the analysis 

is restricted to the 500 km radius, several pixels along the California coast appear as novel 

climates. 

Wiens et al. (2011) recently published an analysis of novel and disappearing climates, focused 

on California. They constructed a principal components analysis (PCA) from eight climate 

variables and then used the first two PCA axes for their analysis. They calculated a bivariate 
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density surface in this two-dimensional space and drew polygons around the areas containing 

99.9 percent of the pixels. Novel climates were defined as those conditions, under future climate 

scenarios, that fell outside of these polygons, while disappearing climates were those that were 

no longer represented in the future. The future climates projections were obtained from a 

regional climate model for the mid-century period from 2038–2069 under the A2 scenario. They 

found small areas of disappearing climates on the North Coast and in areas surrounding Mono 

Lake and Death Valley. Fairly extensive areas of novel climate appeared in the Sonoran and 

Colorado Deserts, and in portions of Death Valley and the Mojave Desert. Interestingly, novel 

climates also appeared in the Central Coast mountains, where the regional climate model 

projects cooler and wetter future conditions. 

Ackerly et al. (2010) developed a different approach that has elements of the two above. They 

selected two climate variables for simplicity—mean annual temperature and total annual 

precipitation—and constructed a two-dimensional histogram of existing climate variation, 

where the width of the histogram bins on each axis were set to three times the average standard 

deviation for each variable during the 1971–2000 historical period. Future climates representing 

new combinations of temperature and precipitation (i.e., histogram bins that were unoccupied 

in the past) were classified as novel, and those that no longer occur were classified as 

disappearing. This approach also makes it possible to quantify the change in the area occupied 

by persisting climate types, and to determine if they are shrinking or expanding in extent. The 

analysis was run with two future climate projections, the warmer and drier GFDL_CM2 and the 

warmer and wetter CCCMA_CGCM3, for the 2070–2099 period under the A1b scenario. The 

results showed very small areas of disappearing climates in the high peaks of the Sierra Nevada 

and White Mountains, and novel climates along the South Coast and the San Joaquin Valley. In 

addition, hot conditions in the southern Central Valley and low-lying coastal areas expand to 

occupy much more extensive areas in the future.  

The objective of the present study was to map the distribution of disappearing, shrinking, 

expanding, and novel climates for the State of California, following the methods of Ackerly et al. 

(2010), under future climate scenarios provided by the 2008 California Climate Change Impacts 

Assessment (see Cayan et al. 2008). The results were then used to evaluate the climatic overlap 

(comparing historical and future conditions) of parks and other protected areas across the state 

(Section 3). As the review of previous studies demonstrates, the results of these analyses are 

quite sensitive to the methods, the choice of climate variables, and the spatial domain. The 

rationale for the choices made in this study are outlined here. 

1. Spatial Domain: The idea of a disappearing or novel climate can only be framed in the 

context of a particular spatial domain. A climate that disappears from California (e.g., 

high mountains) may be found elsewhere in the western United States, or the rest of the 

world, under a future scenario. However, for conservation purposes, if a particular 

climate disappears within a domain of interest, then any species or ecosystems that are 

tightly linked to that climate may also disappear. Conversely, a novel climate may be 

novel in California, but currently exist elsewhere (e.g., the spread of hot deserts more 



 

 

22 

 

similar to Arizona or northern Mexico). However, if species that occupy such 

environments are dispersal limited, then these novel environments in California may be 

unreachable. In these circumstances, we do not have a strong basis to project what 

species or ecosystems will occupy such environments in the future when they arise 

within California. This paper presents results using the 2008 California Climate Change 

Impacts Assessment 12 km climate projections (CA2008), restricted to the California state 

domain. Results for the CA2008 California-Nevada domain are presented in appendix 

figures. The state level analysis is appropriate for planning purposes, as the level of 

decision-making for state agencies and conservation planners (Wiens et al. 2011). From a 

biological perspective, a continuous spatial domain with a moving window can be used 

to assess novel climates, relative to surrounding areas from which species could disperse 

(for example, the 500 km radius moving window used by Williams et al. 2007). Such 

methods are computationally quite intensive, and also require a large spatial buffer for 

calculations at the edges of the domain. 

2. Variable Selection: The relevance of this analysis to biological impacts will depend on the 

choice of climate variables and their relevance to plants, animals, and ecosystems. For 

this analysis, I chose three variables: minimum temperature of the coldest month, 

maximum temperature of the hottest month, and total precipitation. The rationale is that 

biological processes, and the range limits of species and ecosystems, will be more 

strongly affected by temperature extremes than annual averages. Due to the strong 

marine influence on California's climate, coastal areas have mild winters and cool 

summers, while interior regions have colder winters and hotter summers. This 

decoupling of minimum and maximum temperatures means that mean annual 

temperature is not directly correlated with these seasonal extremes, and is a poor 

descriptor of temperature gradients. Total precipitation is used as a surrogate for water 

availability because most of the state has a Mediterranean climate, so the seasonal 

distribution is broadly similar. This is not true for analyses over the broader western U.S. 

domain, as there is relatively more summer rainfall in interior and desert regions. In the 

future, I plan to run these algorithms on the 270 m downscaled data from Flint and Flint 

(2012), using climatic water deficit rather than precipitation. Analyses parameterized for 

specific taxa or ecosystems may require consideration of additional or a different set of 

variables, depending on the climatic sensitivity of the study system. 

3. Classifying Climate Types: The third problem is how to scale variation in different climate 

variables and create discrete “climate types,” or isoclimates, thus allowing identification 

of which types are disappearing, shrinking, expanding, and novel. Williams et al. (2007) 

examined on a pixel-by-pixel basis the standard deviation of annual values for each 

climate variable over the historical baseline period, and scaled the changes in each 

variable relative to these deviations. This method is used here to calculate and map the 

magnitude of projected change for each pixel. As discussed above, I simplified the 

approach for analysis of novel climates, following Ackerly et al. (2010), and used the 

historical standard deviations to define the widths of bins for each climate variable, and 

then calculated multidimensional histograms of the frequency (= area occupied) of 
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different climates. This allows a more rapid calculation of which climate types are 

shrinking, expanding, disappearing, and novel, relative to the entire spatial domain. This 

approach is implemented here, using the CA2008 projections, with a larger bin width of 

four standard deviations, so that isoclimates are classified more broadly and the 

assessment of novel and disappearing climates is more conservative. 

