

Risk-Based Vulnerability Assessment of the Indian River Lagoon to Climate Change


FINAL REPORT

Submitted October 1, 2018

Prepared for: Indian River Lagoon Council

Prepared by:

RWParkinson Consulting, Inc. & The Balmoral Group

RWParkinson Consulting, Inc.

Climate Change Vulnerability Assessment of the Indian River Lagoon National Estuary Program's Comprehensive Conservation and Management Plan

October 1, 2018

Prepared by:RWParkinson Consulting, Inc., and The Balmoral GroupPrepared for:Indian River Lagoon National Estuary ProgramUnited States Environmental Protection Agency (USEPA)

Contact Author:

Randall W. Parkinson, Ph.G., P.G. RWParkinson Consulting, Inc. Melbourne, Florida (321) 373-0976 rwparkinson.inc@gmail.com

Contributing Authors:

Valeria Seidel The Balmoral Group Winter Park, Florida (407) 629-2185 www.balmoralgroup.us

Suggested Citation:

Parkinson, R.W., and Seidel, V., 2018. Climate Change Vulnerability Assessment of the Indian River Lagoon National Estuary Program's Comprehensive Conservation and Management Plan. Final Report prepared by RWParkinson Consulting, Inc., and The Balmoral Group for the United States Environmental Protection Agency. 109 pages.

TABLE OF CONTENTS

List of Figures	
List of tables	6
Executive Summary	7
Introduction	
The National Estuary Program	
The Indian River Lagoon	9
Climate Ready Estuaries	
This Project	
Findings	
Step 1. Communication and Consultation	
Stakeholder outreach	
Real-time polling	
Step 2. Establishing Context	
IRLNEP program vulnerability	
Other vulnerability assessments within the IRL watershed	
Step 3. Risk Identification	
Historical Condition	
Projected Future Condition	
Summary of risks	
Step 4. Risk Analysis	
Warmer temperatures	
Changes in precipitation	
Increasing storminess	
Acidification	
Sea level rise	
Step 5. Evaluation	
Risks to sediment and water quality goal and objectives	
Risks to natural resource goal and objectives	

Risks to stakeholder engagement goal and objectives	51
Discussion	53
References	57
Appendices	60
Appendix A - Risk Identification	
Appendix B – Risk Evaluation	
Appendix C – Results of Real-Time Polling	

LIST OF FIGURES

Figure 1. National Estuary Program locations.	8
Figure 2. Indian River Lagoon watershed.	9
Figure 3. Ten step process described in EPA Workbook1	1
Figure 4. Observed annual average temperatures for IRL watershed counties (1895-2017) 1	8
Figure 5. Florida - observed number of nights above 75°F during 5-year periods from 1900-	
2014	9
Figure 6. Annual and seasonal percent change in rainfall amounts in Florida: recent period	
(1986-2015) minus early 20th century (1901-1960)	
Figure 7. Regional increases (from 1948-2015) in daily rainfall totals (inches) of a 20-year storm	
event	
Figure 8. Changes between 1985–2014 and 1955–1984 in numbers of extreme daily rain events	
Figure 9. Florida landfalling hurricanes, totals in 5-year increments, 1900-2017 2	
Figure 10. Fernandina Beach, Florida, 1896-2017 anomalies in local sea level (inches)	3
Figure 11. Observed and projected changes in Florida temperatures compared to 1901-1960	_
average	4
Figure 12. Simulated differences in annual and seasonal precipitation (%) by mid-century	_
relative to reference period 1971 - 2000	5
Figure 13. Projected changes in the 20-year return period daily rainfall amount mid-century	
(left maps) and late-21st century (right maps) under lower and higher carbon dioxide emission	
scenarios	
Figure 14. Increasing hurricane power is forecast to accompany climate change throughout this	
century	
Figure 15. Ocean acidification is projected to increase towards the end of this century	
Figure 16. Sea level rise projections through 2100 based upon NOAA and USACE modeling 2 Figure 17. Bisk analysis scoring matrix	
Figure 17. Risk analysis scoring matrix	
stressors	
Figure 19. Magnitude of risk to natural resource goals caused by five climate change stressors.	T
	2
Figure 20. Magnitude of risk to stakeholder engagement goals caused by five climate change	2
stressors	2
Figure 21. Comparison between project team and stakeholder risk priorities as identified in	<u>د</u>
real-time polling	ว
Figure 22. Priority risks to water and sediment quality as a function of stakeholder identity.	2
geographic identity.	4
Figure 23. Priority risks to natural resources as a function of stakeholder geographic identity. 5-	

Figure 24. Comparison between project team and stakeholder climate stressor priorities a	is
identified in real-time polling	55
Figure 25. Priority stressors to water and sediment quality as a function of stakeholder ide	entity.
	56
Figure 26. Priority stressors to natural as a function of stakeholder identity.	56

LIST OF TABLES

Table 1. Completion date of most recent CCMP, Climate Ready Estuaries Risk-Based	
Vulnerability Assessment (Phase 1) and Action Plan (Phase 2)	11
Table 2. Stakeholders interviewed throughout duration of project	14
Table 3. Summary of stakeholder meeting outreach activities	
Table 4. Risk Assessment of 2008 CCMP Goals and Action Plans to Climate Change	15
Table 5. Number of potential risks to IRL management goals posed by five climate change	
stressors	29
Table 6. Risks to sediment and water quality caused by warmer temperatures	31
Table 7. Risks to natural resources caused by warmer temperatures.	32
Table 8. Risks to stakeholder engagement caused by warmer temperatures	34
Table 9. Risks to sediment and water quality caused by changes in precipitation	35
Table 10. Risks to natural resources caused by changes in precipitation	36
Table 11. Risks to stakeholder engagement caused by changes in precipitation	38
Table 12. Risks to sediment and water quality caused by increasing storminess.	39
Table 13. Risks to natural resources caused by increasing storminess	40
Table 14. Risks to stakeholder engagement caused by increasing storminess	42
Table 15. Risks to sediment and water quality caused by acidification	43
Table 16. Risks to natural resources caused by acidification.	44
Table 17. Risks to stakeholder engagement caused by increasing acidification	44
Table 18. Risks to sediment and water quality caused by sea level rise	45
Table 19. Risks to natural resources caused by sea level rise.	46
Table 20. Risks to stakeholder engagement caused by sea level rise.	48
Table 21. Prioritization of risks to IRLNEP management goals and objectives caused by climate	:
change	50

EXECUTIVE SUMMARY

Results of a risk-based vulnerability assessment of the IRLNEP CCMP indicate 154 management objectives (aka Action Plans) are at risk to climate change. The assessment evaluated the effects of five climate change stressors on sediment and water quality, natural resources, and stakeholder engagement: warmer temperature, changing precipitation, increased storminess, acidification, and sea level rise. Each risk was ranked by numerical score and prioritized as *higher*, *high*, and *moderate* based upon: (1) magnitude of consequence, (2) likelihood, (3) spatial scale, and (4) time horizon.

Seventy-eight management objectives were determined to be at *higher* risk to climate change (i.e., decreased DO solubility due to warmer temperature), 62 at *high* risk (i.e., decreased volunteer participation in activities due to more frequent and intense storm events), and 14 at *moderate* risk (i.e., accelerated spread of exotic and invasive species from WWTP and OSTDS during more frequent and intense storm events).

Assessment results were informed by stakeholder input in a variety of formats including personal interviews, meetings, and real-time polling. The next step in this effort to become an EPA sanctioned Climate Ready Estuary is to integrate specific action plans, formulated to address priority risks, into the ongoing effort to update the IRLNEP CCMP.

INTRODUCTION

The National Estuary Program

The National Estuary Program (NEP) is a non-regulatory program established by the U.S. Congress and administered by the U.S. Environmental Protection Agency (USEPA). The NEP was authorized by Section 320 of the Clean Water Act in 1987. Each estuary in the NEP was designated by the U.S. Congress as an "Estuary of National Significance." Today, 28 estuaries located along the Atlantic, Gulf, and Pacific coasts and in Puerto Rico have been designated as estuaries of national significance (**Figure 1**).

Figure 1. National Estuary Program locations.

NEPs reside in a variety of institutional settings, including state and local agencies, universities, and individual nonprofits. In overseeing and managing the national program, USEPA provides annual funding, national guidance, and technical assistance to the local NEPs.

The 28 NEPs develop and implement Comprehensive Conservation and Management Plans (CCMPs), which are long-term plans that contain actions to address challenges and priorities related to water quality and living resources. Work is focused within a study area that includes the estuary and its watershed. NEP challenges and priorities are defined by local, city, state, federal, private, and non-profit stakeholders. The NEP is a collaborative, effective, efficient, and adaptable coastal ecosystem-based network. With more than 20 years of experience implementing key provisions of the Clean Water Act, the NEP is the nation's principal watershed program — one that offers a viable, effective method for protecting and managing all types of watershed environments.

The IRL (**Figure 2**) was designated an "Estuary of National Significance" by Congress in 1990, providing the catalyst for the creation of the IRLNEP. The first CCMP was adopted in 1996. From 1991 to 2015, the St. Johns River Water Management District (SJRWMD) served as the host agency for the IRLNEP. Today, the IRLNEP is hosted by the IRL Council, an independent special district of the state of Florida pursuant to an Interlocal Agreement signed by Volusia County, Brevard County, Indian River County, St. Lucie County, Martin County, SJRWMD, South Florida Water Management District (SFWMD), and Florida Department of Environmental Protection (DEP). The IRLNEP is currently revising the existing CCMP (Indian River Lagoon National Estuary Program, 2008) and expects to complete this task by the end of 2018.

Figure 2. Indian River Lagoon watershed.

The Indian River Lagoon

An estuary is a coastal waterbody where freshwater tributaries (rivers and streams) meet the waters of the sea. It is this subtle, but important mixing of fresh and salt waters that make estuaries the most productive and fragile coastal ecosystems in the world. A lagoon is a special type of estuary that is oriented parallel to the coast and characterized by shallow coastal waters with restricted, but free, exchange with the adjacent open ocean. The Indian River Lagoon (IRL) is a microtidal system that has limited exchange with the ocean through five inlets (Ponce de Leon, Sebastian, Fort Pierce, St. Lucie, and Jupiter). Port Canaveral connects the ocean to the lagoon through an engineered lock system that is used specifically for access by maritime vessels.

