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Abstract Sea level rise (SLR) projections along the coast of Florida present an
enormous challenge for management and conservation over the long term. Decision
makers need to recognize and adopt strategies to adapt to the potentially detrimental
effects of SLR. Structured decision making (SDM) provides a rigorous framework
for the management of natural resources. The aim of SDM is to identify decisions
that are optimal with respect to management objectives and knowledge of the system.
Most applications of SDM have assumed that the managed systems are governed
by stationary processes. However, in the context of SLR it may be necessary to
acknowledge that the processes underlying managed systems may be non-stationary,
such that systems will be continuously changing. Therefore, SLR brings some unique
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considerations to the application of decision theory for natural resource manage-
ment. In particular, SLR is expected to affect each of the components of SDM.
For instance, management objectives may have to be reconsidered more frequently
than under more stable conditions. The set of potential actions may also have to
be adapted over time as conditions change. Models have to account for the non-
stationarity of the modeled system processes. Each of the important sources of
uncertainty in decision processes is expected to be exacerbated by SLR. We illustrate
our ideas about adaptation of natural resource management to SLR by modeling a
non-stationary system using a numerical example. We provide additional examples
of an SDM approach for managing species that may be affected by SLR, with a focus
on the endangered Florida manatee.

Abbreviations

SDM structured decision making
SLR sea level rise

1 Introduction

The projected extent of sea level rise (SLR) along the coast of Florida represents
an enormous challenge for management and conservation over the long term (IPCC
2007; Parkinson and Donoghue 2010). Although many consequences of SLR may be
out of the control of decision makers, there may be great potential for managers
and decision makers to adapt to potentially detrimental effects of SLR (IPCC
2007; Parkinson and Donoghue 2010). Structured decision making (SDM) provides
a rigorous and transparent framework for the management of natural resources
(Peterman and Anderson 1999). In the context of SLR, SDM provides a decision
analytical framework that integrates scientific knowledge related to climate change
and policy making. Structured decision making is a method for analyzing a deci-
sion by breaking it into its components: management objectives, potential actions,
models, optimization, and monitoring (Clemen and Reilly 2001; Martin et al. 2009;
Williams et al. 2002). Some of these components may also be affected by important
sources of uncertainty, which need to be identified and incorporated into the SDM
process (Halpern et al. 2006; Williams et al. 1996). The aim of SDM is to identify the
decisions that are optimal with respect to management objectives and the current
knowledge of the system (Williams et al. 2002; Martin et al. 2009). Although SDM
is gaining some popularity in the conservation and management communities, few
papers have discussed SDM in the context of SLR. Most applications of SDM have
assumed that the managed systems are governed by stationary processes that will
ultimately reach some steady state. However, in the context of SLR it may be more
appropriate to account for the fact that the processes underlying managed systems
may be non-stationary, such that systems will be continuously changing (Nichols
et al. 2011). Although we believe that SDM is well suited to deal with non-stationary
dynamics induced by SLR, it is important to be aware of some key features in order
to appropriately account for continuous changes in the system state and the processes
that govern system dynamics. The intent of this paper is to review some of these key
characteristics and to discuss some approaches to deal with decision making in the
face of SLR in Florida.



Climatic Change (2011) 107:185–202 187

SLR brings some unique considerations to the application of decision theory
to the management of natural resources. In particular, SLR is expected to affect
each of the components of SDM (Nichols et al. 2011). For instance, management
objectives may have to be reconsidered more frequently than under more stable
conditions. The set of potential actions may also have to be adapted over time
as conditions change. Models have to account for the transitory nature of the
modeled system processes. Each of the important sources of uncertainty in decision
processes (environmental stochasticity, partial observability, partial controllability,
and structural uncertainty) is expected to be exacerbated by SLR. Finally, monitoring
programs will have to be adapted in the face of SLR. Nichols et al. (2011) discuss
some of these points in the context of climate change in general and then focus on
the adaptive harvest management of waterfowl. Here, we focus on issues specifically
related to SLR in Florida. We illustrate our ideas with specific examples of these
issues considering an application of the approach to management of the endangered
Florida manatee, a Florida icon that lives at the marine–freshwater interface in both
natural and built waterways. The manatee is a useful example for our purposes
as adaptation could proceed through direct management actions to maintain or
improve survival and reproduction of individuals within the population or through
actions to modify, improve, or maintain critical aquatic habitat that we expect to be
affected by SLR. Critical habitat includes seagrass and freshwater aquatic vegetation
for forage, freshwater for drinking, and warm-water refuges in winter to prevent
mortality from cold stress (Hartman 1979). Increasing sea surface temperatures
may affect manatee thermoregulation in summer, particularly in the shallow shoals
where seagrass occurs. Water resources directly affect manatee habitat, and water
management will play a key role in developing adaptive strategies for humans,
manatees, and other species that use the same critical habitats. Water-resource risk
assessment and planning, however, face large challenges due to non-stationarity in
hydroclimatic processes for which changes are currently underway (Milly et al. 2008).
We illustrate our ideas about adaptation of natural resource management to SLR by
considering numerical examples to provide specific insights on how to implement the
approaches that we describe.

