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G
lobal climate has been highly 

variable throughout Earth’s histo-

ry. The causes for this variability 

result from complex interactions between 

the land, ocean, and atmosphere which 

involve positive and negative feedback. 

Geologic and historical records show 

associated with global climate change 

(e.g. Lambeck et al. 2002; Miller et al.

2005; IPCC 2001; IPCC 2007; Hansen et

al. 2007; Broecker and Kunzig 2008). For 

example, during the last interglacial warm 

period (~125,000 yrs BP) sea level was 

approximately 5 m higher than present, 

and during the Last Glacial Maximum 

(~21,000 yrs BP), sea level was about 

120 m lower than present (Figure 1) (Fair-

banks 1989; Muhs et al. 2004). 

Analyses of historic sea-level mea-

surements show that sea level rose on 
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According to climate change assessment reports published in 

2008 and 2009 by the U.S. Global Change Research Program 

and the U.S. Climate Change Science Program, observations 

show that recent increase in global temperature is unequivo-

cal; and that warming and widespread environmental change 

primarily result from increase in greenhouse gas emissions 

from anthropogenic fossil fuel burning. Additional contribu-

tions to climate change are from land-use activities since the 

late 19th century. 

level rise. Direct sea-level rise impacts include: increased coastal 

-

tion of low-lying areas, saltwater intrusion, wetland loss, and 

threats to human infrastructure in coastal zones. Climate-change 

assessments, such as the United Nation’s Intergovernmental 

Panel on Climate Change Fourth Report, suggest that global 

sea level for this century will rise 18-59 cm (IPCC 2007). More 

recent modeling studies suggest that sea-level rise rates may be 

-

cesses that appear to be stronger than previously thought (e.g. 

Greenland and West Antarctica ice-sheet melting, ocean current 

disruption). These recent studies suggest that global sea-level 

rise could be 1 m or more by the year 2100 and continued ac-
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average 19 cm during the 20th cen-

tury (Jevrejeva et al. 2008). Moreover, 

a number of studies and assessments 

conducted in recent years continue to 

suggest that the rate of sea-level rise is 

likely to increase during the 21st century 

(IPCC 2007; Rahmstorf 2007; Pfeffer 

et al. 2008). While uncertainty exists in 

predicting quantitatively the magnitude 

and rates of future change in sea level, a 

that sea level has risen over the recent 

geologic past, is currently rising and is 

thought to contribute to various effects 

such as coastal erosion, increased tidal 

-

sensus among climate scientists that sea 

level is very likely to rise at an acceler-

ated rate this century and for centuries 

beyond (IPCC 2007). 

Accelerated global sea-level rise is 

a major long-term outcome of climate 

change which will have impacts on all 

coastal regions. The effects of climate 

change on coasts are not uniform, but 

vary considerably from region to region 

and over a range of temporal scale (Nich-

olls et al. 2007). 

Understanding how sea-level rise will 

affect coastal regions and how society 
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will choose to address it in ways that are 

sustainable for the long term is a major 

challenge for both scientists and policy-

makers. Over the past several thousand 

years, global climate and sea level have 

been relatively stable and some have 

suggested that this has enabled the expan-

sion of human populations (~6.8 billion 

people presently) and the development 

of modern society (Day et al. 2007). 

In coastal regions of the U.S. and also 

globally, human populations (~130 mil-

lion people and ~600 million people, 

respectively) are substantial, continue to 

expand rapidly, and are increasingly at 

risk from natural hazards (Crossett et al.

2004; McGranahan, et al. 2007).

Coastal lands will not simply be inun-

of dynamic processes whose impacts 

will vary by location and geologic set-

the evolution of the coast in response to 

sea-level rise: 1) framework geology, 2) 

oceanographic processes, 3) sediment 

supply, and 4) human activity (Carter 

and Woodroffe 1994; Morton 2003; 

FitzGerald et al. 2008). All of these fac-

tors interact in complex ways driving 

the response of coastal landforms to sea 

level change.