The small tidal range on the east coast of Florida limits exchange between the ocean and the IRL system. In fact, most of the

circulation of water in the IRL is driven by wind. Because of the long residence time in portions of the IRL system and restrictions from land-based development (i.e., causeways, wetland alterations, and past construction practice) in some compartments, the IRL is vulnerable to nutrient and pollutant loadings from the watershed. Inputs from the watershed have increased during the past few decades, causing a decline in water quality and changes to the ecological and biological integrity of the ecosystem.

The IRL system is composed of three distinct and connected estuaries, the Indian River, Banana River, and Mosquito lagoons (Figure 2). The IRL system extends 156 miles from Ponce de Leon Inlet to Jupiter Inlet. It spans three climate zones, from temperate to subtropical to tropical. It encompasses almost 40% of the east coast of Florida and connects five counties (plus portions of two additional counties; Palm Beach and Okeechobee), 38 incorporated cities, and approximately 1.6 million residents. The lagoon watershed covers 2,284 square miles and the lagoon's waters span 353 square miles.

Climate Ready Estuaries

The Earth's climate is changing. Temperatures are rising, snow and rainfall patterns are shifting, and more extreme climate events—like heavy rainstorms and record-high temperatures—are already taking place. Scientists are highly confident that many of these observed changes are linked to the rising levels of carbon dioxide and other greenhouse gases in our atmosphere as a consequence of human activities. In 2008, the Climate Ready Estuaries (CRE) program was established as a partnership between USEPA and the NEPs to address climate change in coastal areas. This effort is building additional capacity in coastal communities as they prepare to adapt to the effects of climate change. The CRE mission is to support NEPs and their coastal communities in becoming "climate ready" by providing tools and assistance to:

- Assess climate change vulnerabilities
- Engage and educate stakeholders
- Develop and implement adaptation strategies
- Share lessons learned with other coastal managers

By 2011 only a few NEPs had undertaken efforts to become climate ready. So, in 2014 the EPA published a 'Workbook' (EPA, 2014) to assist organizations that manage NEPs to prepare a broad, risk-based climate-ready adaptation plan. To successfully implement a CRE plan, the Workbook outlines a two-part process consisting of (1) a stand-alone vulnerability assessment, followed by (2) an action plan. Since then nine NEPs – including the IRLNEP – have undertaken vulnerability assessments following workbook guidelines (**Figure 3**). One program has completed an action plan (**Table 1**).

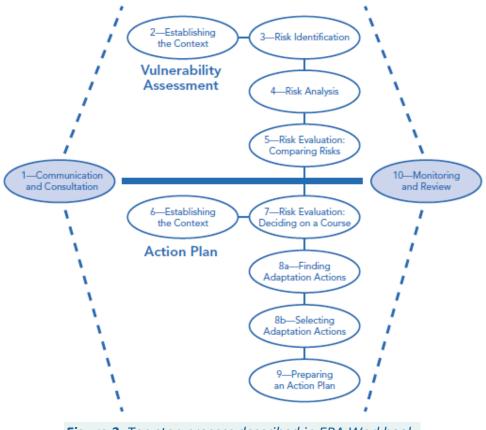


Figure 3. Ten step process described in EPA Workbook.

Table 1. Completion date of most recent CCMP, Climate Ready Estuaries Risk-Based
Vulnerability Assessment (Phase 1) and Action Plan (Phase 2).

Location	ССМР	Vulnerability Assessment	Action Plan
Casco Bay	2016	2017	
Charlotte Harbor	2013	2018	
Indian River Lagoon	2008	2018	
Lower Columbia Estuary	2011	2017	
Morro Bay	2012	2016	
San Juan Bay	2005	2013	2015
Santa Monica Bay	2013	2016	
Sarasota Bay	2017	2017	
Tampa Bay	2017	2017	

This Project

This project was designed to complete part 1 of the Workbook; a risk-based vulnerability assessment of the IRLNEP's mission to the risks associated with climate change stressors. This was achieved by completion of 5 steps:

Step 1. Communication and consultation - identify key stakeholders and prepare a schedule for stakeholder involvement.

Step 2. Establishing context - compile list of organizational goals and associated Action Plans (CCMP 2008) that are susceptible to climate change.

Step 3. Risk identification - create a broad list of climate change risks that might impact the ability of the IRLNEP to achieve its goals.

Step 4. Risk analysis - make an initial, high-level determination of the consequence, likelihood, spatial scale, and timeline of the impacts.

Step 5. Evaluation - develop a consequence/probability matrix prioritizing risks most likely to impact the goals and objectives (aka Action Plans) of the IRLNEP.

FINDINGS

Step 1. Communication and Consultation

Stakeholder outreach

One objective of Step 1 was to identify key stakeholders and learn their particular interests or concerns about climate change risks to the IRL. **Table 2** lists key stakeholders interviewed throughout the duration of this project. Stakeholder input was also acquired during technical meetings and the Q&A sessions that followed scheduled presentations made by members of the project team (**Table 3**)

Real-time polling

Feedback from stakeholders was collected using real-time polling at several stakeholder engagement meetings. As with stakeholder outreach, the purpose of this polling was to quantify stakeholder perceptions regarding the risk of climate change stressors on the IRL and IRLNEP management goals. Stakeholder responses are summarized in **Appendix C** and evaluated with regards to the findings of the project in the **Discussion** section of this report.

Step 2. Establishing Context

IRLNEP program vulnerability

The objective of this step was to identify IRLNEP organizational goals and CCMP Action Plans at risk to climate change stressors. To complete this step, the project team completed a review of the IRL 2008 CCMP (Indian River Lagoon National Estuary Program, 2008) and those available from other NEP programs that have completed or are were conducting a vulnerability assessment (**Table 1**). What was clear from that review is all other programs undertook the vulnerability assessment based upon a relatively recent version of their CCMP. As a consequence, their organizational Goals and associated Action Plans were written with a clear understanding of the risks posed by climate change stressors. In contrast, the Goals and Action Plans contained in the IRL 2008 CCMP do not acknowledge the breadth and scope of risks posed by future climate. Of the 85 Action Plans, 25 may be at risk, 21 possibly at risk, and 39 not at risk to climate change (**Table 4**). In consultation with the IRLC Management Conference, it was agreed moving forward Step 3 would not be constrained by the 2008 CCMP. Consideration would also be given to new organizational goals and/or related Action Plans associated with the ongoing and contemporaneous effort to update the 2008 CCMP.

Stakeholder Outreach	Affiliation	Торіс
Arpayoglou, Irene	DEP IRL Aquatic Preserves	Spoil Islands
Barile, Peter	Environmental Consultant	Nutrients
Beal, Jeff	ECERT	Natural Resources
Bell, Lexie	Morro Bay	NEP
Bohlan, Curtis	Casco Bay	NEP
Burke, Mya	Tampa Bay	NEP
Busha, Michael	TCRPC	Planning
Corbett, Catherine	Lower Columbia Estuary	NEP
Craghan, Michael	USEPA	General
Creswell, R	Florida Sea Grant	Climate stressors
Crosley, Mark	FIND	Spoil Islands
Culver, Matt	Brevard County	Boating & Waterways
Encomio, Vincent	FOS	Climate stressors
Evans, Jason	Stetson University	General
Gubles, Anthony	Brevard County	Wastewater
Hevia, Allison	Charlotte Harbor	NEP
Ilami, Fara	FWCC	Living shorelines
Johnston, Karina	Santa Monica Bay	NEP
LaMartina, Kathy	SFWMD	Surface water
Lindeman, Ken	FIT	General
Listopad, Claudia	Environmental Consultant	TMDL
Lunt, Jessica	Smithsonian Marine Station	Climate stressors
McClure, Bach	Brevard County	Storm Water
McCue, Tara	ECFRPC	Planning
McGee, Darcie	Brevard County	General
Middlebrook, Mike	St. Lucie County	NRM
Otega, Jorge	San Juan Bay	NEP
Roddenberry, Annie	NERT	Natural Resources
Ruppert, Thomas	Florida Sea Grant	Legal
Schaefer, Adam	НВОІ	Biotoxins
Shafer, Dave	Sarasota Bay	NEP
Smith, Brandon	Brevard County	SOIRL Program
Souto, Leesa	MRC	Natural Resources
Spratt, Robbyn	Brevard County	Storm Water
Traylor, Aaron	City of Melbourne	Wastewater
Trefry, John	FIT	Muck
Weaver, Robert	IRLRI	Natural Resources
Winston, Keith	Brevard Zoo	Living shorelines
Zierden, David	Florida State Climatologist	Climate trends
Zimmerman, Janet	FIND	Spoil Islands

Table 2. Stakeholders interviewed throughout duration of project

Table 3. Summary of stakeholder meeting outreach activities

Organization	Presentation (#)	Real-time polling
IRLC STEM Board	2	2
IRLC Management Board	1	1
Northeast Estuarine Restoration Team	2	1
East Central Estuarine Restoration Team	2	1

Table 4. Risk Assessment of 2008 CCMP Goals and Action Plans to Climate Change

Goal	Action Plan	Yes	Possibly	No
1	Water and Sediment Quality Improvements			
	Point source discharge	0	0	5
	On-site sewage treatment	0	2	1
	Fresh and storm water discharges	2	7	4
	Marina and Boat Impacts	0	4	3
	Atmospheric Deposition	1	0	0
	TMDLs	1	0	2
	Sum	4	13	15
2	Living Resources			
	Biodiversity	1	1	1
	Seagrass	1	0	0
	Wetlands	6	1	1
	Impounded marsh restoration and management	0	0	0
	Land acquisition and protection	0	2	2
	Endangered and threatened species	3	1	1
	Fisheries	3	0	0
	Biotoxins and Health	1	2	0
	Climate Change	3	0	0
	Invasive Fauna and Flora	1	1	2
	Sum	19	8	7
3	Public and Government Support and Involvement			
	Public involvement and education	1	0	3
	IRL CCMP Implementation	0	0	2
	Data and information management strategy	0	0	3
	Monitoring	1	0	2
	IRL scientific research	0	0	3
	Environmental incident assessment and response	0	0	3
	Sum	2	0	16
4	Financing IRL CCMP Implementation			
	Economic analysis	0	0	1
	Sum	0	0	1
	Sum (85 total action plans)	25	21	39

Source: RWP Work Product, 2018.