2 Effect of SLR on the primary elements of SDM

2.1 Objectives in the face of SLR

Any formal decision making process requires that decision makers (with input from
a larger group of stakeholders) offer a clear statement of objectives, specifying what
they are trying to achieve through management actions. These objectives are based
on the value judgments of decision makers, and should be expressed as quantitative
measures in order to select among competing management actions and evaluate
the success of the decision taken (Nichols and Williams 2006). Typically, decision
makers have to identify intermediate (and measurable) means objectives in order to
achieve some more fundamental objectives. For example, a fundamental objective
may be to maintain the Florida manatee (Trichechus manatus latirostris) population
above some specified size over an indefinite time horizon. Since Florida manatees
need warm water habitat to survive cold winters, a means objective may be to
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maintain warm water capacity at some specified amount (FWRI management plan
2007). Once objectives have been identified they can then be converted into an
objective function—a formal mathematical expression of values-based objectives
used to quantify the benefit accrued over the time horizon of the decision problem
by implementing specific actions at each time step (Lubow 1995; Williams et al. 2002;
Fonnesbeck 2005).

Changes in environmental conditions may lead to changes in the means objectives,
while the fundamental objectives may remain unchanged. Because of the large
environmental changes that are predicted due to SLR, decision makers may have
to revisit their means objectives more frequently than if the system was stationary
(Nichols et al. 2011). For instance, in the manatee example, under current conditions
a means management objective may be to maintain artificial warm water capacity
(e.g., from power plants, see Edwards et al. 2007) above some level deemed necessary
for the persistence of a desired number of manatees in a particular region. However,
if SLR or other environmental changes linked to climate change result in a disruption
to these artificial sources of warm water in ways that could not have been predicted,
then managers may have to revisit their means objectives in order to adjust to
these new unexpected conditions. For example, with SLR and saltwater intrusion,
sources of freshwater for human consumption will diminish with greater demands for
groundwater removal, affecting spring flow and thermal capacity at manatee winter
aggregation sites (Rouhani et al. 2005; Leeper et al. 2010). Additionally, SLR could
disrupt coastal power plant operations that provide artificial warm-water refuge (see
Edwards et al. 2007). If some power plants have to be relocated because of SLR, the
means objectives related to increasing the capacity of these particular plants become
irrelevant to the fundamental objectives (e.g., meet a population target statewide). In
this case new means objectives have to be identified in order to meet the fundamental
objectives.

2.2 Potential actions and SLR

To achieve the fundamental objectives, a decision maker chooses from among a
set of potential management actions, actions that might guide the managed system
toward a desired state as defined by the means objectives. As with the management
objectives, SLR can lead to the consideration of a very different set of potential
management actions. For example, the habitats of several plant species in the Florida
Keys are immediately threatened by SLR (Maschinski et al. 2011). Under current
conditions, some of the efforts to protect some of these species are directed at
controlling invasive species; however, before sea water completely floods these
habitats, managers may have to consider the assisted migration of plants from the
keys into mainland habitats (Maschinski et al. 2011). As new (unexpected) potential
actions become available, it may be necessary to review and revise the complete
decision process. The process of reframing the decision problem periodically has
been referred to as double-loop learning (e.g., Williams et al. 2007).

2.3 Model(s) of system behavior

Model(s) of system behavior are used to predict the consequences to the system of
interest of implementing any of the identified management actions. That is, models
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link the actions to the objectives. For example, a model is used to predict the future
state of the system, xt+1, based on the value of the system state at the current time
step, xt, and the action taken (decision) at that step, dt. In the case of sequential and
dynamic decisions, the decision maker may care about how value accrues over time
as a series of decisions are implemented; in this case the models need to predict
both the immediate return and the change in system state due to a decision at
time t. Traditionally, models have been state-dependent, but not time-dependent;
that is, the predicted responses depend on the current state of the system, but the
dynamics are stationary across time (e.g., Johnson et al. 1997; Williams et al. 2002;
Martin et al. 2009).