One of the most important sea-level 

rise impacts is shoreline change. On san-

dy coasts such as much of the U.S. coast, 

shoreline changes result from changes in 

beach morphology. These changes do not 

Figure 1. Plot of large variations in global sea-level elevation over the past 

400,000 years resulting from four glacial and interglacial global climate 

cycles. Evidence suggests that sea level was about 4-6 m higher than present 

during the last interglacial warm period 125,000 years ago, and 120 m lower 

during the Last Glacial Maximum, about 21,000 years ago (see reviews 

in Muhs et al. 2004 and Overpeck et al. 2006). Reprinted from Quaternary

Science Reviews, 21/1-3, Huybrechts (2002), Sea-level changes at the LGM 

from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets 

during the glacial cycles, 203-231, Copyright ©2002, with permission from 

Elsevier.

occur directly as the result of sea-level 

rise, but shores are in an almost continual 

state of change in response to waves and 

currents, as well as sediment availability 

(Carter and Woodroffe 1994; Stive et al.

2002; Nicholls et al. 2007). This is espe-

cially true for shoreline changes observed 

over the past century, when the increase 

in sea level has been relatively small (~30 

cm to 40 cm along the U.S. mid-Atlantic 

coast). During this time, major storms, 

variations in sediment supply to the coast, 

and human activity have had more direct 

effects on shoreline change. Large storms 

can cause changes in shoreline position 

that persist for weeks to a decade or 

more (Morton et al. 1994; Zhang et al.

2002, 2004; List et al. 2006; Riggs and 

Ames 2007). Complex interactions with 

nearshore sand bodies and underlying 

geology, the mechanics of which are 

behavior of beach morphology over 

time (Riggs et al. 1995; Honeycutt and 

Krantz 2003; Schupp et al. 2006; Miselis 

and McNinch 2006). In addition, human 

actions to control changes to the shore, 

mitigate erosion, and maintain naviga-

tion channels have altered the behavior 

of some portions of the coast consider-

ably (Dean and Perlin 1977; Leatherman 

1984; Nordstrom 1994, 2000; Nicholls 

et al. 2007). 

During the 20th century, coastal man-

agement and planning have been based 

on the premise that coastal change and 

sea-level rise are modest and fairly 

predictable, but recently several states 

and organizations (e.g. Coastal States 

Organization, The Nature Conservancy, 

American Society of Civil Engineers 

[ASCE], Canadian Society of Civil Engi-

neers [CSCE], British Institution of Civil 

Engineers[BICE]) are recognizing that 

climate change is an important issue and 

that adaptation to climate change effects 

need to be integrated into coastal zone 

management and coastal engineering 

planning and practice (e.g. Civil Engi-

neering and Climate Change Protocol 

signed by ASCE, CSCE and BICE in 

June 2009). 

The focus of this paper is on sea-

level rise, its causes and effects on U.S. 

coasts and implications for planning and 

management. It complements the paper 

by Charles Fletcher in this volume. This 

-

sults presented in chapters 1, 2, 3, 4, and 

13 of the recently published Synthesis 

and Assessment Product 4.1 from the 

U.S. Climate Change Science Program 

(CCSP 2009).

GLOBAL SEA-LEVEL CHANGE

Sea level has varied throughout 

Earth’s history due to a variety of pro-

cesses that operate over a range of spatial 

and temporal scales (Douglas et al. 2001; 

Miller et al. 2005). On a global scale, sea 

level varies as the volume and mass of 

ocean water changes, and as the volume 

of the ocean basins changes. Two primary 

contributors to ocean volume and mass 

are from thermal expansion through heat 

uptake and the addition of melt water 

from grounded ice sheets and glaciers 

(IPCC 2007; Bindoff et al. 2007). Over 

the last 3 million years, oxygen isotope 

records have provided evidence that sea 

level has varied primarily in response to 

shifts from glacial to interglacial periods 

such that mass exchange between land 

based ice and the ocean dominates long-

term sea-level variability (Lambeck et al.

2002). These records indicate that over 

the last 800,000 years the magnitude of 

the sea-level changes has been on the 

order of 120 m to 140 m with a period of 

about 100,000 years (Figure 1). 

