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Uncertainty and the Benefits
of Climate Change Policies?

Stephen C. Newbold

U.S. EPA, National Center for Environmental Economics

Adam Daigneault
U.S. EPA, Climate Change Division

Abstract

This paper discusses the role of uncertainty in estimating the economic benefits of greenhouse
gas emission reductions. First, we give a general overview of the range of approaches that
analysts can use to account for uncertainty in benefit-cost analyses of climate change policies,
and we discuss how to account for the “value of insurance” that a policy provides against
potential climate catastrophes. A simple numerical example (given in an appendix) shows that
uncertainty can in principle have a large influence on estimates of economic benefits. We then
review some of the recent research by climate change economists that has begun to quantify this
influence. We also give suggestions for short, medium, and longer term research. In the short and
medium term, we recommend further synthesizing the recent research on the effects of risk and
uncertainty on the benefits of climate policies and improving the currently available integrated
assessment models to better account for these factors. In the longer term, we recommend
expanding these models or developing new ones to incorporate the effects of learning, policy
flexibility, and the value of additional information on the response of the climate system to
greenhouse gas emissions and the economic consequences of the resulting climate changes.

! The views expressed in this paper are those of the authors and do not necessarily represent those of the U.S. EPA.
No Agency endorsement should be inferred
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Introduction

Virtually all public policy decisions must be made in the face of uncertainty, and—at the risk of
understatement—regulations to address climate change are no exception. Uncertainty can take
many forms and can have different implications for the optimal stringency and structure of a
policy, depending on the specifics of each case. The net effect depends on a variety of factors,
including the relative risks of acting now versus waiting for more information, the potential for
and costs of learning more about the impacts of the policy over time, and irreversibilities
associated with ecosystem thresholds or mitigation activities (i.e. sunk benefits and costs
[Pindyck 2000]). In the final analysis, uncertainty may increase or decrease the optimal
stringency of a policy or weigh more heavily in favor of one type of instrument over others (such
as cap and trade versus taxes), depending on the balance of these sometimes competing factors.

In this paper we address only a small part of this larger picture. Specifically, we focus on the
effect of uncertainty on estimates of economic benefits of greenhouse gas emission reductions.
First, we review the range of approaches that analysts can use to account for uncertainty in
benefit-cost analysis. We perform some simple numerical calculations using a highly stylized
model to show how uncertainty can influence the estimated benefits of climate policies, and we
show how an expected utility framework can account for the “value of insurance” that a policy
provides against potential climate catastrophes. Next, we review some recent research that has
examined the effect of uncertainty on emissions reduction benefits, including our own work on
climate response uncertainty and the shape of the damage function. We conclude with several
recommendations for further research.

This paper is written for analysts, researchers, and especially managers and decision-makers
who need to interpret and use the results of economic assessments in their deliberations over
new climate change policies.

Tiers of Uncertainty Analysis

We begin by reviewing the range of approaches for addressing uncertainty in benefit-cost
analysis in general and as applied to climate change policies in particular. This discussion loosely
follows that in the Office of Management and Budget's Circular A-4 (OMB, 2003, p 41-42), though
we elaborate further on the implications of conducting a formal uncertainty analysis in an
expected utility framework.

The easiest approach for dealing with uncertainty is to simply describe it qualitatively, without
addressing it explicitly in the quantitative analysis. More generously, we might say that the
analyst can “average out the uncertainty” before estimating benefits and costs by plugging best-
guess central point estimates of all uncertain parameters into the economic model. In doing this,
the analyst tacitly accepts that the resulting point estimate of net benefits is only one among
many possible outcomes. If the analysis ends here, the results are effectively treated as central
best-guess estimates themselves. This approach is fairly common and will give an accurate
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estimate of the expected net benefits when the benefit function is (at least approximately) linear
over the relevant ranges of all uncertain parameters.

If benefits are sufficiently non-linear over the relevant ranges, then the deterministic estimate
may not be robust to the uncertainty in the input parameters. The next step, then, might be to
conduct a sensitivity analysis, where the analyst varies each parameter over what are thought to
be plausible ranges, based on the relevant scientific and economic research, and then records the
effect of these variations on the net benefits. This provides a simple means of examining the
response of the model to the key assumptions and often is useful for illustrating the importance
of uncertainty to decision-makers and other consumers of the benefit-cost analysis. However, the
more parameters that are varied at one time, the more difficult it is to interpret the results.
Furthermore, the range of variations in model outputs illustrated in a sensitivity analysis may
give little indication of their central tendency based on the relative likelihood of the many
possible combinations of input parameters.