Other vulnerability assessments within the IRL watershed

This vulnerability assessment focused on the potential effects of climate change on natural resources within the IRL watershed. However, there are numerous vulnerability assessments that have been conducted on the urban landscape or 'built environment' within the IRL watershed. These include:

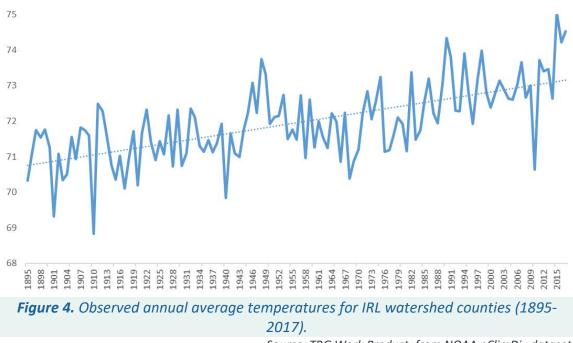
- <u>"Space Coast Transportation Planning Organization Sea Level Rise Vulnerability</u> <u>Assessment"</u>. Prepared by East Central Florida Regional Planning Council (aka TPO) on behalf of Brevard County in 2018. This vulnerability assessment identified all transportation infrastructure (roads, railways, airports, and other critical transit facilities) likely to be affected by sea level rise. The focus was on flooding and the results can be used to develop adaptation strategies and to seek federal funding to support adaptation actions.
- <u>"Brevard County Emergency Management Hazard Summaries"</u>. Prepared by Brevard County Emergency Management in 2016. This hazard assessment provides a concise description of impacts from 21 different hazards, including tropical storms, sea level rise, drought, and wildfires. The assessment includes a list of hazards categorized into seven impact groups: public and responders, continuity of operations, property /facilities/ infrastructure, delivery of services, public confidence in government, economic condition, and the environment.
- "<u>City of Satellite Beach Sustainability Action Plan</u>". Prepared by the Florida Institute of Technology in 2017. This plan identifies stressors and recommendations for each of five broad categories: built environment, land and water systems, energy and transportation networks, community outreach, and quality of life.
- "<u>Resilient Volusia County</u>" Prepared by the East Central Florida Regional Planning Council in 2017. This assessment estimated impacts to critical assets from sea level rise and storm surge. One of the recommendations was for cities in Volusia County to be compliant with Florida SB 1094, by incorporating sea level rise in plans for development and redevelopment. Water quality and ecosystems assets were considered.
- "<u>Regional Resiliency Action Plan</u>". This project, under development by the East Central Florida Regional Planning Council, aims to improve resiliency efforts and teamwork among local and regional governments that are located along Florida's central Atlantic coastline. Project completion is scheduled for December 2018.

Step 3. Risk Identification

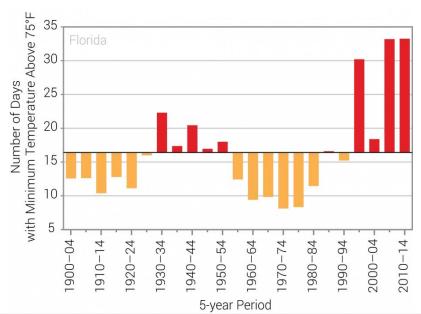
The objective of this step was to create a broad list of risks to the IRLNEP caused by climate change stressors. To complete this step, the first task was to identify specific climate change stressors that are likely to affect the goals and Action Plans of the IRLNEP. The second task was to evaluate the potential consequences (risks) of these stressors on each Action Plan. As noted above, it was agreed Step 3 would not be constrained by the Action Plans identified in the 2008 CCMP. Rather, consideration would also be given to new

organizational goals and/or related Action Plans identified during the ongoing and contemporaneous effort to update the 2008 CCMP. Based upon an evaluation of other Risk-Based Vulnerability Assessments conducted in NEPs located within and beyond the state of Florida (**Table 1**), stakeholder input, literature review (c.f. Chassignet et al., 2017), and the experience and expertise of project members, five climate changes stressors were identified as relevant to IRLNEP:

- Warmer temperatures Warmer temperatures are one of the most direct signs that the climate is changing. Concentrations of heat-trapping greenhouse gases are increasing in the Earth's atmosphere. In response, average temperatures at the Earth's surface are increasing and are expected to continue rising.
- Changes in precipitation As average temperatures at the Earth's surface rise more evaporation occurs, which in turn can locally increase or decrease rainfall rates and duration. Therefore, a warming climate is expected to change precipitation patterns in many areas.
- Increasing storminess Climate change is expected to enhance storminess by increasing sea surface temperatures, a key factor that influences their formation and behavior.
- Acidification As the concentration of carbon dioxide in the atmosphere increases, so too does it increase in the ocean via absorption. Rising levels of carbon dioxide dissolved in the ocean negatively affect some marine life, because carbon dioxide reacts with sea water to produce carbonic acid. This lowers the pH of seawater, making it more acidic.
- Sea level rise As the earth absorbs more heat, ice melts and the oceans warm. The addition of melting water and thermal expansion of ocean water causes sea level to rise.


The basis of this selection is further demonstrated in the following sections, which describe both historical and future conditions that have and are likely to continue putting assets of the IRL at risk to climate change.

Historical Condition

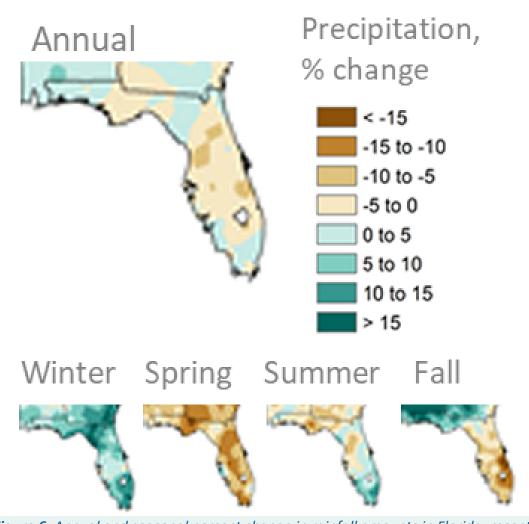

Changes in water and air temperatures, rainfall, storminess, coastal water pH (aka acidification), and sea level have all been occurring in the IRL region in recent decades. The following five sections provide information about how these environmental variables have changed. The most recent (4th iteration) of the National Climate Assessment (NCA4) from the United States Global Change Research Program (USGCRP 2017) was utilized extensively to assess historical climate trends in Florida. Where more local information was needed, figures were adapted or developed from raw data.

Warmer temperatures

At 156 miles, the length of the IRL encompasses several regions with distinct climatological characteristics. Temperatures statewide increased approximately 1°F since the beginning of the 20th century (Runkle et al. 2017). This Florida statewide trend is similar to the increases in average temperatures in the five counties that border the IRL (**Figure 4**). While there has been no discernable daytime warming, the frequency of very warm nights (minimum temperature above 75°F) has risen sharply: the number of very warm nights during the first part of the 21st century has nearly doubled compared to the mid-20th century (1930–1954; see **Figure 5**; Runkle et al. 2017).

Source: TBG Work Product, from NOAA nClimDiv dataset.

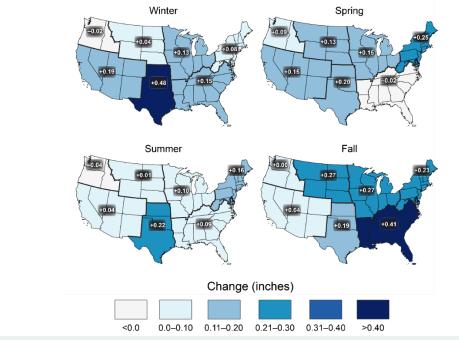
Figure 5. Florida - observed number of nights above 75°F during 5-year periods from 1900-2014.


Source: Runkle et al. 2017

The oceans have absorbed more than 90% of the heat associated with global atmospheric temperature increases. As a result, global sea surface temperatures (SST) have increased by about 1.3 °F per century from 1900 to 2016 (Jewett and Romanou 2017).

Changes in precipitation

Florida has experienced below average precipitation during the last decade (Runkle et al. 2017). Seasonal changes in the IRL watershed in recent decades indicate a tendency toward drier spring and fall conditions and increases in winter rainfall (**Figure 6**).


Changes in rainfall intensity may result in greater impacts to the IRL than changes in annual or seasonal totals, due to the potentially elevated sediment and pollutant loading resulting from extreme rain events. Historically, the number of high-intensity rain events (greater than 4 inches/day) in Florida has been highly variable; however, the highest number of days with more than 4 inches of rain occurred during the 2010–2014 period (Runkle et al. 2017). A study of regional changes in the daily rainfall amount associated with a 20-year storm found that in the Southeast U.S., it had increased by about 0.4 inches since the middle of the 20th century (Kunkel et al. 2013; **Figure 7**). Similarly, rain-gauge stations in the IRL watershed show there has been a substantial increase in extreme rains (>6 in/day) in the last 30 years compared to the previous 30-year period (Dourte et al.

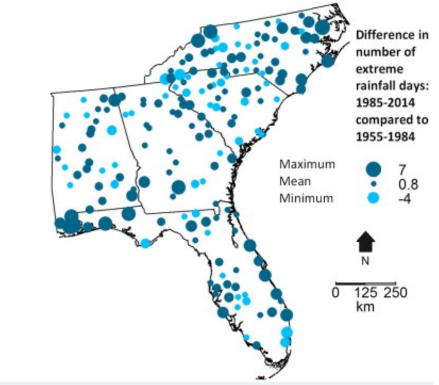

2015; **Figure 8**). These observations suggest that high-intensity rain events are becoming more common.

Figure 6. Annual and seasonal percent change in rainfall amounts in Florida: recent period (1986-2015) minus early 20th century (1901-1960).

Source: Adapted from Easterling et al. 2017

Figure 7. Regional increases (from 1948-2015) in daily rainfall totals (inches) of a 20-year storm event.

Source: Easterling et al. 2017.

Figure 8. Changes between 1985–2014 and 1955–1984 in numbers of extreme daily rain events.

Source: Dourte et al. 2015

Note: Station-specific data; light-color dots correspond to decreases and dark-color dots correspond to increases in extreme rain events (> 6 in/day).