Since the last glacial maximum 21,000 

years ago, sea level rose approximately 

120 m (Figure 2, Fairbanks 1989). Evi-

dence from the coral record constructed 

by Fairbanks (1989) indicates that sea-

level rise between 21,000 to 6,000 years 

ago averaged 10 mm/yr and was punctu-
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Figure 2. Generalized plot of the rise in global sea level at variable rates over 

the last 18,000 years as the Earth moved from a glacial period to the present 

interglacial warm period. This curve is reconstructed from geologic samples, 

shown as data points. Rise was rapid but highly variable for much of the time 

and slowed about 3,000 years ago. Recent acceleration is not shown at this 

scale. Reprinted by permission and adapted from Macmillan Publishers Ltd: 

Nature

circulation, copyright (1989).

ated with two distinct “meltwater pulses” 

when rates may have reached 50 mm/yr 

(Fairbanks 1989; CCSP 2008). Sea-level 

rise then slowed to a rate of about 0.5 

mm/yr from 6,000 to 3,000 years ago 

(Fairbanks 1989; Rohling et al. 2008). 

The rate of global sea-level rise has 

slowed episodically with rates eventually 

reaching a near still-stand (0 to 0.2 mm/

yr) 2,000 to 3,000 years ago approaching 

the current position (Lambeck and Bard 

2000). Rates increased in the late 19th

and early 20th centuries, (Bindoff et al.

2007; Lambeck et al. 2004; Gehrels et

al. 2008), and some studies indicate that 

acceleration in sea-level rise may have 

begun earlier, in the 18th century (Figure 

3) (Jevrejeva et al. 2008).

Analyses of tide-gauge data indicate 

that the 20th century rate of sea-level 

rise averaged 1.7 mm/yr on a global 

scale (Bindoff et al. 2007), with decadal 

the century (Church and White 2006; 

Jevrejeva et al. 2006, 2008). Between 

1993 and 2003, both satellite altimeter 

and tide-gauge observations indicate 

that the rate of sea-level rise increased 

to 3.1 mm per year (Bindoff et al. 2007). 

Given this short 10-year record, it is not 

yet possible to determine with certainty 

whether this is a natural decadal variation 

rise due to climate warming (Bindoff et

al. 2007). The IPCC (2007) estimates 

that the increase is due to equal contribu-

tions from ocean thermal expansion and 

ice-sheet melting. Recent studies of the 

global sea-level rise budget (years 2003 

to 2008) by Cazenave et al. (2009) found 

that the rate of sea-level is about 2.5 mm/

-

tributions, while thermal expansion has 

leveled off in comparison to observations 

from the previous decade.

The recent climate change assessment 

by the IPCC (2007) included model-based 

forecasts of sea-level rise by the end of 

the 21st century. The results indicated that 

sea level could rise 18-59 cm, but these 

projections did not include acceleration 

in melting of major land-based ice masses 

(Meehl et al. 2007). More recent studies 

suggest that sea-level rise may accelerate 

in decades ahead as Greenland ice-sheet 

melting and West Antarctic ice-sheet 

breakup occur more rapidly than previ-

ously anticipated (see review in CCSP 

2008). These studies indicate that global 

sea-level rise may be 1 m or more by the 

year 2100, but rates of rise will be region-

ally highly variable. Additional modeling 

studies conclude that gravitational effects 

and shifts in ocean currents will result 

in nonuniform rise in sea level, possibly 

an additional 30-51 cm rise along the 

northeast coast of the U.S. and Canada 

(Hu et al. 2009) On a longer time frame, 

some climate scientists have argued that 

accelerated melting in Greenland and 

Antarctica could lead to sea-level rise of 

4 m to 6 m over the next several hundred 

years, possibly reaching levels attained 

during the last interglacial warm period 

(Overpeck et al. 2006). 

TWENTIETH CENTURY 

SEA-LEVEL CHANGE 

AROUND THE U.S.