So the next logical step is to account for the uncertainty in all input parameters simultaneously.
Known as Monte Carlo analysis, this can be done by specifying probability distributions for each
parameter and then using computer simulation methods to construct a probability distribution
for the estimated benefits.

It may seem that this is the final possible step in the progression of uncertainty analysis.
However, it is possible to go further by framing the overall policy question in an expected utility
framework. Under this approach, the analysis is structured to directly answer the question:
Given all of the uncertainties regarding the input parameters and other assumptions of the
model, what is the change in aggregate income with the policy that would make society just as
well off as without the policy? In other words, what is the maximum amount of income society is
willing to pay for the policy? In this approach, the analyst integrates over all sources of
uncertainty within the economic model itself. The uncertainty is not “averaged out” before the
parameters are plugged into the model, and the analyst does not simply construct a probability
distribution for willingness to pay.

One key advantage of the expected utility approach is that it provides a natural way to account
for potential low-probability high-impact outcomes. In effect, this framework can account for the
value of the insurance that a policy would provide against the worst-case scenarios. This is an
important consideration when analyzing greenhouse gas (GHG) emission reduction policies,
since the potential for “climate catastrophes” is a key motivating factor for many citizens and
decision-makers concerned about climate change (Keller et al., 2004; Hansen et al., 2007;
Ramanathan and Feng, 2008). An evaluation framework that ignored this aspect of the problem
would seem to be missing something essential.

A concrete illustration of the distinctions between the tiers of uncertainty analysis described
above using a simple numerical example is provided in the appendix. The example shows that,
under the typical assumption that climate change damages increase with temperature at an
increasing rate, the deterministic analysis gives the lowest estimate of willingness to pay (WTP),
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the Monte Carlo approach gives a higher estimate of average WTP, and the expected utility
approach gives the highest estimate. The magnitude of this “risk premium” will depend on both
the level of uncertainty in the input parameters and the degree of risk aversion that is assumed.?
Also, as emphasized by Weitzman (2009), the risk premium will depend crucially on the severity
and probability of the worst-case outcomes.3

In light of the above, consider the Office of Management and Budget’s (OMB's) guidelines.
Circular A-4 indicates that the default assumption in a benefit-cost analysis should be one of risk
neutrality. Specifically,

“Emphasis on [expected values of benefits and costs] is appropriate as long as society
is ‘risk neutral’ with respect to the regulatory alternatives. While this may not always
be the case, you should in general assume ‘risk neutrality’ in your analysis. If you adopt
a different assumption on risk preference, you should explain your reasons for doing
so.” (OMB, 2003, p 42).

This makes good sense for regulations that lead to small changes in risks. Even a risk averse
individual would evaluate small risks based solely on their expected values as long as the risks
are uncorrelated with the individual's income, since in this case the benefit function is
approximately linear.* In contrast, the expected utility framework described in the preceding
paragraphs and in the appendix explicitly assumes that society is not necessarily risk neutral
with respect to climate change policies. The basic rationale is two-fold: 1) since the potential
impacts of climate change are wide-spread—potentially global in scope, especially considering
the worst-case catastrophic scenarios—the risks may be very large, and 2) the very high
correlation among individual risks means that an effective risk-sharing arrangement is not
possible (Arrow and Lind, 1970; Dasgupta and Heal, 1979, Ch 13). In other words, if the worst
outcomes do come to pass then we may all be significantly impacted simultaneously, so there
would be far less scope for spreading the risks. Furthermore, and on a more practical level, if the

% In this paper we use the term “risk premium” to refer to the difference between estimates of willingness to pay based

on an expected utility framework that explicitly accounts for parameter uncertainty and risk aversion and analogous
estimates of willingness to pay based on a deterministic model that ignores uncertainty and risk aversion. This should
not be confused with the “risk premium” in the finance literature that refers to the interest rate mark-up associated
with risky investments.