SLR is likely to induce changes in the dynamics of many natural systems in Florida
(Noss 2011). One way to account for these changes is to include in the system
model(s) one or more additional state variables that vary according to time. One
of the largest winter aggregation sites for manatees in Ten Thousand Islands (TTI)
area in southwest Florida is an inshore canal system that provides a halocline of
warmer saltwater trapped below cooler freshwater that acts as a barrier to vertical
mixing (Stith et al. 2010). Monitoring and hydrologic modeling indicate that a certain
level of freshwater discharge is needed within the canal system to maintain water
temperatures above a threshold that separates suitable, higher temperatures from
those considered stressful for manatees. The Picayune Strand Restoration Project
will redistribute freshwater discharge away from this canal system to restore sheet
flow and maintain freshwater head across a portion of the TTI basin, thus helping
mitigate the effects of SLR on the TTI marsh systems. In this case, the reduced
freshwater discharge to the canal may affect the warm water characteristics of the
manatee refugium (note that climate change may have direct effects on temperature
that may also need to be considered). To reflect these temporal dynamics, either
freshwater discharge or time itself can be included as a state variable in the model,
and used to predict the manatee warm-water refuge temperature, as influenced
by the rate of freshwater discharge. Below we provide a numerical example that
illustrates how reduction in water delivery due to SLR can be incorporated into the
SDM modeling framework.

2.4 Analytical method to identify optimal decisions in the face of SLR

The purpose of the optimization component of SDM is to identify decisions that
are optimal with respect to the management objectives and the system model(s)
(reflecting our current knowledge of the system, Williams et al. 2002). Many natural
resource management problems involve sequential decisions that are linked to each
other, and that also often involve large levels of uncertainty. When the management
problem can be reasonably approximated with fairly simple system models and
objectives, stochastic dynamic programming can provide globally optimal solutions
(Bellman 1957; Clark and Mangel 2001). Interestingly, in most stochastic dynamic
programming applications the managed system is treated as stationary (Anderson
1975; Johnson et al. 1997). This is because when managing natural systems one often
seeks a sustainable strategy, and finding time-independent policies can be useful
in this context. However, in the face of climate change, it may be unreasonable to
assume stationarity, particularly when systems are changing rapidly and are expected
to do so for some unknown or indefinite time horizon. Natural systems in Florida that
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will be affected by SLR provide a good case for considering alternative approaches
to stationary solutions. For instance, one of the stated goals of the Comprehensive
Everglades Restoration Project is to improve the quality of native habitats and
increase diversity and abundance of native plants and animals by primarily acting
on hydrology and water quality (RECOVER 2005). Because a large portion of the
Everglades is predicted to be flooded by seawater within this century due to SLR,
accounting for the non-stationarity of the system will be an important consideration
when managing the Everglades ecosystem (Noss 2011).

2.5 Numerical example

Martin et al. (2009) described a hypothetical numerical example to demonstrate
SDM in the context of sustainable resource management. Here, we modify this same
example to illustrate the optimal management of a non-stationary system affected by
SLR. In our example, a large wetland impoundment in coastal Florida serves dual
purposes of storing water for surrounding agricultural needs and providing habitat
for a species of concern. The management objectives for this wetland are to provide
maximum outflow for agricultural benefit while maintaining a minimum volume of
water in the wetland to ensure sufficient habitat for the species of concern. The
volume of water, L, in the wetland directly affects habitat suitability and, therefore,
the proportion of habitat occupied by the species (ψt). As described by Martin et al.
(2009), managers of the wetland desire that a minimum of 30% of the wetland
habitat be occupied (i.e., below a utility threshold of ψ = 0.30, the value of water
for irrigation is greatly devalued; see Utility function below). At the start of year
t, the wetland impoundment contains Lt units of water, which are augmented over
the course of the year by pt units of rainfall. The impoundment holds a maximum
volume of K = 2000 units of water; any surplus water is lost. A decision is made at
the start of the year to release It units of water for agricultural use. It may not be
possible, however, to release this many units of water because the reservoir only
holds K units and, in addition, there is an exogenously determined amount, Ot,
of water used for non-agricultural human use. More specifically, the variable Ot
reflects a new external demand on the impoundment, namely, water withdrawals
for human consumption, because of salt-water intrusion into traditional aquifers due
to SLR. Determining the optimal water release policy to maximize the agricultural
benefits, while maintaining a minimum of 30% occupancy of our species of interest,
can be accomplished by using dynamic programming for deterministic problems
and stochastic dynamic programming for stochastic problems (Bellman 1957; Lubow
1995).