Radiocarbon age-dating of organic 

sediments in cores and coral reefs are 

indirect methods used for determining 

sea-level elevations over the past 40,000 

years. However, long-term (>50 yrs) tide-
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gauge data have been the primary source 

of measurements of relative sea-level 

trends over the past century (Douglas 

2001). The rate of relative sea-level 

locations along the Atlantic Coast of the 

U.S. varies from 1.8 mm to as much as 

4.4 mm/yr (Zervas 2001). The lower 

rates, which occur along New England 

and from Georgia to northern Florida, 

are close to the global rate of 1.7 mm/yr 

(Bindoff et al. 2007). The highest rates 

are in the mid-Atlantic region between 

northern New Jersey and southern Vir-

ginia. The high rates of relative sea-level 

rise are attributed to subsidence of the 

land surface, which are due mainly to 

adjustments of Earth’s crust in response 

to the melting of the Laurentide ice sheet 

and to the compaction of sediments due 

to freshwater withdrawal from coastal 

aquifers (Gornitz and Lebedeff 1987; 

Emery and Aubrey 1991; Kearney and 

Stevenson 1991; Douglas 2001; Peltier 

2001).

On the Gulf Coast of the U.S., rates of 

relative sea-level rise are relatively mod-

est along the Florida coast (2.0 to 2.4 mm/

yr). However, rates of relative sea level 

Figure 3. Annual averages of global mean sea level in millimeters from 

from Church and White 2006); the blue curve displays tide gauge data from 

Holgate and Woodworth (2004), and the black curve is based on satellite 

observations from Leuliette et al. (2004). The red and blue curves are 

deviations from their averages for 1961 to 1990, and the black curve is the 

deviation from the average of the red curve for the period 1993 to 2001. 

From Climate Change 2007: The Physical Science Basis. Working Group 

I Contribution to the Fourth Assessment Report of the Intergovernmental 

Panel on Climate Change. Figure 5.13. Cambridge University Press.

in Louisiana and Texas. Galveston, Texas 

experiences sea-level rise rates of 6.5 

mm/yr and increase to reach as much 

as 9.9 mm/yr at Grand Isle, Louisiana 

(Zervas 2001). The higher rise rates along 

the Texas and Louisiana coast are the 

result of land subsidence due to ground-

water withdrawal, sediment compaction, 

and oil and gas production, in addition 

to global sea-level rise contributions 

(Gabrysch 1984, Galloway et al. 1999, 

Morton et al. 2002).

tectonic activity in addition to glacio-

sea-level rise trends. At some locations, 

like San Diego and Santa Barbara, Cali-

fornia, and Port Townsend, Washington, 

relative SLR rates exceed the global aver-

age (2.2 to 2.8 mm/yr). At other locations, 

tectonic uplift is believed to cause rela-

tive sea level observations that indicate 

sea-level has fallen (e.g. Crescent City, 

California, -0.5 mm/yr; Astoria, Oregon, 

-0.2 mm/yr; and Neah Bay, Washington, 

1.4 mm/yr) (Zervas 2001). 

Many of the tide gauges along the 

coast of Alaska indicate relative sea level 

is falling due to glacio-isostatic rebound 

and tectonic uplift of the land (Cohen and 

Freymueller 2001). The most extreme 

example has been observed at Skagway 

in southeastern Alaska where rates are 

-16.7 mm/yr. Parts of Glacier Bay are 

experiencing some of the highest rates of 

uplift (28 mm/yr). These uplift rates are 

determined from raised shorelines, GPS 

measurements, water-level recorders, and 

ice load and viscoelastic earth models 

(Larsen et al. 2003).

IMPACTS OF SEA-LEVEL RISE 

ON THE U.S. COAST

Sea-level rise has the potential to af-

fect all coastal regions in the U.S (Gornitz 

et al. 2002; CCSP 2009). In some areas, 

wetland losses are occurring, fringe 

forests are dying and being converted 

to marsh, farmland and lawns are being 

converted to marsh (Riggs and Ames 

2003, 2007). In addition, some roads and 

urban centers in low elevation areas are 

high tides (Douglas et al. 2001). Recent 

examples are Charleston, South Carolina, 

and parts of the Eastern Shore, Chesa-

peake Bay, Maryland (D. Marcy and C. 