Increasing storminess

Storms cause erosion and flooding; both of which can have deleterious effects on the IRL watershed. Numerical modeling and the underlying theory both suggest that tropical cyclone (TC) activity should increase with rising atmospheric temperature, resulting in TCs of greater intensity in wind speeds and rainfall. However, the number of hurricane events to strike Florida from 1900-2017 (**Figure 9**) has not changed substantially over the last century (Runkle et al. 2017).

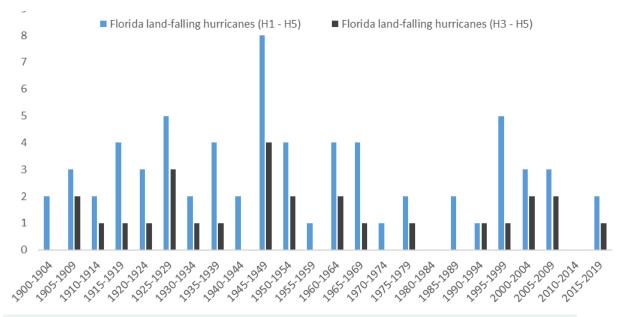
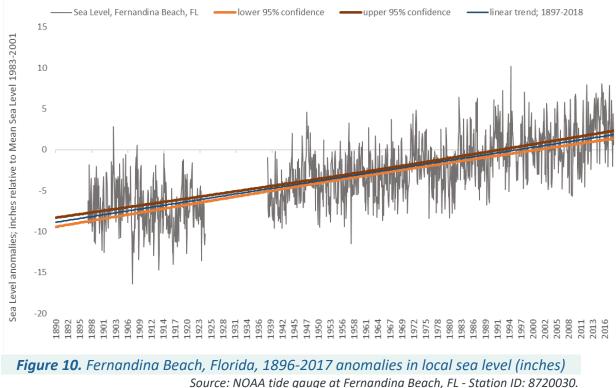


Figure 9. Florida landfalling hurricanes, totals in 5-year increments, 1900-2017. Source: Adapted from Runkle et al. 2017, data from https://www.coast.noaa.gov/hurricanes/ Note: Category 1 to 5 hurricanes (blue); Category 3 to 5 hurricanes (gray).


In addition to tropical storms, severe convective storms and winter storms are also important extreme events in Florida's climate. Using tide gauges, one author determined that there has been a significant multi-decadal increase in the number of winter storms affecting the southeastern United States from the early to late 20th century (Thompson et al. 2013).

Acidification

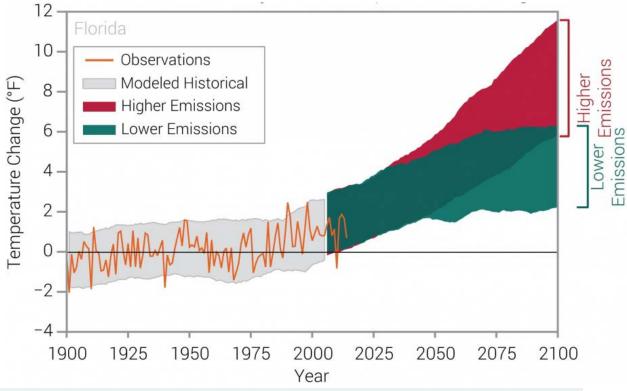
Acidification of coastal and marine waters can place at risk some marine life; especially those species that depend upon calcified 'hard parts' (i.e., shells). A recent study compared pH, dissolved-oxygen, temperature, and salinity data from 10 Florida estuaries from 1980 to 2008 (Robbins and Lisle 2018). Collectively, eight out of the 10 estuaries – including the IRL – exhibited increasing acidification.

Sea level rise

Global sea level has risen about 8 inches since reliable record keeping began in 1880s. This increase is consistent with Florida water level records, which have recorded an average annual increase of about 2 mm/yr. However, more recent data, based on satellite altimetry indicates the global average increase in sea level elevation since the early 1990s is now more than 3.0 mm/yr (Sweet et al. 2017). Records from the water level gauge at Fernandina Beach, Florida, (**Figure 10**) indicate an increase in height of about 10 inches since from 1897; an average annual increase of 2.1 mm/yr.

Note: Differences from the mean sea level datum for current tidal epoch (1983-2001).

Recent research has also identified the IRL as part of a global hotspot (Cape Hatteras to Miami) where sea level rise accelerates in bursts that last three to five years. The University of Florida determined that seas in the region rose nearly 10 times faster than the long-term rate and between 2011 and 2015 seas rose in the southeastern U.S. by more than six times the global average (<u>http://news.ufl.edu/articles/2017/08/east-coasts-rapidly-rising-seas-explained.php</u>).

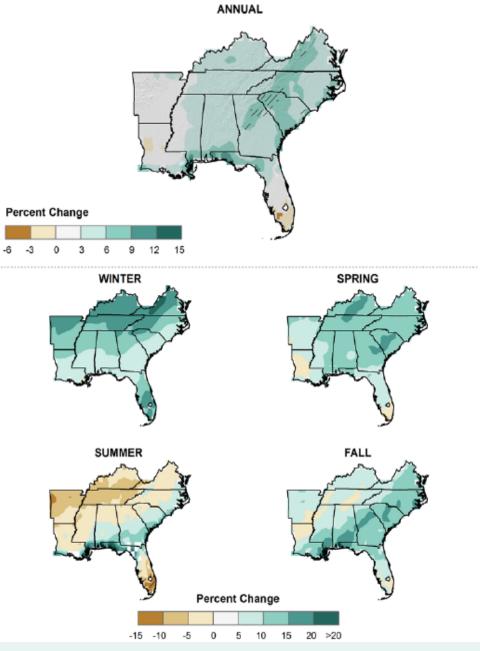

Projected Future Condition

A summary of how each of the five climate stressors are forecast to change towards the end of the 21st century is described in the following sections. When possible, these are based upon regional assessments.

Warmer temperatures

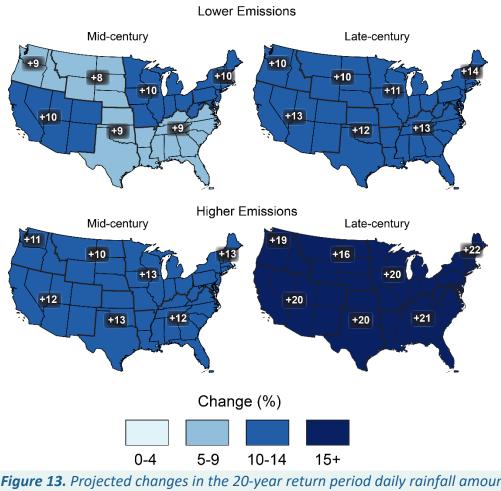
Mean annual temperatures are projected to increase across the southeast United States throughout the balance of the 21st century (Runkle et al. 2017). By the end of the century,

temperatures across peninsula Florida are projected to be between 2°F and 11°F warmer than the 1901-1960 average (**Figure 11**). The greatest warming is projected to take place during the summer months. Maximum temperatures exceeding 95°F are expected to increase across the southeast, with the greatest increases in the southern half of Florida. In addition, the number of consecutive days exceeding 95°F, a metric used as a measure of heat waves, is expected to increase by at least 97%. An increase in the number of warm nighttime temperatures is also projected. Minimum temperatures below 10°F are expected to decrease in frequency by mid-century. The length of the freeze-free season is expected to increase as well. The combined and most relevant effects all of the changes on the IRL will be warmer water temperatures during both the summer and winter months, which may exert significant stress on native estuarine and coastal taxa.


Figure 11. Observed and projected changes in Florida temperatures compared to 1901-1960 average.

Source: Runkle et al. 2017

Changes in precipitation


Precipitation is expected to increase by about 3% along the northern and central regions of the IRL as illustrated in **Figure 12** (Kunkel et al., 2013). No change from historical rainfall to a decrease of 3% is predicted in the south IRL. High-intensity rain events are projected to increase in Florida in the future. For example, even under a lower emissions scenario, the mid-century (2036-2065) and late-century (2071-2100) increases in the daily, 20-year rainfall amounts are projected to be 9% and 13%, respectively, in the Southeast U.S (**Figure 13**; Easterling et al. 2017). More frequent, high-intensity rainfall events will likely

result in an increase in the flux of fresh water and associated pollutants into the IRL, exerting evermore stress on native estuarine and coastal taxa.

Figure 12. Simulated differences in annual and seasonal precipitation (%) by mid-century relative to reference period 1971 - 2000.

Source: From Kunkel et al. 2013 using A2 (high) emissions scenario

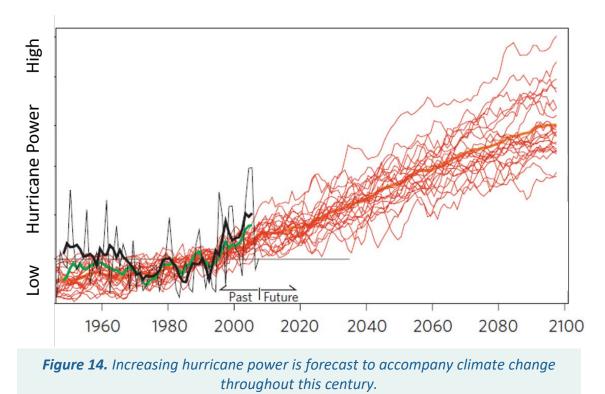
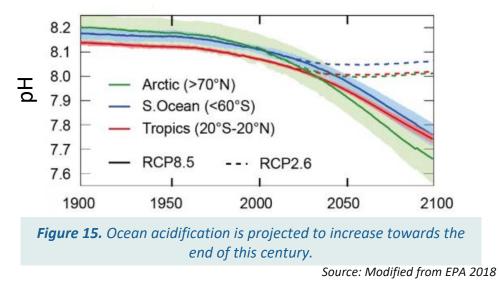


Figure 13. Projected changes in the 20-year return period daily rainfall amount midcentury (left maps) and late-21st century (right maps) under lower and higher carbon dioxide emission scenarios.