We should note that, as in all integrated assessment models of which we are aware, both the simple example given in
the appendix and the simulation experiments in our previous work (Newbold and Daigneault 2009) ignore any
potentially catastrophic risks of reducing GHG emissions. Such risks could arise, for example, from the possibility that
elevated atmospheric stocks of GHGs could forestall a natural trend of decreasing global temperatures and therefore
another ice age in the future (e.g., Ruddiman 2005). While such a scenario may be highly unlikely (very low probability),
it may not be completely implausible (zero probability). If so, and if the damages from such a scenario also could be
catastrophic, then a complete uncertainty analysis would include these potentially countervailing risks as well.

A person is risk neutral if they are indifferent between prospects with the same expected returns, regardless of the
variance of the possible outcomes. A person is risk averse if, of multiple prospects with the same expected returns, they
prefer the one with the lowest variance in the possible outcomes. The relevance of the correlation between the
riskiness of the prospect and the individual’s income can be understood by imagining a case where the prospect is more
likely to pay off high when the individual’s income is lower (higher) than normal. In this case, the individual would be
willing to pay more (less) for the prospect, all else equal. See Dasgupta and Heal (1979 Ch 13) for a more complete
exposition.

4

188 Newbold & Daigneault: Uncertainty and the Benefits of Climate Policies | Pew Benefits Workshop




changes in risks are in fact small then the expected utility framework will collapse to the
equivalent of a risk-neutral analysis anyway.>

So far we have argued—and the appendix has illustrated—that uncertainty can in principle have
a strong influence on the estimates of benefits for climate change policies. Next, we discuss some
recent research that has begun to quantify these effects using economic integrated assessment
models (IAMs).

Previous Research

A few recent studies have used Monte Carlo analysis or similar methods to account for
uncertainty in economic climate assessment models, but so far the results have been decidedly
mixed. For example, Roughgarden and Schneider (1999) constructed probability distributions
over parameters of the damage function in DICE using results from a survey of experts and found
that the average optimal carbon tax from a Monte Carlo simulation was around eight times
higher than the point estimate from the standard DICE model. Pizer (1999) used a modified
version of DICE and found that accounting for parameter uncertainty increased the estimated
welfare gain from an optimal tax rate policy by roughly 25 percent compared to its deterministic
counterpart. Tol (2003) used the FUND model and found that when accounting for uncertainty
“the net present marginal benefits of greenhouse gas emission reduction becomes very large”
and in one scenario appeared to be unbounded. Ceronsky et al. (2005) also used FUND and found
“that incorporating [potential climate catastrophes] can increase the social cost of carbon [SCC]
by a factor of 20.” Hope (2006) used Monte Carlo analysis and found that the 5th percentile,
mean, and 95th percentile of the probability distribution for the SCC were, respectively, $4, $19,
and $51 per ton of carbon. Uncertainty in the climate sensitivity parameter made the largest
contribution to the variance of the SCC estimates. Nordhaus (2008) conducted an uncertainty
analysis using the DICE model and concluded that “the best-guess policy is a good approximation
to the expected-value policy.” Weitzman (2009) showed that if the climate sensitivity
distribution has a “fat-tail”—in other words, if the probability of ever higher temperature
changes does not decline faster than the rate at which damages increase with temperature—then
there is no bound on the willingness to pay for emissions reductions. And finally, Pindyck (2009)
used a thin-tailed gamma distribution, including some versions with a significant right skew, but
in most cases found only a modest risk premium.

In our own recent research, we focused on the effect of climate response uncertainty on
estimates of economic benefits of GHG emissions reductions (Newbold and Daigneault, 2009).
Specifically, we used Bayesian updating and model averaging to construct alternative probability
distributions over the climate sensitivity parameter, which determines the equilibrium change in
average global temperature to a doubling of the atmospheric greenhouse gas concentration
(Andronova et al.,, 2007). We combined 28 confidence intervals for the climate sensitivity

> The reader can use the model in the appendix to confirm this by assuming that the probability of a 1 degree

temperature change is 100 percent. In that case, the estimates of willingness to pay differ by 0.1 percent or less.
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parameter reported in 21 studies. Figure 1 shows the estimated probability distributions from
each study and the two alternative composite distributions that we used to calculate willingness
to pay in both a deterministic model and an expected utility model that incorporated uncertainty.