Methods 

Spatially interpolated maps for current and future climates at a 7.5 arc minute scale were 

obtained from the 2008 California climate change impacts assessment report (Cayan et al. 2008). 

These layers span a spatial domain from the Pacific Coast to 113°W longitude and the Mexican 

border to 44°N latitude, including all of California and Nevada and small areas of surrounding 

states. Mean minimum monthly temperature (Tmin), mean maximum monthly temperature 

(Tmax), and total monthly precipitation (Ptot) were obtained for each month for the years 1971 to 

2099, for four general circulation models—CNRM, GFDL, PCM1, and CCSM3—and two IPCC 

emissions scenarios (B1 and A2). The B1 scenario involves significant reductions in fossil fuel 

burning and stabilization of atmospheric CO2 levels at about 500 parts per million (ppm), with 

increases of 1.1°C –2.9°C (2.0°F–5.2°F) in global surface temperature by the end of the century. 

The A2 scenario represents continued growth in greenhouse gas emissions, with atmosphere 

CO2 levels over 800 ppm, and global surface temperatures rising 2°C–5.4°C (3.6°C–9.7°C). 

Current emissions trajectories are at or above those used in the higher A2 scenario (Raupach et 

al. 2007). Note that the historical and future layers all represent downscaled output from GCM 

runs, and are not spatially interpolated surfaces based on climate station data. It is important to 

use model output for both periods so that changes from past to future reflect climate change 

projections, and not differences between interpolated and modeled data. 

For each year, the twelve monthly maps were “stacked” to calculate annual statistics: the 

minimum value for Tmin, maximum value for Tmax, and sum for Ptot. These calculations were 

conducted “pixel-wise” so, for example, the minimum values across the map did not necessarily 

have to occur in the same month in each pixel or in each year (in contrast with analyses that 

utilize January minimum and July maximum temperatures). Total annual precipitation values 

were log10-transformed for subsequent analyses (PLtot), due to the skewed distribution of 

precipitation, both spatially and for interannual variation. Thirty-year climatological norms 

were then calculated as the average of the annual values for the three statistics, for four periods: 

1971–2000, 2010–2039, 2040–2069, and 2070–2099. Analyses presented here focus on the first and 

last intervals as the “historical” and “future” periods.  

The magnitude of climate change, relative to historical variability, was calculated as the 

standardized Euclidean distance between the future and historical climate values, scaled by the 

historical variance for each climate variable (Williams et al. 2007): 
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where k represents the climate variable (Tmin, Tmax, or PLtot), Xf and Xh are the future and historical 

mean values in a given pixel, and sh2 is the interannual variance during the historical baseline 

period (Figure 8). 

Isoclimates were defined by assigning each pixel to a bin in a three-way table for Tmin, Tmax, and 

PLtot. The width of the bins was based on the magnitude of historical variability for each 

parameter. Historical variability was calculated as the standard deviation of the annual values 

for the 1971–2000 period, averaged over the spatial domain. For each variable, the bin width was 

then set to four times the temporal standard deviation (providing a more conservative 

assignment of novel isoclimates, compared to Ackerly et al. 2010), and the necessary number of 

bins was assigned to span the range of climate conditions in the historical and future periods. 

The number of bins varied among the eight scenarios, due to differences in modeled variability, 

the magnitude of climate change, and whether the analysis was conducted over the entire 

California-Nevada domain, or restricted to the State of California. For each scenario and 

domain, historical and future climates were assigned to their respective bins in this three-way 

table, and each climate type was then assigned to one of six fates: (1) disappearing, (2) shrinking 

by more than 10-fold in area, 3) shrinking by 1- to 10-fold, (4) expanding by 1- to 10-fold, 

(5) expanding by more than 10-fold in area, or (6) novel. 

For example, for the CCSM3-A2 scenario for California, there were six bins for Tmin, nine bins for 

Tmax, and four bins for PLtot, for a total of 216 potential isoclimates (Table 2). Only 60 of these 

potential isoclimates were observed in the 1971–2000 period, and 66 in the 2070–2099 period. Of 

the 60 isoclimates in the historical period, 16 were not observed in the future, and were classified 

as disappearing climates. Six isoclimates shrank by more than 10-fold in area and 22 by 1- to 

10-fold; 12 types expanded by 1- to 10-fold, and 4 expanded by more than 10-fold. Finally, 22 of 

the bins were empty in the historical period, but observed in the future, and were classified as 

novel climates. Most of the novel climates involve increases in minimum temperatures at low 

precipitation levels, reflecting winter warming in desert regions (Table 2). Each pixel on the 

historical climate map can then be assigned to one of the first five types (by definition, novel 

climates do not exist in the present), and each pixel on the future climate map assigned to one of 

the last five (disappearing types do not exist in the future). 
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Table 2. Three-dimensional Histogram for Areas Occupied under Historical (left) and Future (right) 
Climates for the California State Domain (future in this example if CCSM3, A2, 2070–2099). The four 

subtables represent different precipitation levels (left column) and within each subtable, rows 
represent bins of maximum temperature and columns are bins of minimum temperature (row and 
column labels show lower cutoffs for each bin). Values are the number of pixels occupied by each 

combination of climate values, where pixel size is 7.5 arc min, approximately 12 km on a side. 
Cells colors show fate of each climate, comparing historical and future values (and correspond to 
colors in Figures 10 and 11): gray = disappearing climate; dark blue = >10-fold reduction in area; 
light blue = 10- to 1-fold reduction; yellow = 1- to 10-fold expansion; orange = >10-fold expansion; 

red = novel climate. 