Source: Easterling et al. 2017

Increasing storminess


Hurricanes (c.f. **Figure 14**), tropical storms, and other intense rotating storms are grouped into this climate stressor category. When these encounter land, their intense rains, high winds, and associate storm surge can cause severe flooding and destruction. Recent modeling suggests storminess will become more intense over the 21st century (EPA, 2016; Ingram et al., 2013; Knutson et al., 2010). The combined and most relevant effects of increased storminess on the IRL will be an increase in the flux of freshwater (rainfall), erosion (waves and currents), flooding (storm surge), and destruction (rainfall, wind, waves, currents, storm surge) during event conditions. This may exert significant stress on native estuarine and coastal taxa.

Source: Modified from Knutson et al. 2010

Acidification

Carbon dioxide is predicted to increase throughout this century and so too is ocean acidity as illustrated in **Figure 15** (EPA, 2018). The increase in acidity makes it more difficult for shell fish and other calcifying taxa to produce and maintain their shells or exoskeletons. Hence, acidification can lead to changes in marine ecosystems, including finfish and shellfish populations and the people who depend on them.

Sea level rise

As the temperature of the Earth changes, so does sea level elevation. Temperature and sea level are linked for two main reasons. First, rising temperatures cause glaciers and ice sheets to melt. This increases the volume of water in the ocean, which causes its level to rise. Second, as water warms, it expands slightly, causing an increase in elevation of sea level. This leads to the inundation of low-lying areas, shoreline erosion, and salt water intrusion. Higher sea level also makes coastal infrastructure more vulnerable to damage from storms due to an increased likelihood of flooding from higher storm surges. The most recent sea level rise scenarios (Sweet et al., 2017; USACE, 2013) applicable to the IRL suggest it will reach elevations of between 5 feet and 8.5 feet by the end of this century (**Figure 16**). These changes may exert significant stress on native estuarine and coastal taxa.

Summary of risks

Table 5 summarizes the risks identified during this step of the project. The risks poised to the IRL management goals (as proposed in the new CCMP) by the five climate stressors total 154. A detailed description of how each stressor influences each management goal is contained in **Appendix A - Risk Identification**.

Figure 16. Sea level rise projections through 2100 based upon NOAA and USACE modeling.

	Warmer	Changes in	Increasing		Sea level	
Goal	temperature	precipitation	storminess	Acidification	rise	Sum
Sediment and Water Quality						
Wastewater	1	1	1	1	1	5
Surface water	3	1	1	1	2	8
Lagoon Hydrology	1	1	0	0	1	3
Marina and Boating Pollution	1	1	1	0	1	4
Atmospheric Deposition	1	1	1	0	0	3
Water Clarity	1	2	3	0	3	9
Dissolved Oxygen	3	2	3	0	2	10
Chlorophyll a	1	2	3	0	2	8
Legacy nutrient pollution	0	0	1	0	0	1
Sum	12	11	14	2	12	51
Natural Resources						
Biodiversity	3	3	3	1	3	13
Seagrass	4	3	3	1	2	13
Wetlands and impounded marshes	3	1	1	0	3	8
Rare, threatened, endangered species	4	3	3	1	3	14
Fisheries	3	3	3	1	2	12
Biotoxins, infectious agents, etc.	1	2	2	1	2	8
Exotic and invasive species	2	3	2	0	2	9
Living shorelines	1	1	1	1	1	5
Archeological resources	1	1	1	1	1	4
Sum	22	20	19	7	19	87
Stakeholder Engagement						
Public access	3	2	1	0	2	8
Public education and involvement	2	2	2	1	1	8
Sum	5	4	3	1	3	16
Grand Total	39	35	36	10	34	154

Table 5. Number of potential risks to IRL management goals posed by five climate change stressors.

Step 4. Risk Analysis

The objective of this step was to make an initial determination of the consequence, likelihood, spatial scale, and urgency of the risks posed to the goals of the IRL NEP by the five climate stressors. Each risk was scored from 1 (low) to 3 (high) as shown in **Figure 17**.

Consequence	Spatial extent of impact
1. Low (could adjust, life will go on)	1. Site (bridge, stormwater outflow)
2. Medium	2. Place (wildlife refuge)
3. High (catastrophic, major disruption)	3. Region (watershed)
Likelihood	Time horizon
Likelihood 1. Low	Time horizon1. > 10 years
 Low Medium High (very likely, predictable) 	1. > 10 years

Warmer temperatures

Results of the risk analysis to IRL sediment and water quality caused by rising air and water temperatures are shown in **Table 6**. Results of the risk analysis to IRL natural resources caused by rising air and water temperatures are shown in **Table 7**. Results of the risk analysis to IRL stakeholder engagement caused by rising air and water temperatures are shown in **Table 8**.

Changes in precipitation

Results of the risk analysis to IRL sediment and water quality caused by changes in precipitation are shown in **Table 9**. Results of the risk analysis to IRL natural resources caused by changes in precipitation are shown in **Table 10**. Results of the risk analysis to IRL stakeholder engagement caused by changes in precipitation are shown in **Table 11**.

Increasing storminess

Results of the risk analysis to IRL sediment and water quality caused by increasing storminess are shown in **Table 12**. Results of the risk analysis to IRL natural resources caused by increasing storminess are shown in **Table 13**. Results of the risk analysis to IRL stakeholder engagement caused by increasing storminess are shown in **Table 14**.

Acidification

Results of the risk analysis to IRL sediment and water quality caused by increasing acidification are shown in **Table 15**. Results of the risk analysis to IRL natural resources caused by increasing acidification are shown in **Table 16**. Results of the risk analysis to IRL stakeholder engagement caused by increasing acidification are shown in **Table 17**.

Sea level rise

Results of the risk analysis to IRL sediment and water quality caused by sea level rise are shown in **Table 18**. Results of the risk analysis to IRL natural resources caused by sea level rise are shown in **Table 19**. Results of the risk analysis to IRL stakeholder engagement caused by sea level rise are shown in **Table 20**.

Table 6. Risks to sediment and water quality caused by warmer temperatures.

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Wastewater	Increased pollutant loadings due to changes in solubility and/or toxicity caused by warmer temperature	1	1	2	2	6	Moderate
Surfacewater	Increased pollutant loadings (urban, rural) due to changes in solubility and/or toxicity caused by warmer temperature	2	3	2	2	9	Moderate
Surfacewater	Increased pollutant loadings due to increased use of chemical treatments in surface water storage and conveyance infrastructure to reduce more frequent algae blooms or expanding invasive plants caused by warmer temperature	1	1	2	2	6	Moderate
Surfacewater	Increased pollutant loadings due to increased maintenance (cuttings, chemical applications) of greenspace caused by warmer temperature	2	2	2	2	8	Moderate
Lagoon hydrology	Changes in thermohaline circulation due to warmer temperature	1	2	3	2	8	Moderate
Marina and Boat Pollution	Increased pollutant loadings from site runoff due to changes in solubility and/or toxicity caused by warmer temperature	1	1	1	2	5	Moderate
Atmospheric Deposition	Increased atmospheric deposition of nitrogen and other pollutants due to increasing demand for electricity caused by warmer temperature	1	2	3	2	8	Low
Water Clarity	Decreased clarity due to an increase in the growth rates and survival of algae and other taxa induced by warmer temperature	2	3	3	2	10	High
DO	Decreased DO solubility due to warmer temperature	3	3	3	3	12	High
DO	Decreased DO availability due to accelerated decomposition of organic matter caused by warmer temperature	1	3	3	2	9	Moderate
DO	Decreased DO availability due to more frequent algae blooms caused by warmer temperature	3	3	3	3	12	High
Chl a	Increased Chlorophyll a concentration due to more frequent algae blooms caused by warmer temperature	3	3	3	3	12	High

Table 7. Risks to natural resources caused by warmer temperatures.

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Biodiversity	Increased habitat and species disruption due to warmer temperature	1	2	3	2	8	Moderate
Biodiversity	Increased habitat and species disruption due to elevated pollutant loadings caused by changes in solubility and/or toxicity induced by warmer temperature	1	2	3	2	8	Moderate
Biodiversity	Increased habitat and species disruption due to elevated pollutant loadings in surface water storage and conveyance infrastructure caused by caused by longer growing season induced by warmer temperature	2	2	2	2	8	Moderate
Seagrass	Increased habitat and species disruption due to warmer temperature	1	2	3	2	8	Moderate
Seagrass	Increased habitat and species disruption due to increased pollutant loading caused by changes in solubility and/or toxicity induced by warmer temperature	1	2	3	2	8	Moderate
Seagrass	Increased habitat and species disruption due to elevated pollutant loadings from surface water storage and conveyance infrastructure caused by warmer temperature	2	3	2	2	9	Moderate
Seagrass	Change in carbon sequestration due to habitat and species disruption caused by warmer temperature	1	2	3	2	8	Moderate
Wetlands and Impounded Marshes	Increased habitat and species disruption due to warmer temperature	1	2	3	3	9	Moderate
Wetlands and Impounded Marshes	Increased habitat and species disruption due to changes in evapotranspiration	1	2	3	2	8	Moderate
Wetlands and Impounded Marshes	Change in carbon sequestration due to habitat and species disruption caused by warmer temperature	1	2	3	2	8	Moderate
Rare, threatened, endangered, and SOSC	Increased habitat and species disruption due to warmer temperature	1	2	3	2	8	Moderate
Rare, threatened, endangered, and SOSC	Increased habitat and species disruption due to lower oxygen solubility caused by warmer temperature	1	2	3	2	8	Moderate

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Rare, threatened, endangered, and SOSC	Increased habitat and species disruption due to lower oxygen availability cause by more frequent algae blooms induced by warmer temperature	1	2	3	2	8	Low
Rare, threatened, endangered, and SOSC	Increased habitat and species disruption due to lower oxygen availability caused by accelerated growth and decay of invasive plants within basin induced by warmer temperature	1	2	3	2	8	Low
Fisheries	Increased habitat and species disruption due to warmer temperature	1	2	3	2	8	Moderate
Fisheries	Increased habitat and species disruption due to lower oxygen solubility caused by warmer temperature	1	2	3	2	8	Moderate
Fisheries	Increased habitat and species disruption due to lower oxygen availability cause by more frequent algae blooms induced by warmer temperature	1	2	3	2	8	Low
Toxins, infectious agents, and other health threats	Accelerated spread of existing or new threats to ecosystem health due to warmer temperature	2	2	3	2	9	Med
Exotic and invasive species	Accelerated spread of exotic and invasive species due to warmer temperature	1	2	3	2	8	Moderate
Exotic and invasive species	Accelerated spread of exotic and invasive species due to increased wildfires caused by warmer temperature	1	2	2	2	7	Moderate
Living shorelines	Increased habitat and species distribution due to warmer temperature	1	1	3	2	7	Moderate
Archeological resources	Increased biological and chemical degradation due to warmer temperature	1	1	3	2	7	Moderate

Table 7. Risks to natural resources caused by warmer temperatures. (Continued)

Table 8. Risks to stakeholder engagement caused by warmer temperatures.