2.5.1 Objective function

The objective of our numerical example was to maximize irrigation while maintaining
at least 30% of the sites occupied by the species of interest. We formalized our
objective into a utility function, which describes the value (return) associated with
the annual decision to release It units of water for agricultural purposes:

Ut =
{

0, ψt+1 < 0.3
Rt, ψt+1 ≥ 0.3

with Rt = min (max (0, min (K, Lt + pt) − Ot) , It) (1)
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This expression states the utility value at time t (Ut) of the decision depends on the
state of the system at time t (water levels (Lt) and the expected proportion of sites
occupied after the decision is taken (ψt+1)) and on the decision that was taken at
time t. The utility is equal to Rt (the amount of water made available for agriculture)
if the decision is expected to maintain occupancy in the wetland at or above 30%
in the following year, given the current year’s available water, Lt. If occupancy is
predicted to fall below the utility threshold of 0.30 (i.e., if the proportion of sites
occupied is less than 30%), the value of the water released for irrigation is equal to
zero. The objective is to maximize the sum of the utility function over a specified time
horizon. Here, the number of water units to release, It, is restricted to increments of
20 units, up to the maximum capacity of the impoundment, K. The set of possible
management decisions is, therefore: It ε {0, 20, 40, . . ., K}.

2.5.2 Models of system behavior

Determining the optimal decision policy for water release requires that we monitor
the state variable water level, L, over time. The dynamics of this state variable are
expressed by:

Lt+1 = max (0, min (K, Lt + pt) − Ot − It)) (2)

Annual rainfall, pt, followed a normal distribution with a mean set at 550 water units
and a standard deviation of 104. The variable Ot reflects a new external demand on
the impoundment, namely, water withdrawals for human consumption, because of
salt-water intrusion into traditional aquifers due to SLR. Hereafter we simply refer
to this additional external demand as “water demand”, whereas we view Rt as the
amount of water used for agriculture. Because of this increasing demand, there is
less water available for irrigation over time. Martin et al. (2009) did not include the
water demand variable in their model. Here we consider Ot to increase in expectation
linearly over time due to SLR (see Fig. 1):

Ot = β1t et (3)

β1 corresponds to the slope parameter between the new external demand on the
impoundment (Ot) and time t; et corresponds to a random variable that follows
a gamma distribution with mean 1 and a variance of 0.2, and represents random
variation in the additional water demand.

Solving the optimal decision policy requires that we keep track of a second state
variable, site occupancy (ψt, which can be viewed as the proportion of sites occupied
at time t). Site occupancy dynamics can be described generally by:

ψt+1 = ψt × (1 − εt) +
(
1 − ψt

)
× γt, (4)

where ε and γ are probabilities of local site extinction and colonization, respectively
(MacKenzie et al. 2006). In other words, ε is the probability that a site that was
occupied at time t becomes unoccupied at time t + 1; γ is the probability that a site
that was unoccupied at time t becomes occupied at time t + 1. As stated previously,
water volume (Lt) in the impoundment is a strong determinant of habitat availability
and, thus, affects the colonization and extinction probabilities of the species of
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Fig. 1 Relationships between time (t) and amount of additional water lost from the wetland because
of demand induced by SLR (Ot). There is a linear relationship between time and the amount of
water lost: Ot = β1tet , where β1 is the slope parameter for the relationship between time and water
demand due to SLR, et corresponds to a random variable that represents uncertainty associated
with additional water demand due to SLR (for simplicity in this figure we set et = 1). Each line
corresponds to a different scenario (β1 = 4: thick line; β1 = 2.63: medium line; β1 = 1.26: thin line).
This is an hypothetical example and therefore the units are arbitrary

concern. We modeled the relationship between γ and L as an ecological threshold
in which the proportion of empty sites that is colonized (γ) falls sharply when water
volume falls below a threshold value, T (here, T = 1500 units of water):

γt = 0.1
1 + e(0.035×(T−Lt))

. (5)

The relationship between probability of local extinction (ε) and the water volume in
the impoundment (L) was modeled as a linear-logistic response:

εt = 1
1 + e(−α1−α2×Lt)

. (6)

In our case the probability of extinction decreases as the amount of water in the
impoundment (Lt) increases (our example sets α1 = 6.9 and α2 = −0.007). We made
a deliberate decision to keep the numerical example simple. For instance, we could
have developed a model that assumed that rainfall was also affected by climate
change. It is also probable that political pressure from agricultural interests as water
levels change may change the manager’s decision problem, i.e., with declines in the
amount of water available for irrigation. We were concerned, however, that adding
too much realism (i.e., adding complexity) to our example would distract the reader
from the main purpose of this example, which is to illustrate an SDM approach for
dealing with non-stationary systems.

2.5.3 Optimization

We used stochastic dynamic programming to identify sequences of optimal decisions.
We solved the finite time horizon problem by using backwards recursion on the value
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function (Miranda and Fackler 2002) within the software MDPSOLVE (Fackler,
software under development). This software package is in MATLAB programming
language, and is used to solve general discrete-state and discrete-action dynamic
programming problems. Unlike in Martin et al. (2009), we focused on time-specific
solutions, because of changes in the non-stationary environmental variable Ot with
time. We assume that the water demand increases for 70 years, after which it remains
constant. The terminal value for the 70 year optimization is determined by solving the
infinite horizon problem using the time-constant year 70 water demand level.

We summarized the optimal results in plots showing the optimal irrigation deci-
sions as a function of water levels, proportion of sites occupied, and time. So, for
example, as shown in Fig. 2a, at time 0 (i.e., during the first year), if the proportion
of sites occupied is 0.6 and water level during that year is 1750, the optimal irrigation
decision would be to release 600 units of water for irrigation. The decision plots
(Fig. 2a and b) show the same general pattern found by Martin et al. (2009). Indeed,

Fig. 2 Plots of optimal
irrigation decisions as a
function of water level (L),
proportion of sites that are
occupied (ψ) and time (t).
The shades of gray correspond
to the amount of water
released for irrigation (from 0
water units [lighter shade] to
600 units [darker shade]).
a corresponds to the optimal
irrigation policy at time t = 0;
whereas b corresponds to the
optimal irrigation policy at
time t = 70. At time t = 0,
Ot = 0, and the irrigation
policies are similar to the
stationary policies presented
by Martin et al. (2009).
However, at t = 70, setting
Ot = β1tet (here et follows a
gamma distribution with
mean = 1, and variance = 0.2)
leads to substantially
reduced irrigation

(a)

(b)
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both figures demonstrate that as more water is available in the impoundment, or as
more sites become occupied, a greater volume of water can be released for irrigation.
The main difference between these results and those of Martin et al. (2009) is that
now the optimal policies change over time. Figure 2a corresponds to the beginning
of the decision time horizon (t = 0), whereas Fig. 2b corresponds to a later time
(t = 70). The difference between optimal policies for the 2 different times (difference
between Fig. 2a and b) shows that optimal irrigation potential decreases over time
because water available for irrigation decreases over time (due to an increase in Ot).
Specifically, for any two values of the state variables, occupancy and water level, at t
(i.e., at any point in the state space of the figures), the optimal decision is to release
less water for irrigation at the later time step.

When we considered a scenario that assumed no increase in water loss (i.e.,
Ot = 0) linked to SLR in the optimization, the optimal decisions were identical to
the ones obtained by Martin et al. (2009), because a stationary solution could be
found. However, if we assumed that sea level rise induced an increase in water
loss (Ot = β1tet), the decisions became time-dependent. Not surprisingly, if the
“true” model followed Ot = β1tet, but stationary solutions were implemented (i.e.,
assuming Ot = 0), the average amount of water released for irrigation was less
than the average amount of water when the optimal, time-dependent policy was
implemented (Fig. 3; note the larger variance in irrigation levels for the stationary
policy). In addition, the occupancy of the species of interest fell below the utility
threshold if the stationary policy was followed, whereas it stayed above the utility
threshold if the optimal time dependent policy was implemented (Fig. 3). In the case
that we described above, the difference may not seem very large, but this will depend
on the value judgments of stakeholders, specifically on the value of every unit of
water. The differences would have been greater if we had considered larger values
of β1 and/or longer time horizons. This example illustrates the use of simulation to
evaluate the relative risk of ignoring non-stationary dynamics.