Larsen, pers. comm.). Moreover, “ghost 

forests” of standing dead trees killed 

by salt water intrusion are becoming 

increasingly common in southern New 

Jersey, Maryland, Virginia, Louisiana, 

and North Carolina (Riggs and Ames 

2003). Relative sea-level rise is also caus-

ing salt water intrusion into estuaries and 

threatening freshwater resources in some 

parts of the mid-Atlantic region (Barlow 

2003). In addition, research over the last 

decade has shown that storms such as 

hurricanes, winter storms, especially 

during El Niño periods on the west coast, 

continue to have substantial impacts to 

coastal regions (Flick 1998, Allan and 

Komar 2006; Sallenger et al. 2007). With 

higher sea level, storm impacts from 

surge and waves have the potential to be 

greater and reach farther inland from the 

coast (CCSP 2009).

The complex interactions between 

relate sea-level rise and shoreline change 

and to reach agreement among coastal 

scientists on best approach to predict-

ing shoreline response to sea-level rise. 

coastal change stems from the fact that 

shoreline change is not driven solely 

by sea-level rise. Instead, coasts are in 

-

ing forces, such as the underlying geo-
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Figure 4. Map showing the potential sea-level rise responses for coastal 

landforms in the mid-Atlantic region. Colored portions of the coastline 

indicate the potential response for each of three rise scenarios shown in 

the inset table (Gutierrez et. al. 2007; CCSP 2009).

and volume of sediment in the coastal 

system (e.g. Riggs et al. 1995; Sallenger 

et al. 2000; FitzGerald et al. 2008). For 

example, FitzGerald et al. (2008) discuss 

the dramatic effects that changes in tidal 

wetland area can have on entire coastal 

turn affects the size and shape of tidal 

-

rier islands. Consequently, while there is 

change is accelerating sea-level rise and 

affecting coastal regions, there are still 

considerable uncertainties predicting in 

any detail how the coast will respond to 

future sea-level rise in concert with other 

driving processes.

relationship between sea-level rise and 

measuring a direct relationship between 

these two factors. The few studies that 

have attempted to constrain this relation-

ship by examining shoreline changes 

during the 19th and 20th centuries have 

provoked debate (Leatherman et al.

2000a, 2000b, Pilkey et al. 2000; Sal-

lenger et al. 2000; Zhang et al. 2004). 

Nonetheless, there is a wealth of geologi-

cal evidence preserved on the continental 

shelf that indicates that the shoreline 

was several 10s of kilometers seaward 

3,000 to 4,000 years ago when sea level 

was lower and since then the shore has 

transgressed landward and reworked the 

shelf surface (Kraft 1971; Moslow and 

Heron 1979; Belknap and Kraft 1985; 

Fletcher et al. 1990). 

Some scientists contend that bar-

rier islands, wetlands, and other parts of 

coastal systems might have a threshold or 

tipping point, such that when limits are 

exceeded, the landforms become unstable 

and prone to irreversible changes in form 

and position (NRC 2002; Riggs and 

Ames 2003). For barrier island systems, 

which make up a large portion of the 

U.S. shores, these changes would likely 

result in landward migration, change to 

the barrier island dimensions such as re-

duction in size or an increased presence 

of tidal inlets, or transformation into a 

subaqueous sand shoal (i.e. drowning 

of the barrier island). The topic of storm 

effects on barriers, thresholds for coastal 

landforms, and implications for future 

coastal change conditions is addressed 

in a recent book by Sallenger (2009). 

a barrier close to a threshold, several pos-

sible indicators discussed in Gutierrez et

al. (2007) are: 

barrier

-

tion

-

wash

breaching and inlet formation

Recent mapping and observations 

suggest that the Chandeleur Islands, off 

the Louisiana coast, subject to high rates 

of sea-level rise, subsidence, frequent 

major storms over the past decade, and 

limited sediment supply, may be cross-

ing a threshold of stability (Sallenger et

al. 2007). Similar deterioration of the 

barrier islands and wetlands may also 

occur in the near future along the North 

Carolina’s Outer Banks coast as a result 

of increased sea-level rise and storm 

activity (Culver et al. 2007, 2008; Riggs 

and Ames 2003).

To investigate possible impacts to 

mid-Atlantic coastal landforms under 

three sea-level rise scenarios (30-100 

cm by year 2100), Gutierrez et al. (2007) 
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consulted a panel of coastal scientists 

with expert knowledge of coastal pro-

cesses to produce a qualitative assess-

ment of what might happen by the year 

2100. Some results shown in Figure 

4 and discussed in chapter 3 of CCSP 

(2009) indicate increased coastal erosion, 

overwash and breaching at moderate rates 

of sea-level rise, and possible threshold 

crossing of barrier islands at higher rise 

rates (~1 m). As discussed in chapter 4 of 

CCSP (2009), U.S., tidal wetlands (e.g. 