 

 

The fate of individual climate types can be illustrated by mapping their distribution in the 

historical and the future period, showing the change in area occupied and location (e.g., 

Figure 9). These maps are similar to the method of climate analogues, which identified places 

whose climate is most similar to the future climate of a particular location (Veloz et al. 2011). 

These analogs provide a particularly intuitive way for non-specialists to grasp the implications 

of future climate projections. 

When all climate types are mapped together, the result is a pair of maps displaying the fate of 

current climates, and the status of projected future climates (e.g., Figures 10 and 11). The light 
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blue areas on the left represent areas whose climates are projected to shrink in extent, and to 

occupy the corresponding light blue areas in the future shown on the right (and similarly for 

dark blue, yellow, and orange). Black in the present represents areas with disappearing climates, 

and red in the future is the distribution of novel climates. The relative area assigned to each 

category (in the historical and future periods) can be determined by summing the number of 

pixels in the corresponding climate types (the current analysis was conducted on geographic 

projections, so pixel areas are not exactly identical from south to north). What is not shown by 

these composite maps is exactly what the climate conditions are in each category. The light blue 

area may include very different climates in different parts of the domain, and it is not possible in 

this graphic to display the shifts from historical to future periods for all climate types.  

Results 

The magnitude of climate change across the California-Nevada domain, scaled by historical 

variability for the three variables considered here, ranged from 0.81 to 5.3 units under the lower 

emissions B1 scenarios, and from 1.8 to 10.6 units for the A2 scenarios (Figure 8). The units here 

represent standardized Euclidean distances, over three variables, so a value of 5 represents an 

approximate change in the mean for each variable of almost three standard deviations, which 

would effectively shift future conditions outside the range of historical variability. Changes 

were more marked under the GFDL and CCSM3 GCMs, compared to CNRM and PCM1; further 

inquiry is needed to determine the relative contribution of the magnitude of change per se 

versus differences in levels of interannual variability that are used to scale changes in the 

different variables. Under the A2 scenarios, change is generally greater in interior regions, 

particularly the Great Basin, but the patterns are fairly patchy. Relatively high levels of change 

can be seen along the northwest coast and in southern California under some scenarios and 

models.  
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 Figure 8. Magnitude of Climate Change for California and Nevada, Measured as the Standardized 
Euclidean Distance between Historical (1971–2000) and Future (2070–2099) Conditions, Scaled by 
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Historical Variability. Values > 5 (orange to red) generally represent future conditions beyond the 
range of historical variability (see text).  

 

Figure 9. Example of an Expanding and a Shrinking Climate Type, from the CCSM3 A2 Scenario. 
The two conditions selected for illustration are outlined in black boxes in Table 1. a: Historical 
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period, 1971–2000. b: Future period, 2070–2099. Orange: precipitation (mm, log) 2.43–3.03, Tmin 
(°C) -12.8 to -6.3 °C, Tmax (°C) 31.5–35.4, which expands from 8 pixels in the historical period to 

127 pixels in the future. Blue: precipitation 1.84–2.43, Tmin 0.11–6.55, Tmax 35.4–39.3, which 
shrinks from 210 pixels to 92 pixels. 

Under B1 emissions scenarios, most isoclimates in California exhibit moderate shrinkage or 

expansion (Figure 10; see Figure A10 for the larger California-Nevada domain). The distribution 

of these categories varies among GCMs, especially for the larger spatial domain. When restricted 

to California, the current climates of most coastal and montane regions are shrinking in extent, 

while climates of the deserts and Central Valley expand to occupy larger areas. Novel climates 

appear in the Sonoran desert regions. 

Under A2 emissions scenarios changes are more severe and pervasive (Figures 11 and A11). 

Under two of the four GCMs, significant areas of the Central Valley experience novel climates, 

unlike any experienced in California during the historical period. Coastal and montane climates 

shrink, and current climates of the high Sierra Nevada, and of some areas along the coast, 

disappear entirely. For the broader California-Nevada domain (Figures A11), current isoclimates 

of the Great Basin shrink dramatically and are replaced by expanding climates from hotter 

desert regions (see small areas of orange in left panels which expand to extensive orange areas 

on right, Figure A11). Portions of the Sonoran desert, the Sacramento Valley and the Great Basin 

experience novel climates.  

The nature of novel climates can be explored in more detail by identifying which isoclimates are 

represented. For example, the novel isoclimates in the Sacramento Valley under the CCSM3-A2, 

California domain analysis (Figure 11, lower right) consist of precipitation between 

269 millimeters (mm) and 1071 mm, minimum temperatures of 0.1°C to 6.6°C (32.2°F to 43.8°F), 

and maximum temperatures of 39.3°C to 43.1°C (102.7°F to 109.6°F). In the 1971–2000 baseline 

period, all of these conditions are observed individually, but temperatures this warm were only 

observed in drier areas (< 269 mm). Thus, this represents a novel combination representing a hot 

and fairly wet climate, unlike any existing in California in the recent past. 
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 Figure 10. Novel, Disappearing, Expanding, and Shrinking Climates of California, for B1 
Emissions Scenario. In each figure, left column shows fate of current climates (1971–2000); right 

column shows status of projected future climates (2071–2100). Rows represent results for the 
CNRM, GFDL, PCM1, and CCSM3 general circulation models, downscaled for the 2008 California 
Climate Change Impacts Assessment Report. Colors: black = disappearing; dark blue = >10-fold 
reduction; light blue = 1- to 10-fold reduction; yellow = 1- to 10-fold expansion; orange = >10-fold 
expansion; red = novel climate. For example, in a row, the areas mapped in yellow on left contain 
climates that will expand up to 10-fold in area, occupying the areas shown in yellow on the right. 

  



 

 

31 

 

 

Figure 11. Same as Figure 10, for A2 Emissions Scenario 
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Discussion 

By the end of the twenty-first century, current projections for climate change in California 

represent marked departures from the range of conditions experienced in the recent past. These 

changes are primarily driven by increases in temperature, with less marked shifts in 

precipitation (Cayan et al. 2008). Species distribution modeling projects dramatic shifts for 

California's endemic flora (Loarie et al. 2008) and reorganization of bird communities (Stralberg 

et al. 2009) in response to these changes. However, distribution modeling has several 

drawbacks, including the significant data requirements and the difficulty of summarizing 

responses for large numbers of species. As a first approximation, the approach used here rests 

on the assumption that species (or habitats) that occupy particular climatic conditions will be 

negatively affected if the extent of those climates shrinks, and possibly threatened with local 

extinction if the climates disappear. Conversely, species that occupy expanding conditions have 

the potential for increasing range sizes.  