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Public access	Decreased recreational activities due to warmer temperature	1	1	3	2	7	Moderate
Public access	Decreased recreational activities due to accelerated spread of existing or new viral, bacterial, fungal, and parasitic infections caused by warmer temperature	2	2	3	3	10	High
Public access	Decreased recreational activities due to reduced water clarity caused by increased pollutant loadings	2	2	3	2	9	Moderate
Public education and involvement	Decreased volunteer participation in activities due to warmer temperature	1	1	3	2	7	Moderate
Public education and involvement	Decreased volunteer participation in activities due to learned helplessness and self efficacy issues	1	1	3	2	7	Moderate

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Wastewater	Increased pollutant loadings from WWTP and OSTDS during high rainfall events	2	3	2	2	9	Moderate
Surfacewater	Increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events	2	3	2	3	10	Moderate
Lagoon hydrology	Changes in thermohaline circulation due to polyline conditions caused by intervals of higher rainfall and drought	1	2	3	2	8	Moderate
Marina and Boat Pollution	Increased pollutant loadings from site runoff during high rainfall events, especially after extended periods of drought	1	1	1	2	5	Moderate
Atmospheric Deposition	Increased atmospheric deposition of nitrogen and other pollutants during high rainfall events	1	2	3	2	8	Low
Water Clarity	Decreased clarity due to increased pollutant loadings from WWTP during high rainfall events	2	3	2	3	10	Moderate
Water Clarity	Decreased clarity due to increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events	2	3	2	3	10	Moderate
DO	Increased pollutant loadings from WWTP and OSTDS high rainfall events	2	3	2	3	10	Moderate
DO	Decreased DO availability due to Increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events	2	3	2	3	10	Moderate
Chl a	Increased Chlorophyll a concentration due to increased pollutant loadings from WWTP and OSTDS during high rainfall events	2	3	2	3	10	Moderate
Chl a	Increased Chlorophyll a concentration due to Increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events	2	3	2	3	10	Moderate
Legacy nutrients	na						

Table 9. Risks to sediment and water quality caused by changes in precipitation.

Table 10. Risks to natural resources caused by changes in precipitation.

Organizational goal	Climate Stressor	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Biodiversity	Changes in precipitation	Increased habitat and species disruption due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought	1	2	3	2	8	Moderate
Biodiversity	Changes in precipitation	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS during high rainfall events	2	3	2	2	9	Moderate
Biodiversity	Changes in precipitation	Increased habitat and species disruption due to increased pollutant loadings from surface water storage and conveyance infrastructure caused by high rainfall events	2	3	2	2	9	Moderate
Seagrass	Changes in precipitation	Increased habitat and species disruption due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought	1	2	3	2	8	Moderate
Seagrass	Changes in precipitation	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS during high rainfall events	2	3	2	2	9	Moderate
Seagrass	Changes in precipitation	Increased habitat and species disruption due to increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events	2	3	2	2	9	High
Wetlands and Impounded Marshes	Changes in precipitation	Increased habitat and species disruption due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought	1	2	3	2	8	Moderate
Rare, threatened, endangered, and SOSC	Changes in precipitation	Increased habitat and species disruption due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought	1	2	3	2	8	Moderate
Rare, threatened, endangered, and SOSC	Changes in precipitation	Increased habitat and species disruption due to increased pollutant loading from WWTP and OSTDS during high rainfall events	2	3	2	2	9	Moderate
Rare, threatened, endangered, and SOSC	Changes in precipitation	Increased habitat and species disruption due to increased pollutant loading from surface water storage and conveyance infrastructure during high rainfall events	2	3	2	2	9	Moderate

Table 11. Risks to natural resources caused by changes in precipitation. (Continued)

Organizational goal	Climate Stressor	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Fisheries	Changes in precipitation	Increased habitat and species disruption due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought	1	2	3	2	8	Moderate
Fisheries	Changes in precipitation	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS during high rainfall events	2	3	2	2	9	Moderate
Fisheries	Changes in precipitation	Increased habitat and species disruption from surface water storage and conveyance infrastructure during high rainfall events	2	3	2	2	9	Moderate
Toxins, infectious agents, and other health threats	Changes in precipitation	Accelerated spread of existing or new threats to ecosystem health from WWTP and OSTDS during high rainfall events	1	1	3	2	7	Moderate
Toxins, infectious agents, and other health threats	Changes in precipitation	Accelerated spread of existing or new threats to ecosystem health from surface water storage and conveyance infrastructure during high rainfall events	2	1	3	2	8	High
Exotic and invasive species	Changes in precipitation	Accelerated spread of exotic and invasive species due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought	1	2	3	2	8	Moderate
Exotic and invasive species	Changes in precipitation	Accelerated spread of exotic and invasive species from WWTP and OSTDS during high rainfall events	1	1	3	2	7	Moderate
Exotic and invasive species	Changes in precipitation	Accelerated spread of exotic and invasive species from surface water storage and conveyance infrastructure during high rainfall events	1	1	3	2	7	Moderate
Living shorelines	Changes in precipitation	Increased habitat and species distribution due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought	1	1	3	2	7	Moderate
Archeological resources	Changes in precipitation	Increased chemical degradation due to higher rainfall	1	1	3	2	7	Moderate

Table 11. Risks to stakeholder engagement caused by changes in precipitation.

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Public access	Decreased recreational activities due to increased number of high rainfall events	1	1	3	2	7	Low
Public access	Decreased recreational activities due to increased habitat and species disruption due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought	1	2	3	2	8	Moderate
Public education and involvement	Decreased volunteer participation in activities due to increased number of high rainfall events	1	1	3	2	7	Low
Public education and involvement	Decreased volunteer participation in activities due to learned helplessness and self-efficacy issues	1	1	3	2	7	Moderate

Table 12. Risks to sediment and water quality caused by increasing storminess.

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Wastewater	Increased pollutant loadings from WWTP and OSTDS due to more frequent and intense storm events	2	3	2	3	10	Moderate
Surfacewater	Increased pollutant loadings from surface water storage and conveyance infrastructure caused by more frequent and intense storm events	2	3	2	3	10	High
Lagoon hydrology	na						
Marina and Boat Pollution	Increased pollutant loadings from access facilities and associated infrastructure due to increased coastal erosion caused by more frequent and intense storm events	1	2	1	2	6	High
Atmospheric Deposition	Increased atmospheric deposition of nitrogen and other pollutants due to more frequent and intense storm events	1	2	3	2	8	Low
Water Clarity	Decreased clarity due to erosion of seabed and shoreline caused by more frequent and intense storm events	1	2	2	2	7	High
Water Clarity	Decreased clarity due to increased pollutant loadings from WWTP and OSTDS during more frequent and intense storm events	2	3	2	3	10	High
Water Clarity	Decreased clarity due to increased pollutant loadings from surface water storage and conveyance infrastructure caused by more frequent and intense storm events	2	3	2	3	10	High
DO	Decreased DO availability due to erosion of seabed and shoreline caused by caused by more frequent and intense storm events	1	2	2	2	7	High
DO	Decreased DO availability due to Increased pollutant loadings from WWTP and OSTDS during more frequent and intense storm events	2	3	2	2	9	High
DO	Decreased DO availability due to Increased pollutant loadings from surface water storage and conveyance infrastructure caused by more frequent and intense storm events	2	3	2	3	10	High
Chl a	Increased Chlorophyll a concentration due to erosion of seabed and shoreline caused by more frequent and intense storm events	1	2	2	2	7	Moderate
Chl a	Increased Chlorophyll a concentration due to Increased pollutant loadings from WWTP and OSTDS during more frequent and intense storm events	2	3	2	2	9	Moderate
Ch a	Increased Chlorophyll a concentration due to Increased pollutant loadings from surface water storage and conveyance infrastructure caused by more frequent and intense storm events	2	3	2	3	10	Moderate

Table 13. Risks to natural resources caused by increasing storminess.

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Biodiversity	Increased habitat and species disruption due to erosion of seabed and shoreline caused by more frequent and intense storm events	1	2	3	2	8	Moderate
Biodiversity	Increased habitat and species disruption due to increased pollutant loading from WWTP and OSTDS during more frequent and intense storm events	2	3	2	2	9	Moderate
Biodiversity	Increased habitat and species disruption due to increased pollutant loading from surface water storage and conveyance infrastructure during more frequent and intense storm events	2	3	2	2	9	Moderate
Seagrass	Increased habitat and species disruption due to erosion of seabed and shoreline caused by more frequent and intense storm events	1	2	3	2	8	Moderate
Seagrass	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS during more frequent and intense storm events	2	3	2	2	9	Moderate
Seagrass	Increased habitat and species disruption due to increased pollutant loadings from surface water storage and conveyance infrastructure during more frequent and intense storm events	2	3	2	2	9	Moderate
Wetlands and Impounded Marshes	Increased habitat and species disruption due to shoreline erosion caused by more frequent and intense storm events	2	3	3	2	10	High
Rare, threatened, endangered, and SOSC	Increased habitat and species disruption due to erosion of seabed and shoreline caused by more frequent and intense storm events	1	2	3	2	8	Moderate
Rare, threatened, endangered, and SOSC	Increased habitat and species disruption due to increased pollutant loading from WWTP and OSTDS during more frequent and intense storm events	2	3	2	2	9	Moderate
Rare, threatened, endangered, and SOSC	Increased habitat and species disruption due to increased pollutant loading from surface water storage and conveyance infrastructure during more frequent and intense storm events	2	3	2	2	9	Moderate
Fisheries	Increased habitat and species disruption due to seabed and shoreline erosion caused by more frequent and intense storm events	1	2	3	2	8	Moderate
Fisheries	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS during more frequent and intense storm events	2	3	2	2	9	Moderate

Table 14. Risks to natural resources caused by increasing storminess (continued)

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Fisheries	Increased habitat and species disruption due to increased pollutant loadings from surface water storage and conveyance infrastructure during more frequent and intense storm events	2	3	2	2	9	Moderate
Toxins, infectious agents, and other health threats	Accelerated spread of existing or new threats to ecosystem health from WWTP and OSTDS during more frequent and intense storm events	2	1	2	2	7	High
Toxins, infectious agents, and other health threats	Accelerated spread of existing or new threats to ecosystem health from surface water storage and conveyance infrastructure during more frequent and intense storm events	1	1	2	2	6	High
Exotic and invasive species	Accelerated spread of exotic and invasive species from WWTP and OSTDS during more frequent and intense storm events	1	1	2	2	6	Moderate
Exotic and invasive species	Accelerated spread of exotic and invasive species from surface water storage and conveyance infrastructure during more frequent and intense storm events	1	1	2	2	6	Moderate
Living shorelines	Increased habitat and species disruption due to shoreline erosion caused by more frequent and intense storm events	2	3	3	3	11	Moderate
Archeological resources	Increased physical and chemical degradation due to shoreline erosion and flooding during more frequent and intense storm events	2	3	3	2	10	High

Table 14. Risks to stakeholder engagement caused by increasing storminess.