Mississippi River delta plain, Louisiana, 

and Blackwater marshes, Chesapeake 

Bay, Maryland) are already experiencing 

submergence and associated land loss by 

sea-level rise. These observed changes 

in wetlands are expected to continue in 

these regions and others around the U.S. 

in response to changing climate over this 

century. The current wetland response 

applications where local elevations and 

sediment accretionary processes are well 

known, but model results for regional 

and national scales are uncertain and 

lack reliability. Mid-Atlantic wetlands 

are expected to keep pace with moderate 

sea-level rise, but under higher rates (~1 

m) most would not survive and convert 

to open water (CCSP 2009).

DISCUSSION: IMPLICATIONS 

FOR COASTAL ZONE 

MANAGEMENT

Throughout history, humans have 

generally responded to eroding shorelines 

of engineering measures to protect threat-

ened property or by relocating settlement 

and development inland to higher ground. 

In the future, these responses will become 

more widespread and more expensive 

for society as sea-level rise accelerates 

(Nicholls et al. 2007). 

A key issue for coastal zone man-

agement is to identify how and where 

to adapt to the changes that will result 

minimize impacts to both the natural en-

vironment and human populations. Shore 

protection policies have been developed 

in response to shoreline retreat problems 

that affect property or coastal wetland 

losses. While it is widely recognized 

that sea-level rise is an underlying cause 

of these changes, there is limited policy 

and regulation that explicitly addresses 

or incorporates sea-level rise into the 

decision making process (CCSP 2009). 

This situation is changing for some 

states (e.g. Massachusetts, Delaware, 

North Carolina, Florida, California, and 

Washington) and federal agencies (e.g. 

National Oceanic and Atmospheric Ad-

ministration, Fish and Wildlife Service, 

National Park Service, Army Corps of 

Engineers).

Many property owners and govern-

ment agency programs engage in coastal 

engineering activities designed to protect 

property and beaches, such as beach 

nourishment or seawall or breakwater 

construction. Some of the current prac-

tices have negative effects on the natural 

behavior of coastal landforms and disrupt 

coastal ecosystems (NRC, 2007; CCSP, 

2009). In the short term (~10 to 50 yrs), 

an acceleration of sea-level rise may 

simply increase the cost of current shore 

protection practices (Nordstrom 2000). In 

the longer term (>50 yrs), policy makers 

might evaluate whether current approach-

-

accelerating rates of sea-level rise.

To facilitate these decisions, policy-

and information. Predicting sea-level 

rise impacts such as shoreline changes 

or wetland losses with a high degree of 

possible (Cooper and Pilkey 2004; CCSP 

2009). Related effects of climate change, 

including increased storms, precipitation, 

runoff, drought, and sediment supply add 

reliable information. Predicting future 

effects is challenging because the ability 

to accurately map and quantify the physi-

cal response of the coast to sea-level rise, 

in combination with the wide variety of 

other processes and human engineering 

activities along the shoreline, has not yet 

been well developed. 

With the recognition of the hazards 

facing coasts, there is growing need 

for predictive models that can be used 

to forecast where erosion hazards are 

highest. Existing models that forecast 

shoreline response to sea-level rise 

include geometric models such as the 

Brunn Rule, empirical models based 

on historical water level data, or more 

simply extrapolation of historic shoreline 

change rates. These methods provide 

deterministic predictions, but often do 

not account for the spatial and temporal 

variability of coastal processes, or for the 

fact that erosion is episodic and does not 

necessarily respond quickly to forcing. 

Furthermore, the response may depend 

-

corporating probabilistic methods (e.g. 

Bayesian Networks; Jensen 1996; Borsuk 

et al. 2004) may be useful to account for 

the complexity of coastal change.

Marine geophysical investigations 

show that offshore regions may have 

abundant sediments, but often sand-size 

sediment suitable in texture and composi-

tion for beach nourishment is very limited 

for many regions due to geologic factors. 