The spread of novel climates poses both a statistical and biological challenge. Statistically, 

projecting species distributions into areas of novel climate requires extrapolation of distribution 

models beyond the range over which they were parameterized, and extrapolation is always 

highly uncertain (especially if the models have non-linear terms). Biologically, novel climates 

may have unpredictable consequences, as analogous conditions do not currently exist within the 

spatial domain under consideration. Paleoecological evidence suggests that these non-analog 

climates may lead to non-analog biotic communities (communities not currently observed) 

(Williams et al. 2001). Under rapid climate change, the shift of isoclimates across the landscape 

poses an additional challenge, as species must disperse and shift their ranges to track suitable 

climates. Thus, even for existing isoclimates, biotic responses will be difficult to forecast. 

The results presented here (Figures 10 and 11) show broad agreement across GCMs, and much 

greater change under the A2 emissions scenario compared to B1. Current coastal, California 

montane, and Great Basin isoclimates generally shrink in extent, while desert and Central Valley 

isoclimates expand. Novel climates spread into the Sonoran desert, Sacramento Valley, and 

Great Basin. Presumably these novel climates resemble current conditions in adjoining regions 

of Arizona and Mexico, though analysis of a broader spatial domain is necessary to determine 

the location of analogs for these future conditions. The spread of novel climates in the desert 

regions is broadly similar to the results of Wiens et al. (2011), but the extent is greater here. The 

two studies differ in the future climate projections used, the time period, and the methods. As a 

result, it is quite difficult to assess the reasons for different outcomes. At a minimum, the greater 

area of novel climates shown here probably reflects the analysis of late twenty-first century 

climates, versus mid-century by Wiens et al. In addition, this study used three climate variables, 

while Wiens et al. used two composite variables constructed from principal components 

analysis. I presume that analyses with more variables will be more likely to identify novel 

climates, as the number of possible isoclimates increases, and the particular combinations found 

in the past and the future may differ. On the other hand, I believe that the broad bins used here 

(four historical standard deviations) to discriminate isoclimates would make assessments of 
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novel climates conservative. A direct comparison of the Wiens et al. probability density 

approach versus this study’s histogram approach would be required to determine which is more 

conservative in assignment of novel climates. 

There are a several implications of this analysis for conservation and land management. If one is 

concerned with conservation of a particular species, it will be important to determine if the 

species occupies declining or expanding portions of climate space. The same is true for 

vegetation types or ecological communities. Those occupying shrinking or disappearing 

climates, such as high mountains, almost certainly face greater threats than those occupying 

expanding climates. However, even for species occupying a disappearing climate, extinction is 

not inevitable, as they may have a broader fundamental niche than is apparent from current 

distributions, their range may extend beyond areas of disappearing climates (Wiens et al. 2011), 

or they may be buffered by factors such as edaphic requirements (Damschen et al. 2012) or 

stable microclimates. Additionally, it is essential to determine how far a climate type is projected 

to move, in addition to whether it is declining or expanding. If suitable conditions persist, but 

are far removed from their prior locations, then dispersal barriers may become the primary 

obstacle to a species survival. In exceptional cases, managed relocation may be an option, but 

the ecological uncertainties and high cost could be prohibitive (Richardson et al. 2009).  

Implications for land managers who are responsible for a reserve, rather than a species or 

vegetation type, are quite different. Reserves will stay put, as climates and the associated biota 

shift from underneath our feet (Araujo et al. 2004). Only the largest reserves, and those 

occupying topographically heterogeneous habitats, may be sufficient to maintain significant 

overlap between present and future climates over the next century (Loarie et al. 2009; see 

Section 3 of this paper). Even if the majority of California climates persist somewhere in the 

state, or in the region, few are likely to persist within individual parks and reserves where they 

occur now. On the one hand, this means that park management plans focused on maintenance 

of particular species or vegetation types will need to be realigned to changing conditions. A 

focus on ecosystem processes and functions, divorced from particular biotic elements, will allow 

for flexible management targets in the face of change. In addition, it will be critically important 

to focus increased attention on the species that will be arriving in the future, rather than those 

that may be lost. The species occupying expanding climates (yellow and orange areas in 

Figures 10 and 11) may represent the winners under climate change, as suitable areas expand. 

Conservation of native species in these areas, acting as source populations for future expansion, 

should be considered as a management priority. Possibly the greatest threat facing many natural 

areas is the rapid spread of invasive species (native or alien), promoted by high fecundity and 

long-distance dispersal, that may establish before the arrival of more “desirable” native biota.  

The most significant obstacle to translating these analyses for decision-making by managers is 

the uncertainty arising from the range of future climate scenarios, and the contrasting results 

that emerge from different analyses (e.g., comparing Ackerly et al. 2010; Wiens et al. 2011: and 

this study). Variation among GCMs was relatively small in this study, which is encouraging 

(reading down the columns in Figures 10 and 11). The difference between the lower and higher 
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emissions scenarios (B1 and A2 here) was primarily in the magnitude of the changes, rather than 

the pattern. In other words, areas classified as expanding climates under B1 may be novel 

climates under A2, and under the higher scenario more of the state was classified in the higher 

10-fold increase and decrease categories. In contrast, as discussed above, the results from Wiens 

et al. were quite different in the extent and to a degree the pattern of novel and disappearing 

climates. The difference in methodology, choice of climate variables, and mid versus late-

century future time period likely all contributed to these differences. Resolution of these 

differences will require that the conservation and climate change community evaluate 

alternative methods and seek consensus. If this is done, it will be possible to conduct ensemble 

analyses across a full suite of GCM and emissions scenarios, and provide results that 

summarizes the pattern, magnitude and degree of uncertainty in the projected changes. 