Figure 1. Roe and Baker (2007) probability distributions constructed from the 5th and 95th
percentiles for the climate sensitivity parameter from 21 different studies (light dotted lines),
the Bayesian model-averaged probability distribution function based on the average of the
distributions (heavy solid line), and the Bayseian updated pdf based on the product of the
distributions (heavy dotted line). From Newbold and Daigneault (2009).
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The distribution constructed using Bayesian updating is centered around 2.2°C and is very
narrow, so carrying this through the expected utility model gives results very close to the
deterministic estimates of willingness to pay. However, this composite distribution is based on
what seems like an overly-optimistic view of the climate science literature. It effectively assumes
that the studies we combined can be treated as independent estimates using new data but the
same underlying model of how the climate system works. So we also considered an alternative
assumption, that these studies effectively used the same underlying data but a different model of
how the climate system works, i.e., we combined the estimates using a “model averaging”
approach. This assumption gives a much wider distribution for the climate sensitivity
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parameter.® Carrying this distribution through the expected utility model can give very large risk
premiums, depending on the other parameter values. For example, we found that by using the
Bayesian model-averaged composite distribution and an exponential damage function, the risk-
adjusted willingness to pay for emissions reductions consistent with the optimal path from the
DICE model (Nordhaus, 2008) was nearly five times larger than the deterministic willingness to

pay.

One important take-home message from this research is the following: because IAMs that
account for uncertainty can produce such a wide range of benefits estimates, it is crucial for
decision-makers to understand the key ingredients of any integrated assessment model when
interpreting its results. Until recently, much of the discussion in the literature on the economics
of climate policy has focused on the “usual suspects,” namely the discount rate and the expected
damages at the central estimates of future temperatures. However, the simulation experiments
described in detail in our previous work (Newbold and Daigneault, 2009) and in short form in
the appendix suggest that part of the explanation for the divergent results summarized above
may lie in the (possibly subtle) differences between the way each study characterized the climate
response uncertainty and the shape of the damage function at high temperatures. Specifically, in
addition to the usual suspects, we would emphasize the coefficient of relative risk aversion (see
the appendix) and the magnitude and probability of the worst-case scenarios as important
members of the short list of parameters likely to have the largest influence on the benefits
estimates.”

Conclusions and Recommendations

In this final section we respond directly to the stated objectives of the Pew Center workshop that
provided the occasion for this paper. Those objectives were “to develop a set of practical
recommendations that decision makers can employ in the near-term, and to outline a research
path to improve decision making tools over time.” The recommendations we offer below are
aimed mainly at researchers and analysts who develop and use integrated assessment models
for the purpose of informing decision-makers in their deliberations over climate policies. These
recommendations are based on our own current (and perhaps idiosyncratic) understanding of
both the state of the art of climate policy benefits assessment and the needs of decision-makers.
We will offer our suggestions in the form of short, medium, and longer term recommendations.

® If this assumption is overly pessimistic, it is perhaps only modestly so since it is broadly consistent with the summary

provided in the latest IPCC report (Hegerl et al. 2007).

Importantly, the magnitude and probability must be considered simultaneously. See Sunstein (2007) for a discussion of
the errors in public decision-making that can arise from placing undue attention on worst-case scenarios or paying no
attention to them at all. Therein, Sunstein proposes a “Catastrophic Harm Precautionary Principle,” which calls for close
attention to both the magnitude and probability of a harm and allows for a “margin of safety for certain large-scale
harms... akin to a purchase of insurance. Whether the margin is worthwhile depends on what is lost and what is gained
by insisting on it.” In the expected utility framework, the coefficient of relative risk aversion is the extra ingredient that
allows for a systematic determination of the margin of safety (and of course the cost side of the ledger, not addressed in
this paper, accounts for what is lost).

7
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9

First, in the very short term (within one year or so), two useful tasks would be (1) to further
synthesize previous research on the social cost of carbon (SCC), along the lines of meta-analyses
conducted by Tol (2005, 2008), and (2) to construct a simple and transparent model for
calculating the global and domestic SCC. Our experience has been that one of the first hurdles in
discussing the economics of climate change with decision-makers is merely explaining the
meaning of the SCC itself. A simple model constructed from first principles could be used as a tool
for communication with decision-makers—in particular, helping to explain the proper
interpretation and use of SCC estimates in a policy setting. It also could be used to produce rough
estimates of the SCC and conduct sensitivity analyses and bounding exercises given any range of
input assumptions that the user deems plausible. (We have in mind something similar to the
simple model created by Tol and Yohe (2009) to examine The Stern Review.)