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Public access	Decreased recreational activities, especially boating related, due to failure of infrastructure caused by more frequent and intense storm events	2	2	3	2	9	Moderate
Public education and involvement	Decreased volunteer participation in activities due to more frequent and intense storm events	1	1	3	2	7	Low
Public education and involvement	Decreased volunteer participation in activities due to learned helplessness and self-efficacy issues	1	1	3	2	7	Moderate

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Wastewater	Increased pollutant loadings due to changes in solubility and/or toxicity caused by acidification of lagoon water	1	1	2	2	6	Moderate
Surfacewater	Increased pollutant loadings due to changes in solubility and/or toxicity caused by acidification	1	1	2	2	6	Moderate
Lagoon hydrology	na						
Marina and Boat Pollution	na						
Atmospheric Deposition	na						
Water Clarity	na						
DO	na						
Chl a	na						
Legacy nutrients	na						

Table 15. Risks to sediment and water quality caused by acidification.

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Biodiversity	Decreased vitality of calcifying organisms (i.e., shellfish) and other habitat dependent taxa due to more acidic conditions	1	3	3	2	9	High
Seagrass	Decreased vitality of calcifying organisms (i.e., shellfish, epiphytes) and other habitat dependent taxa due to more acidic conditions	1	3	3	2	9	High
Wetlands and Impounded Marshes	na					na	
Rare, threatened, endangered, and SOSC	Decreased vitality of calcifying organisms (i.e., shellfish, epiphytes) and other habitat dependent taxa due to more acidic conditions	1	3	3	2	9	High
Fisheries	Decreased vitality of calcifying organisms (i.e., shellfish) and other habitat dependent taxa due to more acidic conditions	1	3	3	2	9	High
Toxins, infectious agents, and other health threats	Accelerated spread of existing or new threats to ecosystem health due to more acidic conditions	1	1	3	2	7	Moderate
Living shorelines	Increased habitat and species disruption due to more acidic conditions	1	1	3	2	7	Moderate
Archeological resources	na						

Table 17. Risks to stakeholder engagement caused by increasing acidification.

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Public access	na						
Public education and involvement	Decreased volunteer participation in activities due to learned helplessness and self efficacy issues	1	1	3	2	7	Low

Table 18. Risks to sediment and water quality caused by sea level rise.

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Wastewater	Increased pollutant loadings from WWTP and OSTDS due to rising water table and sea level (inundation, erosion)	2	3	2	2	9	High
Surfacewater	Increased pollutant loadings due to higher water table caused by sea level rise	1	1	2	2	6	Moderate
Surfacewater	Increased pollutant loadings due from water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)	2	3	2	3	10	High
Lagoon hydrology	Changes in circulation, groundwater and surface water hydrology due to rising water table and sea level (inundation, erosion)	2	3	3	2	10	High
Marina and Boat Pollution	Increased pollutant loadings due to failure of pump out facilities, portable toilet dump stations, fuel stations, and rest rooms caused by rising water table and sea level (inundation, erosion)	1	2	1	2	6	High
Atmospheric Deposition	na						
Water Clarity	Decreased clarity due to erosion of shoreline caused by sea level rise	1	2	2	2	7	High
Water Clarity	Decreased clarity due to increased pollutant loadings from WWTP caused by rising water table and sea level (inundation, erosion)	2	3	2	3	10	High
Water Clarity	Decreased clarity due to increased pollutant loadings from water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)	2	3	2	3	10	High
DO	Decreased DO availability due to Increased pollutant loadings from WWTP caused by rising water table and sea level (inundation, erosion)	2	3	2	3	10	High
DO	Decreased DO availability due to increased pollutant loadings from water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)	2	3	2	1	8	High
Chl a	Increased Chlorophyll a concentration due to Increased pollutant loadings from WWTP caused by rising water table and sea level (inundation, erosion)	2	3	2	2	9	Moderate
Chl a	Increased Chlorophyll a concentration due to increased pollutant loadings from water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)	2	3	2	3	10	Moderate
Legacy nutrients	na						

Table 19. Risks to natural resources caused by sea level rise.

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Biodiversity	Increased habitat and species disruption due to increased pollutant loading from WWTP and OSTDS caused by rising water table and sea level (inundation, erosion)	2	3	2	2	9	High
Biodiversity	Increased habitat and species disruption due to increased pollutant loading from surface water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)	1	3	2	2	8	Moderate
Biodiversity	Increased habitat and species disruption due to rising water table and sea level (inundation, erosion)	1	3	3	2	9	Moderate
Seagrass	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS in response to rising water table and sea level (inundation, erosion)	2	3	2	2	9	Moderate
Seagrass	Increased habitat and species disruption due to increased pollutant loadings from surface water storage and conveyance infrastructure in response to rising water table and sea level (inundation, erosion)	2	3	2	2	9	Moderate
Wetlands and Impounded Marshes	Increased habitat and species disruption due to rising water table and sea level (inundation, erosion)	2	3	3	2	10	High
Wetlands and Impounded Marshes	Increased habitat and species disruption due to upland barriers to existing wetland migration into upland areas during sea level rise	3	3	3	2	11	High
Wetlands and Impounded Marshes	Change in carbon sequestration due to habitat and species disruption caused by warmer temperature	1	2	3	2	8	Moderate
Rare, threatened, endangered, and SOSC	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS caused by rising water table and sea level (inundation, erosion)	2	3	2	2	9	Moderate
Rare, threatened, endangered, and SOSC	Increased habitat and species disruption due to increased pollutant loadings from surface water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)	2	3	2	2	9	Moderate
Rare, threatened, endangered, and SOSC	Increased habitat and species disruption due to rising water table and sea level (inundation, erosion)	1	3	3	2	9	Moderate

Table 19. Risks to natural resources caused by sea level rise. (continued)

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Fisheries	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS caused by rising water table and sea level (i.e., inundation, erosion)	2	3	2	2	9	Moderate
Fisheries	Increased habitat and species disruption due to increased pollutant loadings from surface water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)	2	3	2	2	9	Moderate
Toxins, infectious agents, and other health threats	Accelerated spread of existing or new threats to ecosystem health from WWTP and OSTDS caused by rising water table and sea level (inundation, erosion)	2	2	2	2	8	Moderate
Toxins, infectious agents, and other health threats	Accelerated spread of existing or new threats to ecosystem health from surface water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)	1	1	2	2	6	Moderate
Exotic and invasive species	Accelerated spread of exotic and invasive species from WWTP and OSTDS caused by rising water table and sea level (inundation, erosion)	1	1	2	2	6	Moderate
Exotic and invasive species	Accelerated spread of exotic and invasive species from surface water storage and conveyance infrastructure caused by rising water table and sea level (erosion and inundation)	1	1	2	2	6	Moderate
Living shorelines	Increased habitat and species disruption due to rising water table and sea level (inundation, erosion)	2	3	3	2	10	High
Archeological resources	Increased physical and chemical degradation due to rising water table and sea level (inundation, erosion)	2	3	3	2	10	High

Table 20. Risks to stakeholder engagement caused by sea level rise.

Organizational goal	Risk	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Public access	Decreased access due flooding of land or access infrastructure caused by rising water table and sea level	2	2	3	2	9	Moderate
Public access	Decreased access due increased presence of navigational obstacles caused by rising sea level	2	3	3	2	10	High
Public education and involvement	Decreased volunteer participation in activities due to learned helplessness and self-efficacy issues	1	1	3	2	7	Moderate

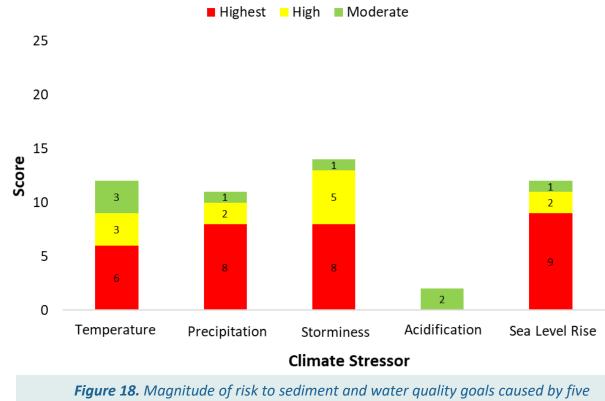
Step 5. Evaluation

The objective of this step was to develop a consequence/probability matrix prioritizing risks most likely to impact the management goals and objectives (aka Action Plans) of the IRLNEP. Prioritization was based upon the preliminary score of each assessed risk (Step 4). The risks posed to each goal (i.e., sediment and water quality, natural resources, stakeholder engagement) and associated objectives were then sorted by the corresponding preliminary score and prioritized as either higher, high, or moderate. In some cases, a climate stressor had a beneficial outcome or caused no risk to the objective. Neither of these were considered in the risk evaluation. The higher the score, the greater the consequence, likelihood, spatial extent, and urgency of the risk. Scores of 0-6 posed the least risk and were characterized as a moderate priority. Scores of 9 - 12 posed the greatest risk and were characterized as highest priority. Scores of 7 - 8 were characterized as high priority. Scoring and prioritization was initially completed by the project team and then made available to stakeholders for review and comment. The results of this collaboration and prioritization are summarized in **Table 21**. Detailed results of this step are included as **Appendix B – Risk Evaluation**.