Section 3: Topographic Heterogeneity and the 
Resilience of California's Protected Areas 

The vulnerability of protected areas, and their constituent biota, in the face of climate change 

will be affected by many factors, including the magnitude of the changes that occur, the size and 

climatic heterogeneity of the reserves, the intrinsic sensitivity of the species, and the nature of 

obstacles to range shifts or other adaptive responses, both within reserves and across the 

broader regional landscape (Klausmeyer et al. 2011). It is generally expected that climatic 

heterogeneity will enhance resilience, as heterogeneous reserves are likely to harbor more 

species and genetic diversity, promoting ecological and evolutionary responses, and to facilitate 

range shifts over shorter distances along climatic gradients within reserves (Ackerly et al. 2010). 

Due to the basic physics of climate, a broad elevational range and rugged topography will 

increase climatic heterogeneity, due to elevational lapse rates for temperature, varied solar 

insolation and cold air pooling at more local scales, orographic rainfall patterns, and 

rainshadows (Dobrowski 2011). Other factors will be regionally important; for example, cold 

oceans can generate a strong temperature gradients, fog, and other local climatic variation. This 

effect is strikingly observed along the California coast, such as the San Francisco Bay Area, 

where summer maximum temperatures increase as much as 6°C (11°F) in the first 15 km inland 

from the coastline (based on analysis of PRISM climate data).  

The goals of this analysis were: 

1. to quantify climatic variability in reserves and protected areas of California, as a measure 

of the potential for plants and animals to move across these gradients in response to 

climate change;  

2. to quantify the climatic overlap for protected areas, based on the overlap in distributions of 

historical versus projected future conditions; and 

3. to test the relative contribution of reserve size, elevational range, and position relative to 

the coast as factors contributing to climatic overlap. 
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Methods 

Conservation Units: As a first step, a set of large and spatially contiguous (or near contiguous) 

areas was identified, which are referred to here as “Conservation Units.” These units were 

identified as follows:  

1. Version 1.6 of the California Protected Areas Database (CPAD 1.6) was downloaded 

from www.calands.org (August 2011). Starting with the SuperUnits database (which 

has over 14,000 protected areas), all areas of greater than 1000 hectares (ha) were 

extracted. A few dozen units that appeared more than once under the same name were 

then combined (these were separated in the database due to differences in 

accessibility).  

2. The areas were then assigned to one of four categories: (a) units that were stored as a 

single spatial polygon; (b) units that had multiple polygons but all polygons were 

adjoining, so the entire area was contiguous; (c) units that had non-contiguous 

polygons with small gaps between them (<2 km), which were considered near-

contiguous; and (d) units that were spatially disaggregated with large gaps between 

different areas. Units in categories a through c were used as is. Those in category d 

were examine visually, and broken into separate pieces that satisfied one of the first 

three criteria. In the process, small outlying areas were excluded if they were < 1000 ha.  

3. Any units with the word “Lake” or “Reservoir” in their name were plotted along with 

the “hydro_poly” layer from the Cal Atlas hydrological features database, and units 

that were > 50 percent water (by visual estimate) were excluded (total of 22). These first 

three steps resulted in a database of 370 conservation units. 

4. Two SuperUnits were too large and dispersed to separate into contiguous units by 

visual examination: Bureau of Land Management (BLM) (10212 individual polygons 

covering 6.3 million ha) and the California State Lands Commission (918 polygons 

covering 176,000 ha). For these, any individual polygon > 1000 ha was extracted and 

included in the final data set. As a result, adjoining polygons from these SuperUnits 

were treated separately. This step added an additional 259 units to the database, the 

largest of which was over 3 million ha. 

The resulting database had a total of 629 conservation units, ranging in size from the minimum 

of 1000 ha to a maximum of 3.1 million ha for a single polygon of BLM lands spanning portions 

of the Sonoran and Mojave deserts (Figure 12). The total area encompassed is 19.3 million ha, 

representing 97 percent of the area in the entire CPAD database, and 47 percent of the State of 

California. The resulting database is available from the author as an Arc format shapefile 

(CPAD16_CU1k). Six units situated along the coastline were removed from data analysis 

because they did not overlap any pixels in the climate data sets, resulting in a final sample size 

for analysis of 623. 

http://www.calands.org/
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Figure 12. Conservation Units Derived from the California Protected Areas Database v.1.6. Units 
Were Defined as Contiguous Areas of > 1000 ha (see text for details). Gray scale is arbitrary, to 

highlight boundaries between adjacent reserves. 
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Climatic Variability: Six climate variables derived from the PRISM interpolated climate data set 

(Daly et al. 2008) were used for this analysis, using the 30 arc second (~800 m) 1971–2000 norms 

(Figure 13a–f): 

1. Tmin (°C): mean minimum temperature of the coldest month of the year (calculated 

pixel-wise to account for spatial variation in which month is coldest) 

2. Tmax (°C): mean maximum temperature of the hottest month of the year (also calculated 

pixel-wise) 

3. Tmean (°C): mean annual temperature, calculated as the average of monthly mean 

temperatures 

4. Tseas (°C): temperature seasonality, calculated as the standard deviation of monthly 

mean temperatures 

5. PLtot (log mm): log10 of total annual precipitation (log transformation was used due to 

the extremely skewed distribution of precipitation values across California; see Ackerly 

et al. 2010) 

6. Pseas (%): precipitation seasonality, calculated as the coefficient of variation (CV) of 

monthly precipitation (CV was used instead of standard deviation to account for 

scaling of variance with mean). 