Second, for the medium term (between one and two years or so), a useful task would be to
develop an improved IAM suitable for regulatory analysis alongside the standard models that
federal agencies such as the Environmental Protection Agency typically use to estimate the costs
of climate policies (e.g., ADAGE® and IGEM?). Such a model should build on existing [AMs that
have been widely used in the climate economics literature (e.g., DICE, FUND, PAGE), but it also
should add extensions and elaborations as dictated by the evolving demands of decision-makers.
These might include adding currently omitted categories of benefits, a probabilistic structure
that is suitable for uncertainty analysis (as in PAGE), and a capacity to incorporate risk aversion
explicitly. In the process of building such a model, clear documentation should be developed
simultaneously. In our experience, the more the model looks like a “black box,” the less weight
decision-makers are able to place on its results.

Our principal motivation for recommending that [AMs be extended to account for uncertainty
and risk aversion is that, as discussed above, making fuller use of the expected utility framework
provides a natural way to account for the high-impact, low-probability outcomes that are of
primary concern to many citizens and decision-makers. Importantly, this approach forces us to
bring these issues into the analysis in an explicit way while maintaining an ability to weigh the
trade offs between the costs and benefits of incrementally more or less stringent policies. Partly
because of the large uncertainties involved, some have recommended that economists should
abandon their attempts to quantify the benefits of climate policies and rely mainly on cost-
effectiveness analysis instead (e.g., Ackerman et al., 2009). We agree that cost-effectiveness
analysis is useful in its own right for helping to identify the most affordable ways to meet
different targets, but we also believe that IAMs can be expanded to account for uncertainty in
such a way that they also can inform the choice of the target itself.

Third, for the longer term (on the order of three years and more), useful tasks would include (1)
continuing to support basic research on the science of climate change and its potential impacts,
and (2) continuing to improve IAMs by incorporating learning and policy flexibility.

http://www.rti.org/page.cfm?objectid=DDC06637-7973-4BOF-AC46B3C69E09ADA9
http://www.hks.harvard.edu/m-rcbg/ptep/IGEM.htm
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The importance of the first longer-term task is obvious. The weight of the scientific evidence on
climate change, as summarized in the IPCC1% and more recently the CCSP1! reports, is substantial,
but much remains to be learned. For example, as illustrated by the uncertainty surrounding the
climate sensitivity parameter, there still is a very wide range of plausible future paths of global
temperatures for any assumed path of GHG emissions. Even less well understood are the regional
effects associated with each possible temperature path and the ensuing impacts on local
ecosystems and economies. This is not to say that our knowledge is too meager to make
informed policy decisions—Ilimited information is not a sufficient condition to prefer the status
quo policy. Rather, it is to say that there may be substantial value in gathering additional
information in these areas. IAMs can only be as good as the scientific information that is fed into
them.

The notion of the value of additional information leads to the second longer-term task. One
dimension along which [AMs could be further improved is in their representation of learning and
its effects on decision-making over time (e.g., Kelly and Kolstad, 1999; Fisher, 2001; Leach, 2007;
Webster et al., 2008). This would require what ecologists and natural resource managers know
as an “adaptive management” approach, which is a systematic framework for decision-making in
the face of uncertainty that explicitly incorporates the feedbacks between learning and doing
(e.g., Holling, 1978; Walters and Hilborn, 1978; Walters, 1986).12 There are at least three
advantages of this approach. First, it would in principle give more accurate estimates of the main
quantity of interest: the value of emissions reduction policies in the face of uncertainty, potential
learning, irreversibilities, and policy flexibility (or rigidity, as the case may be). Second, rather
than a point estimate of the optimal policy it can produce an optimal policy function, which can
be thought of a set of “contingency plans” covering the full range of possible outcomes. In other
words, it can indicate how a policy instrument—such as a target, a tax, or an emissions cap—
should be adjusted over time as the carbon stock grows, economic conditions change, and more
scientific information accumulates. And third, it allows us to evaluate the trade-offs between the
costs of emission reductions per se and the costs of collecting additional information to help
reduce the uncertainties, so it can provide a unified framework for adjusting both our policy
instruments and research expenditures over time.