The terminal value of the objective function (how state variables are valued at the
last step of the time horizon) is especially relevant to optimal solutions for time-
dependent optimization problems. For example, if we had set the terminal value
to 0 (i.e., if there is no benefit in maintaining water in the system after the last
occasion of the time period that we wish to manage for) the optimal policy would
have been to remove all of the water from the wetland on the last occasion. This
is because, according to our objective function, there is no benefit in maintaining
water in the system after the last occasion of the finite time horizon that we selected.
Obviously, this is probably not how most managers would want to manage natural
systems. Therefore, it is important to consider the incorporation of terminal values
for problems with finite time horizons (e.g., Nichols et al. 2011). Our approach in the
numerical example was to assume that the system is stationary after that point (i.e.,
after t = 70, Ot remained constant). One consideration when using this approach
would be to try to leave the system in a “good place” by the time it reaches the end
of the specified time horizon.

Up to this point we have assumed that the slope (β1) of the relationship between
time and water demand due to SLR, Ot, is known. However, as with many aspects
of climate change, there will likely be uncertainty about the rate of change in
variable Ot. It may be important to account for such model uncertainty (or structural
uncertainty) via use of multiple models for change in Ot. We will explain how to
account for model uncertainty below (Structural uncertainty).
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Fig. 3 a Simulation of
proportion of sites that are
occupied (ψ) of the species of
interest over 70 years under
different management policies.
b Simulation of corresponding
irrigation levels. The thick
lines indicate simulation
results when optimal irrigation
policies are followed [with
Ot = β1tet ; with β1 = 4; where
Ot is the amount of additional
water lost from the wetland
because of demand induced by
SLR, and β1 is the slope
parameter for the relationship
between time (t) and water
demand due to SLR; here et
follows a gamma distribution
with mean = 1, and variance =
0.2]. The thin lines correspond
to the results when stationary
suboptimal policies are
followed [decision rule is
optimal if Ot = 0, so SLR does
not induce an increase in
additional water demand due
to SLR]. For all simulations,
the true underlying model
assumes a positive relationship
(β1 = 4) between t and Ot

(a)

(b)

3 Sources of uncertainty affected by SLR

Uncertainty influences virtually all decision making processes (Williams et al. 1996;
Burgman 2005; Halpern et al. 2006). Incorporating uncertainty in an explicit manner
should affect optimal decision policies. Recognizing that there are multiple sources
of uncertainty, and that SLR may affect each in different ways, can aid decision-
makers in understanding the impacts of uncertainty on making optimal decisions (see
Nichols et al. 2011 for a detailed discussion of the effect of climate change on some
of the sources of uncertainty described below).

3.1 Environmental stochasticity and partial controllability

Variation in weather patterns and resulting changes in habitat structure are a form
of environmental stochasticity (Williams et al. 1996, 2002). The IPCC projects that
global climate change will lead to an increase in the frequency of droughts in the
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central and western U.S. and to more intense storms in Florida. This uncertainty can
be incorporated in the same way that we accounted for Ot (incorporated into models
as a state variable and estimated each year via monitoring). Experts from several
research agencies have also predicted that SLR will affect availability of freshwater
in Florida, and this in turn may affect the ability of managers to control the system,
especially when coupled with an increase in frequency of drought and hurricanes
(IPCC, Park et al. 2011). Uncertainty associated with the inability of decision makers
to precisely control the system (i.e., remove precisely the desired amount of water
[e.g., variance in It in our example]), is often referred to as partial controllability,
and should be accounted for when appropriate (Williams et al. 2002).

3.2 Process uncertainty

Demographic stochasticity is due to the probabilistic nature of birth and death
(Melbourne and Hastings 2008). The importance of this source of uncertainty in
driving the population dynamics of natural populations increases as the abundance
of these population decreases. SLR is projected to significantly reduce the amount
of natural habitats in Florida by 2100 (Noss 2011). Therefore the abundance of many
populations will be considerably reduced in the future due to SLR. An analogous
source of uncertainty (hereafter referred as process uncertainty) in the context of
occupancy dynamics can be linked to the fact that site extinction and colonization
are stochastic processes applied to discrete units (see Eq. 4). For example, the
colonization in period t of a site that is not occupied in period t − 1 is viewed as
a Bernoulli trial with probability γ (Eq. 4). If in the numerical example that we
considered the number of sites occupied was large (e.g., 1000 sites), this process
uncertainty would have very little influence on the population dynamics and optimal
decisions. However, if the total number of sites was small (e.g., 20), then it may have
been important to account for this source of stochasticity.