Two geographic layers were also analyzed for each reserve (Figure 13g, h):  

1. Digital elevation model (DEM) (m): elevation (from the 30 arc second DEM obtained 

from PRISM) 

2. D2C (km): distance to the coast (calculated with the dist2Line function in the R geosphere 

library, Hijmans et al. 2011); for this analysis, the coastline included San Francisco Bay 

as far as the Carquinez Strait. 
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Figure 13. Eight Climate and Topographic Layers Used for Overlay on Conservation Units 
Database. Mean, standard deviation, and range for each parameter were calculated for each 
conservation unit. Tmin: mean monthly minimum temperature; Tmax: mean monthly maximum 
temperature; Tmean: mean annual temperature; Tseas: temperature seasonality, measured as 

standard deviation of monthly temperatures; PLtot: total annual precipitation (mm, log10 
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transformed); Pseas: precipitation seasonality, measured as coefficient of variation of 
monthly precipitation. 

ASCII grids for all layers were transformed to Teale Albers projection, and then resampled to a 

rectangular grid of 800 m pixels (= 64 ha). The polygon(s) for each conservation unit were 

overlaid on the raster maps of each of the eight climate and geographic variables, and the 

corresponding values were obtained using the extract function in the R raster library. Five 

summary statistics were then calculated for each variable: minimum, maximum, mean, standard 

deviation, and range, as well as the sample size (number of pixels). 

Relationships between reserve size and the range and variability of elevation and the six climate 

variables were examined visually. It is important to recognize that the climate interpolation 

algorithms used by PRISM, like other spatial interpolation methods, are driven primarily by 

elevational effects, with secondary incorporation of regional effects such as maritime influences, 

rain shadows, etc. (see Daly et al. 2000, 2008). As a result, strong relationships will necessarily 

arise between elevational range and climatic range, especially for temperature and precipitation. 

However, to the extent that the interpolation algorithms accurately capture the true spatial 

patterns in climate, these relationships are useful in considering the climatic heterogeneity of 

conservation units in relation to their size and topography. 

Climate Overlap: The analysis of climatic overlap was based on the 7.5 arc min climate layers 

from the 2008 California Climate Change Impacts Assessment Report. Individual pixels at this 

scale are approximately 17,000 ha, so these analyses were necessarily very approximate for the 

small reserves in the conservation units database. The elevational range spanned by a reserve 

was calculated based on the 7.5 arc min DEM, for consistency among climate and topography 

values. Reserve size was measured as the number of pixels extracted from the climate layers, so 

that small reserves all collapsed to a value of 1. Following the algorithms above (Section 2), 

climatic conditions in each reserve were assigned to isoclimates, and the relative frequency of 

each isoclimate was tabulated under historical and future conditions. Analyses presented here 

are for the A2 emissions scenario and the CCSM3 GCM results only. The overlap of the climate 

distributions in a reserve was calculated as 1 minus the Bray-Curtis dissimilarity value, 

comparing the two isoclimate tables and using the frequency of each isoclimate as the analog of 

species abundance. This ranges from 0 when there is no overlap (all isoclimates present in one 

table are absent in the other) to 1 for identical distributions.  

Multiple regression was used to evaluate the relationship of climatic overlap to reserve size, 

elevational range, and distance to coast. Akaike Information Criterion (AIC) was used to 

evaluate alternative linear models to find the best set of predictors that explain variation in 

climate overlap. 

Results 

The range of elevations spanned by each conservation unit is strongly correlated with unit area, 

(Figure 14). Note that this relationship is roughly log-linear, with reserve size log-transformed. 

This positive relationship would generally be expected in a heterogeneous landscape, but also 
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reflects the distribution of protected areas in California. For example, if there were large 

conservation units in the Central Valley, then it would be possible to have large reserves with 

low relief (lower right corner), but these are not observed in the California conservation lands 

network. All units above 50,000 ha are located in mountainous areas of the Sierra Nevada, 

deserts and Coast Ranges, and have elevational ranges of at least 1000 m. 

 

 Figure 14. Elevational Range vs. Area for 623 Conservation Units Shown in Figure 3.1. See the text 
for a discussion of thresholds at the 1000 m elevation range, and 5000 and 50,000 ha area. A 
transparent color was used to highlight the large number of overlapping points in the lower 

left quadrant. 

 

The ranges of Tmin, Tmax, and Tmean all rise in direct relationship with the range of elevations 

(reflecting the primary role of elevation in the climate interpolation algorithms, as noted above) 

(see Figure 15). The slope for Tmax is steeper than that for Tmin, and Tmean is intermediate. The Tmax 

slope of 7.3°C per 1000 m approximates the elevational lapse rate for temperature. The range of 

Tseas also increases with elevational range, though with considerable scatter. The range of Tseas is 

greater in reserves near the coast (results not shown), reflecting the steep coastal-inland gradient 

in the first 50 km from the ocean (Figure 13d). Precipitation and precipitation seasonality also 

increase with the elevational range of conservation units. Elevational and climatic range were 
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strongly correlated with the standard deviations for the respective variables (r2 from 0.93 to 

0.97). While range values will reflect the effects of occasional outlying values, they are presented 

here as they are easier to interpret than standard deviations. 
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Figure 15. The Range of Environmental Conditions in Conservation Units, Relative to their Size 
and Elevational Range 
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Multiple regression analysis demonstrated that climate overlap increased in larger conservation 

units, in units spanning a greater elevational range, and in units closer to the ocean (Figure 16); 

all of these effects were included in the best-fitting model (lowest AIC), indicating that they 

make independent contributions while accounting for the other factors. The effect of distance to 

the coast is presumably due to both the steep spatial gradients near the coast and the reduced 

magnitude of change (Figure 8). A reduced model without reserve size had only slightly lower 

support (AIC 2.5 units higher), demonstrating that most of the effect of reserve size is captured 

by elevational range, with only a very small additional explanatory role for size per se. The 

overall R2 of the full model was only 16.2 percent, indicating substantial unexplained variability. 

Most of this variance was at the lower end of reserve sizes, and may reflect stochastic effects of 

the small number of pixels and the effects of converting continuous variables to discrete bins for 

classification of isoclimates.  



 

 

44 

 

 



 

 

45 

 

Figure 16. Climate Overlap of Conservation Units, Relative to their Size, Elevational Range, and 
Minimum Distance to the Ocean. Left panels: pairwise scatterplots. Right panels: residuals of 

climate overlap after accounting for the other two factors.  