In conclusion, our view is that economic methods, including both cost-effectiveness and benefit-
cost analysis, can have a useful role in evaluating climate change policies. Nevertheless,
researchers and analysts should strive to do a better job of explaining to decision-makers what
their models can and cannot do. In particular, economists should better explain the meaning of
the social cost of carbon estimates that their models produce so that decision-makers can make
proper use of these figures in a policy setting. As an immediate corrective, economic analyses of
climate change should clearly characterize the uncertainty in their results to avoid giving

1% http://www.ipcc.ch/

" http://www.climatescience.gov/

2 The jargon varies among specialties. Economists will recognize this as a “real options” framework (e.g., Dixit and Pindyck
1996, Farrow 2004), and others will know it as a “stochastic dynamic programming” approach (e.g., Ross 1983).
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decision-makers and the public a false impression of precision. And moving forward, researchers
should continue to improve the existing models—and create new ones as needed—to aid in the
development of “contingency plans” for the full range of possible outcomes. If we know anything
with certainty, it is this: the probability that the future will unfold along any single deterministic
forecast is vanishingly small.

Appendix

This appendix provides a simple numerical example to illustrate the distinctions between the
tiers of uncertainty analysis described in the main text.

First, assume that “social welfare” or “utility,” U, depends on aggregate income, Y, and the change
in the average global temperature due to greenhouse gas emissions, T. To isolate the effect of risk
aversion from time preference, we frame the problem as a static one, so we ignore the crucial
dynamic dimension of the climate change problem in this example.

The willingness to pay, WTP, to prevent a change in temperature is the reduction in income with
no temperature change that would make society just as well off as with the temperature change
but no reduction in income. Formally, WTP is the solution to the following equation:
u(T,Y)=U(0,Yy —WTP).

Second, assume that the damage from climate change (as a fraction of aggregate income), D, is an
S-shaped function of the temperature change, specifically p =1-exp [_a T ] , where the parameters
a and b determine the level and steepness of the damage function. Also assume that utility
increases with income at a diminishing rate, specifically U=Y""/(1-7), where 77 is the elasticity
of marginal utility (also referred to as the “coefficient of relative risk aversion”). Therefore,

1-7,
U(T,Y): [Y(l/[1+aT"]ﬂ ' /(1—77). These functional forms are consistent with those used in our
previous work (Newbold and Daigneault, 2009).

Third, assume that the best available economic research suggests that the parameter a is between
0 and 0.006 and b is between 1 and 3. Central values are considered more likely than extreme
values, so the analyst assumes symmetric triangular distributions for both parameters. (For
simplicity, we assume independence between a and b.) Also assume that the best available
scientific research suggests that the temperature could change by either 1, 3, or 10 degrees
Celsius, with probabilities 0.13, 0.85, and 0.02 respectively.

With these assumptions, the deterministic estimate of willingness to pay (as a fraction of income)
is

WTP/Y = 1—exp[—0.003x2.882] = 0.0246.

Next, to show the range of possible estimates of WTP, we conduct a sensitivity analysis over each
uncertain parameter in turn, holding all other parameters at their expected values:
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For example, the third graph above reveals that the consumption-equivalent damage from the worst-case
scenario in this example is around 27 percent of current consumption.

Next, to construct a probability distribution for WTP we perform a Monte Carlo simulation, which involves
drawing from the distributions of each uncertain parameter and re-calculating WTP for each draw. We
then can plot the probability distribution of the results and calculate the expected value of WTP based on
this distribution:

p(WTP/Y)

0 0.05 0.1 0.15
WTP/Y

EwTp/Y]=([[(1-exp[-aT"])f(a)f(b) f (T)dadbdT =0.0314.

Finally, to calculate willingness to pay using an expected utility approach, we find the value of WTP that
equalizes expected utility with and without the policy, i.e., U(O,Y —WTP) =E [U (T, Y)} . Using the above

functional forms and assuming 77 = 2, this gives

WTP/Y =1~ U”(exp[—ar" ) f(a)f(b)f(T)daddeT/(H]) —1-£[u,]'*™" =0.0446.

Notice that the coefficient of relative risk aversion 7] appears in the calculation of WTP only when using

the expected utility approach. The following graph shows the effect of 77 on WTP:
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