3.3 Structural uncertainty

Experts from the IPCC envisioned several scenarios of SLR based on different hy-
potheses about human responses to anthropogenic climate change (IPCC 2007). The
uncertainty about which scenarios represent the best approximations of reality can be
viewed as model uncertainty (or structural uncertainty). It is possible to account for
this uncertainty in the optimization by including multiple models and implementing
an adaptive optimization algorithm (Williams et al. 1996, 2002; Martin et al. 2011).
Two approaches can be applied to account for and reduce this uncertainty: passive
and active adaptive optimization. Passive adaptive optimization algorithms hold
model weights (representing relative degrees of confidence in each model in the
model set) constant over the time horizon of the optimization. Adaptive learning,
in this sense, is a byproduct of management whereby model-specific predictions are
compared to observations of the system state via a monitoring program (Williams
et al. 2002). Active adaptive algorithms were developed to include model weights
as information states in the optimization process, thus anticipating the long-term
benefits of learning (updating confidence in one or more model as observations
are compared with model predictions) while also optimizing the short-term benefits
of optimal management decisions based on the objective function (Williams 1996;
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Williams et al. 2002). With either approach, model or structural uncertainty can be
reduced as model weights are updated using Bayes’ theorem (Williams et al. 2002).

3.4 Numerical example: structural uncertainty about the effect of SLR

To illustrate the process of adaptive management we use the numerical example
described earlier and follow a passive adaptive management approach to optimiza-
tion. We considered three models that have the same structure, but have different β1
coefficients (see Eq. 3; Fig. 1; remember that β1 corresponds to the slope parameter
between the new external demand on the impoundment due to SLR (Ot) and time).
The β1 coefficient was 4 for model 1, 2.63 for model 2, and 1.26 for model 3. In
other words, model 1 assumed a large increase in Ot over time, model 2 assumed
a moderate increase, and model 3 assumed a small increase. The models were
assigned equal weights (0.33) initially. These model weights were updated via Bayes’
Theorem based on direct observations of Ot. Time-specific demand was simulated
as stochastic, with var(et) = 0.5. The evolution of the expected water demand over
time with these three parameter values is illustrated in Fig. 1. Figure 4a shows the
evolution of the belief weights over a 40-year time horizon, assuming that model 1
was the true model (i.e., β1 = 4). Figure 4b and c show the evolution of the weights
assuming that models 2 and 3 are the true models, respectively. In all three cases the
adaptive management process was able to discriminate among the three models, and
identify the true model sometimes in less than 10 years (e.g., Fig. 4c). Identifying the
true model rapidly would enable managers to get greater returns (i.e., higher utilities)
quicker. Because in our example we assumed that the water demand (Ot) could be
perfectly measured each year, our learning about the slope (β1) of the relationship
between Ot and time is independent of the irrigation decisions taken. Hence, in this
case, there is no benefit in using an active adaptive optimization because the passive
adaptive optimization leads to identical results.

For the first 10 years of the simulated management process, the irrigation policies
are almost identical for the three different models representing truth (Fig. 5b).
All policies result in decreased irrigation over time because of the increase in the
additional water demand due to SLR, Ot (Fig. 1). Not surprisingly, for the time path
under consideration, irrigation decreases more rapidly for the models that assumed
a higher value for the coefficient β1. In all cases, the optimal decisions allowed
managers to maintain the species of interest above the desired utility threshold of
0.3 (Fig. 5a).

3.5 Partial observability and monitoring

In the numerical example we assumed that the values of ψt and Lt could be
determined with certainty. This may be reasonable in the case of Lt, but will be
less likely in the case of ψt. The uncertainty associated with the values of the state
variables (e.g., ψt.) is generally due to the imperfection of the sampling approaches
used to estimate the values of the state variables (Martin et al. 2009). This type of
uncertainty is often referred to as partial observability. Partial observability may be
affected by detection probabilities less than 1 and spatial variation (e.g., because of
the inability to appropriately sample organisms everywhere). Nichols et al. (2011)
discuss the possibility that climate change may influence monitoring by affecting
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Fig. 4 Median time paths for
the evolution of belief weights.
Center lines show the median
belief weights for the three
alternative values of the slope
parameter (β1). Shaded areas
display the interquartile range.
Values are computed using
10,000 simulated paths
beginning with equal weights.
Here, the variance of the water
demand noise (et) is set to 0.5.
a The true model is based on
β1 = 4 (model 1). b The true
model is based on β1 = 2.63
(model 2). c The true model is
based on β1 = 1.26 (model 3)

(a)

(b)

(c)

both spatial variation and detection probabilities. In the case of SLR in Florida it
is easy to envision such examples. For instance, the increase in sea level may lead
manatees to shift their distribution, which could in turn affect detectability (e.g.,
because the water in the new habitats may have different levels of turbidity, see
Edwards et al. 2007; Langtimm et al. 2011). Therefore, monitoring programs should
be revised appropriately to account for these two primary sources of variations in the
monitoring data (Yoccoz et al. 2001).