Discussion 

This analysis provides a quantitative view of the importance of reserve size and elevational 

range to enhance the climatic variability of protected areas. The overall patterns are not 

surprising and follow directly from the elevational lapse rates on temperature and orographic 

precipitation patterns. The analysis of climate variability and overlap has two primary 

implications for conservation.  

First, environmental heterogeneity enhances biological diversity, over and above the direct 

effects of reserve area per se. This positive effect of heterogeneity has been clearly demonstrated 

in the case of species diversity (Kreft and Jetz 2007), and is also observed for genetic diversity 

within species (e.g., Sork et al. 2010). Increased diversity provides insurance in the face of 

climate change, as it increases the likelihood that some genotypes and species will occur in 

conservation areas that can survive, and even thrive, under future conditions. However, the 

persistence of taxa also depends on the persistence of suitable climates. Thus, the second 

important role of climatic heterogeneity is to increase the overlap between historical and future 

conditions, indicating that some of the climates that have been observed in the past will persist 

within the boundaries of a conservation area. As there should be few barriers to dispersal within 

a protected area, there will be greater potential for species to track shifting climates within 

reserves, without having to cross over areas that have been developed. 

The results in Figure 16 demonstrate that an elevational range of at least 1000 m ensures a fairly 

high overlap between historical and future climates. Note that in this analysis, the elevational 

range was calculated from the 7.5 arc min (12 km) DEM, to correspond with the climate layers, 

so the full climatic range at finer spatial scales will be underestimated (each pixel will have both 

lower and higher locations within it, so there will be a larger range overall). It will be valuable to 

repeat this analysis using downscaled historical and future climate layers at 30 arc sec 

resolution, and using the newly available 270 m downscaled climate layers that account for 

smaller-scale topographic effects (Flint and Flint 2012). At a state wide level, the latter are 

computationally difficult, but they will be critically important in localized analyses for 

individual reserves. 

Setting aside these issues of scale, the direct relationship between elevational range and 

temperature range (Figure 15) allows for some simple guidelines regarding climatic overlap in 

the face of climate change. Elevational lapse rates range from 4°C to 7°C per 1000 m, for 

minimum versus maximum temperatures and in different regions due to regional climate 

effects. Thus, if twenty-first century climate change entails, for example, a 3°C (5.4°F) warming, 

then a range of at least 400–700 m is necessary to ensure overlap between the warmest 

temperatures in a reserve historically and the coldest temperatures in the future (see a similar 

analysis on the San Francisco Bay Area, Ackerly et al. 2010). For conservation purposes, the 

overlap must be substantial to ensure the persistence of significant area of suitable habitats. 
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Thus a minimum elevational range of 1000 m may be necessary to provide a wide range of 

climatic conditions in the face of projected levels of climate change. In the California protected 

area network, a range of 1000 m is rarely observed in reserves of less than 5000 ha, and is only 

ensured in areas of more than 50000 ha (Figure 14). Conservation units with range exceeding 

1000 m are highlighted in red in Figure 17.  

 

Figure 17. Conservation Units Used in this Analysis; Areas with an Elevational Range of > 1000 m 
Are Outlined in Red. The blue box shows the size of 150,000 acres (= 61,000 ha), the minimum size 

for Landscape Reserves proposed in the 2009 California Climate Change Adaptation Strategy. 

It is important to recognize that the current analysis relies on administrative definitions of 

protected areas. In many areas, especially in the Sierra Nevada, protected areas share 

boundaries such that the effective size from a conservation and biological perspective is much 

larger than the size of an individual park or administrative unit. In the face of climate change, it 

will be increasingly important to look at the collective conservation status of a landscape, and 

define conservation units based on contiguous areas that include multiple administrative units. 

Construction of a GIS database of contiguous protected areas would be a valuable step for to aid 
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future analyses. Additionally, the conservation value of lands that are not formally protected 

may be quite high, and can be protected and enhanced with appropriate management strategies. 

The 2009 California Climate Change Adaptation Strategy (California Natural Resources Agency, 

2009) proposed the creation of Landscape Reserves, large and heterogeneous landscapes that 

may include a mix of protected areas and working lands, to enhance biodiversity conservation 

in the face of climate change. A minimum size of 150,000 acres (= 61,000 ha) was proposed as a 

guideline for design of these reserves; this corresponds to an area one-sixth the size of Yosemite 

National Park (see the scale box in Figure 16). The results presented here show that reserves of 

this size, at least in the current network of protected areas, will all have elevational ranges of at 

least 1000 m, with some exceeding 3000 m. This suggests that the proposed size is in the 

appropriate range to achieve a high degree of climate overlap between present and future 

conditions. 

The conservation of large and heterogeneous areas is only one of the potential conservation 

strategies in the face of climate change. Climatic gap analyses can identify climate types not 

represented in a current protected area network, which can used to prioritize acquisition of 

“missing assets,” even in the absence of detailed biotic data (Davison et al. 2012). Mapping of 

novel and disappearing climates in relation to protected reserves can help to identify alternative 

management strategies in the face of climate change (Wiens et al. 2011). Within local areas, 

recent research has focused on the importance of small scale climatic variation on topographic 

gradients, which may generate significant climatic variability and climatic overlap even in 

smaller reserves (Luoto and Heikkinen 2008; Randin et al. 2009; Ackerly et al. 2010; Scherrer and 

Körner 2011). Topoclimate variation arises due to factors such as solar insolation effects on 

north- versus south-facing slopes and cold air pooling in low-lying areas, and does not depend 

on a large absolute range in elevation per se. Much of California's plant diversity is also 

dependent on special soils, and plant communities on unusual substrates, such as serpentines, 

may be buffered from climate change impacts due to restricted colonization by potential 

competitors (Damschen et al. 2012). More intensive strategies, including fire and invasive 

species management, and active efforts to establish new taxa that will be suited to future 

conditions, may also play a critical role in biodiversity conservation in small and large reserves. 