Also, while marine sand may potentially 

be available, it is often considered “ex-

cluded” due to overlapping resource uses 

and factors such as dredging limitations, 

preemptive uses of the seafloor, and 

economic and environmental factors. As 

a result, only a portion of potential off-

shore sand resources may ultimately be 

available for beach nourishment (Bliss et 

al. 2009). To resolve competing interests 

priorities, the use of integrated, forward-

looking decision making planning tools, 

such as “marine spatial planning” is an 

option.

Coastal regions are generally managed 

under the premise that sea-level rise, 

shoreline change, and storms are modest, 

regular and predictable. New strategies 

for coastal planning and management 

that will be effective as sea-level rise 

accelerates are needed. For example, 

broader recognition is needed that coastal 

sediments are a valuable resource, best 

conserved by implementing “best coastal 

sediment management” practices (see 

http://www.wes.army.mil/rsm/) in order 

to conserve sediment resources and main-

tain natural sediment transport processes 

(NRC 2007). 

Sea-level rise projections need to be 

fully considered in coastal management 

plans and engineering design, however, 

existing studies of vulnerability based 

on extant elevation data do not provide 

for local decision making (see chapter 2 

in CCSP 2009). Studies that use eleva-

tion data for risk maps need to include 

statements about the vertical accuracy 

of the data and, importantly, the current 

best available data for much of the U.S. 

mapping using a sea-level rise increment 

of 1 m or less. Nationwide collection of 
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high-quality LIDAR (LIght Detection 

And Ranging) elevation data across the 

coastal zone would improve the ability 

to conduct assessments of coastal vul-

nerability that can reliably be used for 

planning and decision making (CCSP 

2009).

To effectively cope with sea-level rise 

and its impacts, current policies and eco-

nomic considerations should be exam-

ined, and possible options for modifying 

planning and management activities are 

warranted so that society and the environ-

ment are better able to adapt to potential 

accelerated rise in sea level.

CONCLUSIONS

Global climate is changing and be-

coming more variable, due largely to 

carbon emissions from human activities 

and land-use change. Sea-level rise is 

judged to be one of the most pervasive 

and important impacts of climate change 

affecting all coastal regions of the U.S. 

and around the world over this century 

and into the future. The high population 

densities in many coastal regions make it 

natural hazards. These conditions will 

lead to an increase in vulnerability of 

natural systems and human populations, 

resulting in significant economic and 

techniques for assessing and predicting 

the effects of sea-level rise on coastal 

systems are improving, but much remains 

to be done to develop reliable and useful 

forecasts of potential risks.

For much of the U.S., coastal regions 

composed of barrier islands, dunes, 

spits, sandy bluffs, and wetlands, ero-

sion and inundation will be the dominate 

responses at highly variable rates to sea-

level rise and storms over this century and 

beyond. Some coastal land forms in the 

U.S. may undergo large changes in shape 

and location, and wetlands may drown, 

if the rate of sea-level rise increases as 

predicted. Increased inundation and more 

will especially affect estuaries and low-

lying coastal areas. The response to these 

driving forces will vary depending on the 

type of coastal land form and local con-

ditions, but will be more extreme, more 

variable and less predictable than the 

changes observed over the last century. 

For higher sea-level rise scenarios, some 

barrier islands and spits and wetlands 

may cross thresholds and undergo sig-

changes include rapid landward migra-

tion and segmentation of some barrier 

islands and disintegration and drowning 

of wetlands. For some regions of the 

U.S., tidal wetlands, already experienc-

ing submergence and associated land loss 

by sea-level rise, in concert with other 

factors, will continue to deteriorate in 

response to changing climate. 

Planning for accelerating sea-level rise 

of 1 m or more by the year 2100 should 

begin now and include thorough evalu-

ation of all of the potential responses to 

sea-level rise and the viable alternatives. 

These include cost-effective and sus-

tainable coastal protection and strategic 

landward relocation of infrastructure and 

development. Important planning deci-

sions for sea-level rise should be based 

on the best available science and careful 

sustainable future, as well as all inclusive 

economic, social, and environmental 

costs of various methods of shore protec-

tion, relocation, and adaptation (CCSP 

2009).
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