3.6 Discounting

When applying SDP to identify optimal solutions, it is possible to modify the value of
a discount factor. The discount factor quantifies the value of a return obtained in the
next period relative to the same return obtained in the current period. This number
is between 0 and 1, when it is 1, returns in all periods are given equal values. If we
go back to the numerical example, a discount factor of 1 would give equal weights
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(a)

(b)

Fig. 5 Simulations of the adaptive optimization algorithm for the numerical example. Simulations
over seventy years for 3 alternative models in which the slope parameter (β1) between time and
water loss (Ot = β1tet ; here the variance of the water demand noise (et) is set to 0.2) varied; the
true model was either based on β1 = 4 (thick line, model 1), β1 = 2.63 (medium line, model 2) or
β1 = 1.26 (thin line, model 3). a Simulation of proportion of sites that are occupied. b Simulation of
the irrigation level

to the current return (i.e., the amount of water irrigated when the proportion of
sites occupied by the species is at or above 30%) and future returns. If the discount
factor is substantially less than 1, however, current returns will be weighted more
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than future returns. In the numerical example we used a discount factor that was set
to 1 (i.e., non-discounted case). Moore et al. (2008) conducted an analysis to examine
the consequences of selecting different types of discounting on decision making.
The considerations discussed in their paper are relevant to problems dealing with
SLR, because the discounting will affect the way we value our return in the short
versus the long term. In other words it may capture our concerns for the benefits to
future generations. Because discounting represents a component of the management
objectives, policy makers and relevant stakeholders should be closely involved in
deciding how to value future returns.

4 Conclusion

We believe that SDM provides a useful approach to integrate science and manage-
ment in the face of rising sea level. We have discussed some of the challenges and
benefits of applying SDM to help managers adapt to SLR in Florida. We have also
provided examples of how to address problems in which system dynamics cannot be
assumed to be stationary. We have seen that many of the existing tools generally
used in SDM can be adapted to deal with non-stationary systems. From a technical
point of view the optimization component of the SDM process is probably one of
the most challenging, because it is currently difficult to obtain optimal solutions for
problems with high dimensions; and the non-stationarity induced by SLR is likely
to increase the dimensionality even further (e.g., because of incorporation of new
environmental state variables related to changing climate). Computer scientists are
actively working on improving optimization methods. Unfortunately, the newest
breakthroughs from operations research can take some time to permeate other fields
of research. Thus, there is a great opportunity for natural resource managers to
collaborate with computer scientists.

SDM provides an effective framework for collaborative research, because the
development and identification of each of the elements of the SDM process may
require different kinds of expertise. For instance, social scientists, economists, and
psychologists can help with the identification of objectives, ecologists can contribute
to the development of ecological hypotheses and system models, and computer
scientists can help identify or devise the most appropriate optimization methods.
Assembling such teams of experts can be costly, but it may be an appropriate
investment when dealing with multi-million dollar decisions. For simpler problems
with less at stake, this high level of expertise may be less important. But even for high
profile problems it may make sense to start with a simple SDM prototype that can
be developed over a few days and add layers of complexity (and additional experts)
as needed during the implementation phase. Simple prototypes can offer numerous
and valuable insights at a relatively low cost and can help identify the most important
impediments to the decision process (e.g., Martin et al. 2010).

Finally, we realize that managing natural resources in Florida will be contentious
and difficult, especially during a time of rapidly rising sea level. However, because
SDM brings transparency (by stating the objectives explicitly) and rigor (by de-
veloping models based on the best available science) to the decision process, this
framework should be well suited to dealing with contentious issues (Martin et al.
2010). Several authors have noted that these characteristics make the SDM process
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compatible with existing laws and regulations such as the National Environmental
Policy Act (NEPA) (Thrower 2006; see also Martin et al. 2010).
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