Conclusions 

The analyses presented here illustrate several approaches to evaluate and quantify aspects of 

climate change that are of direct relevance to biological impacts, without requiring detailed 

input on species distributions, physiology, or other parameters. Such analyses have the potential 

to be broadly useful for resource managers, and others interested in projecting the impacts of 

climate change on biological systems. On the other hand, the utility of the methods also 

highlights their limitations, as they are parameterized in general terms, and not informed by the 

biology of a particular species or system. Section 1 examines shifts in freezing isoclines, as 

freezing represents a particular climatic threshold that impacts many plant and animal species. 

The goal of this analysis is to highlight the relaxation of cold stress, as opposed to increased heat 

or drought stress, as a factor that may lead to shifts in species distributions and changes in 
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ecological communities (and in the location of agricultural activities). These analyses could be 

refined for particular systems, based on knowledge of physiological tolerances. This may 

include counterintuitive effects such as the potential for increased cold damage caused by late 

spring or early fall frosts, if warming temperatures reduce cold hardiness.  

The second section evaluates shifts in the area occupied by different isoclimates, and the 

distribution of disappearing and novel climates, in California. These analyses provide a 

framework for considering a range of management challenges and strategies in the face of 

changing conditions. Section 3 extends this analysis to examine the degree of climatic overlap 

between historical and future climates in protected areas of California. As with all climate 

change assessments, these analyses present uncertainties due to differences in future scenarios, 

methodologies, data sources, and spatial and temporal scale of analysis. The most valuable 

application of these results may be for scenario-building exercises, asking what management 

strategies should be employed under different hypothetical futures, rather than seeking 

projections of what is actually expected to occur. Past experience has proven time and again that 

surprises are inevitable. The current effort to project biotic responses to climate change is 

unprecedented in scope, and the repeated refrain that there is great uncertainty in future 

projections may in the end be the most important result to incorporate into decision-making 

today.  
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Glossary 
AIC Akaike Information Criterion 

BLM Bureau of Land Management 

CCSM3 Community Climate System Model 

CNRM Centre National de Recherches Météorologiques 

CPAD California Protected Areas Database 

CV coefficient of variation 

DEM Digital Elevation Model 

GCM General Circulation Model 

GFDL Geophysical Fluid Dynamics Laboratory 

GIS Geographic Information System  

IPCC Intergovernmental Panel on Climate Change  

NCAR National Center for Atmospheric Research 

PCA Principal Components Analysis 

PCM Parallel Climate Model 

PRISM Parameter-elevation Regressions on Independent Slopes Model  

Ptot total monthly precipitation 

SED Standardized Euclidean Distance 

Tmin mean minimum monthly temperature 

Tmax mean maximum monthly temperature 
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Appendix Figures 

 

 

Figure A1. Distribution of Monthly Tmin Data from the U.S. Historical Climate Network for Stations 
in the Western States. A: Number of monthly data sets available, by year. B: Time span covered by 

each station. Each horizontal line represents one station, sorted from bottom to top by start and 
end dates. Blue dots indicate months with available data. 
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Figure A2. Scatterplot of the Minimum Mean Monthly Temperature for the 1971–2000 Period from 
PRISM (x-axis) vs. the 2008 California Climate Change Impacts Assessment (CA2008) Downscaled 

GCM Outputs, for the Same Period. Red lines indicate x = y. Headers on each panel indicate the 
GCM and emissions scenario used. 
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Figure A3. Maps of Deviations in Minimum Mean Monthly Temperature between PRISM and 
CA2008 Scenarios, as Shown in Figure 1.6. Negative values indicate CA2008 temperatures are 

colder than the PRISM temperatures. 
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Figures A4–9. Changes in the Distribution of Freeze Events from the 1971–2000 Historical Period 
to the 2071–2100 Future Projections. Each map corresponds to a different future climate scenario 

from the CA2008 downscaled projections, with the GCM and emissions scenario noted above. 
Dark lines show ecoregions (see Figure 2). Blue areas have experienced a freeze < the indicated 

Tcrit values in the past, and are projected to continue to experience these events in the future. Red 
areas have experienced these in the past, but are not projected to experience these in the future. 
Green are areas that have not experienced a freeze at this temperature in the past, and will not in 

the future either. A4: Tcrit < 0°C experienced at least once in the 30-year period. A5: Tcrit < 0°C 
experienced at least once per year, on average, during the 30-year period. A6: Tcrit < -5°C 

experienced at least once in the 30-year period. A7: Tcrit < -5°C experienced at least once per year, 
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on average, during the 30-year period. A8: Tcrit < -10°C experienced at least once in the 30-year 
period. A9: Tcrit < -10°C experienced at least once per year, on average, during the 30-year period.  

 

 

Figure A5. Tcrit < 0°C Experienced at Least Once per Year, on Average, during the 30-year Period  
(see the full description above) 
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Figure A6. Tcrit < -5°C Experienced at Least Once in the 30-year Period 
(see the full description above) 
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Figure A7. Tcrit < -5°C Experienced at Least Once per Year, on Average, during the 30-year Period 
(see the full description above) 
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Figure A8. Tcrit < -10°C Experienced at Least Once in the 30-year Period  
(see the full description above) 
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Figure A9. Tcrit < -10°C Experienced at Least Once per Year, on Average, during the 30-year Period 
(see the full description above) 
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Figure A10. Novel, Disappearing, Expanding, and Shrinking Climates of California, Nevada, and 
Surrounding Areas, for the B1 Emissions Scenario. In each figure, left column shows the fate of 

current climates (1971–2000); right column shows status of projected future climates (2071–2100). 
Rows represent results for the CNRM, GFDL, PCM1, and CCSM3 general circulation models, 

downscaled for the 2008 California Climate Change Impacts Assessment Report. Colors: black = 
disappearing; dark blue = >10-fold reduction; light blue = 1- to 10-fold reduction; yellow = 1- to 
10-fold expansion; orange = >10-fold expansion; red = novel climate. For example, in a row, the 
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areas mapped in yellow on left contain climates which will expand up to 10-fold in area, occupying 
the areas shown in yellow on the right. 

 

Figure A11. Same as Figure A10, for A2 Emissions Scenario 

 

 