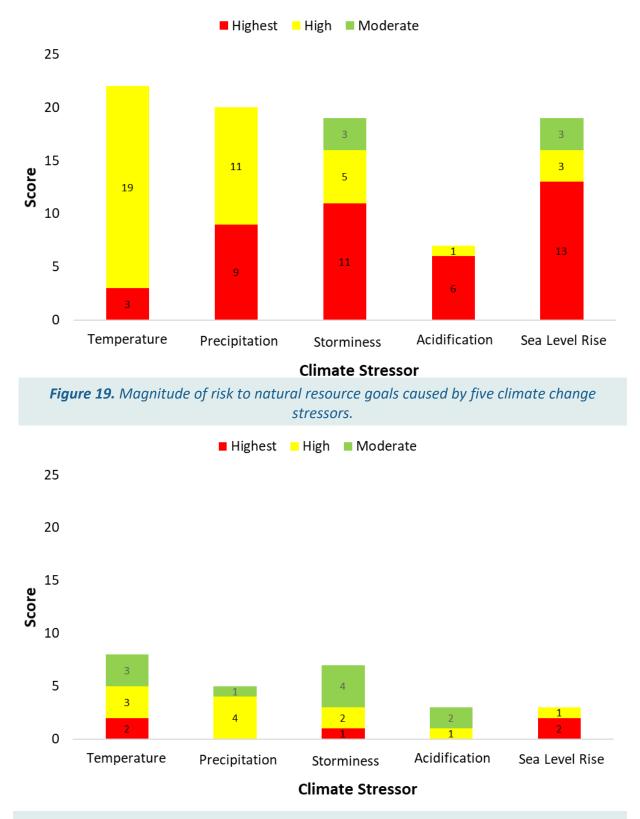
Risks to sediment and water quality goal and objectives

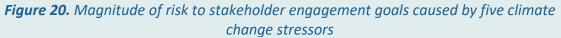
With regard to the IRLNEP goal of improving sediment and water quality, the management objectives at greatest risk to climate change are those associated with the water column: reduction in water clarity, lowering of DO, and elevating Chl a (**Table 21**). Also at risk are objectives formulated to mitigate pollutant loading into the basin from the surrounding watershed: wastewater (WWTP, OSTDS), and surface water (stormwater, freshwater). Least compromised are management goals related to lagoon hydrology, marina and boating pollution, atmospheric deposition, and legacy nutrient pollution. Four of the five climate stressors were determined to exert similar level of risk to the sediment and water quality management goals of the IRLNEP (**Figure 18**).

Risks to natural resource goal and objectives


With regard to the IRLNEP natural resources goal, the management objectives at greatest risk to climate change are biodiversity, seagrass, rare (etc.) species, and fisheries (**Table 21**). At slightly less risk are goals related to wetlands, health, and exotic species. Least compromised are management goals associated with living shorelines and archeological resources. The magnitude of risk to the natural resource objectives of the IRLNEP caused by climate change (**Figure 19**) are greater than those to sediment and water quality (**Figure 20**), but these too are similarly distributed amongst four of the five stressors.

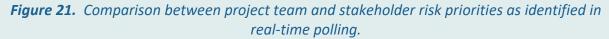
Goal	Warr	ner ten	nperature	Change	s in pr	ecipitation	Increa	asing st	torminess	A	cidific	ation	S	ea leve	l rise	Sum
Sediment and Water Quality	Higher	High	Moderate	Higher	High	Moderate	Higher	High	Moderate	Higher	High	Moderate	Higher	High	Moderate	
Dissolved Oxygen	3			2			2	1					2			10
Water Clarity	1			2			2	1					2	1		9
Surface water	1	1	1	1			1					1	1	1		8
Chlorophyll a	1			2			2	1					2			8
Wastewater			1	1			1					1	1			5
Marina and Boating Pollution			1			1			1						1	4
Lagoon Hydrology		1			1								1			3
Atmospheric Deposition		1			1			1								3
Legacy nutrient pollution								1								1
Sum	6	3	3	8	2	1	8	5	1	0	0	2	9	2	1	51
Natural Resources																
Biodiversity		3		2	1		2	1		1			2	1		13
Seagrass	1	3		2	1		2	1		1			2			13
Wetlands and impounded marshes	1	2			1		1						2	1		8
Rare, threatened, endangered species		4		2	1		2	1		1			3			14
Fisheries		3		2	1		2	1		1			2			12
Toxins, infectious agents, etc.	1				2			1	1		1			1	1	8
Exotic and invasive species		2			3				2						2	9
Living shorelines		1			1		1			1			1			5
Archeological resources		1		1			1			1			1			5
Sum	3	19	0	9	11	0	11	5	3	6	1	0	13	3	3	87
Stakeholder Engagement																
Public access	2	1			2		1						2			8
Public education and involvement		2			2			2			1			1		8
Sum	2	3	0	0	4	0	1	2	0	0	1	0	2	1	0	16
Grand Total	11	25	3	17	17	1	20	12	4	6	2	2	24	6	4	154


Table 21. Prioritization of risks to IRLNEP management goals and objectives caused by climate change.

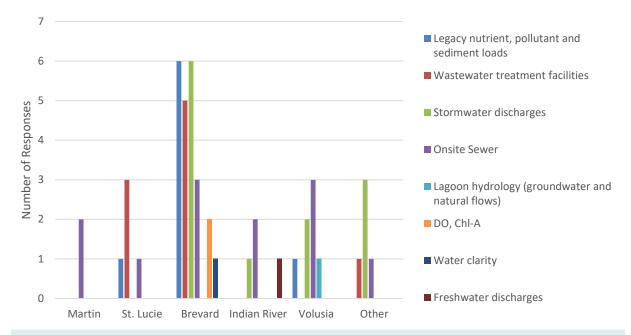

Risks to stakeholder engagement goal and objectives

The two management objectives associated with stakeholder engagement will likely be equally impacted by climate change with regards to the number of stressors (**Table 21**). However, the magnitude of risk to public access is higher than education and involvement. The number of risks to the stakeholder engagement goals of the IRLNEP caused by climate change is lower than the other two management goals and associated primarily with increasing temperatures and storminess (**Figure 21**).

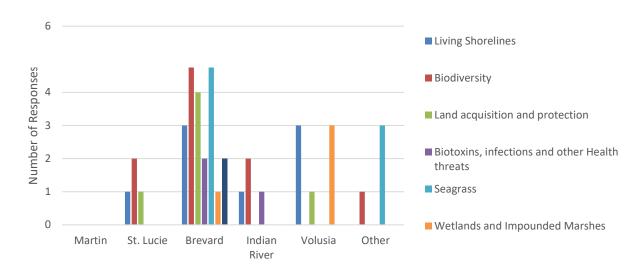
climate change stressors.


DISCUSSION

This project evaluated 20 IRLNEP management objectives, organized under three goals, at risk to five climate change stressors. A total of 154 risks were identified (**Table 21**). The scoring, ranking, and prioritization conducted during this project (Phase I) were designed to provide guidance during the revision of the current CCMP (2008) and formulation of specific new Action Plans to mitigate risks to the IRLNEP caused by climate change (i.e., Phase II).

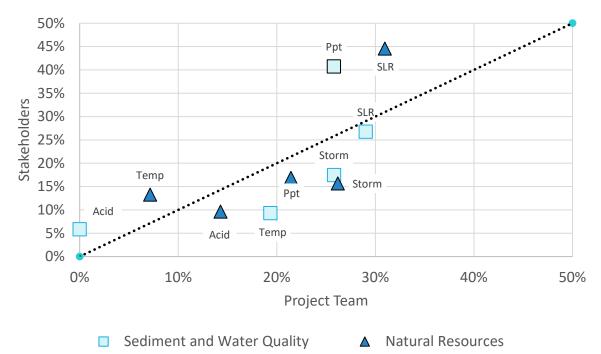

The results of this risk evaluation were also informed by stakeholder comments and suggestions as described in Step 1 and summarized in **Appendix C** – **Results of Real-Time Polling.** This included input provided by real-time polling during stakeholder meetings. A comparison between the project team and stakeholder risk priorities to sediment and water quality and natural resources is illustrated in **Figure 21**. The diagonal line represents a 1:1 match: risks plotted above the line identify stakeholder priorities ranked higher than the project team; risks plotted below the line identify stakeholder priorities ranked lower than the project team.

	Key to Figure 21
BD	Biodiversity
DO+	Dissolved oxygen and Chlorophyll a
Chl a	
F	Fisheries
LH	Lagoon hydrology
LNP	Legacy nutrient pollutants
LS	Living shorelines
SD	Surface water discharge
SG	Seagrass
T&E	Rare, threatened, endangered species
ТΧ	Toxins, health threats
WET	Wetlands
WC	Water clarity
WTF	Wastewater treatment facilities

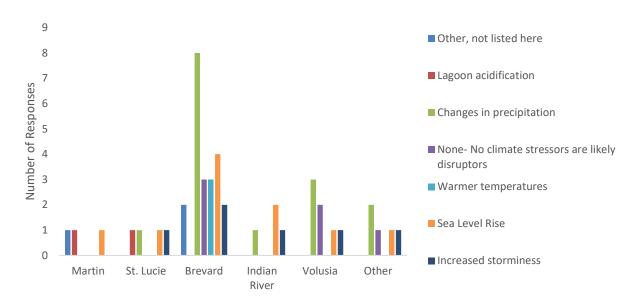


There is a low negative correlation (-0.34) between the priority risks to sediment and water quality as identified by the project team and stakeholder groups. Inspection of risk priorities organized as a function of the county from which the stakeholder works (**Figure 22**) reveals distinctly different preferences as a function of geographic identity. This in turn likely correlates to regional distinctions in watershed geomorphology, infrastructure, land use, and etc. There is no correlation (-0.04) between the priority risks to natural resources identified by the project team and stakeholders. Again, this can be attributed to differences in geographic identity and regional differences within the watershed (**Figure 23**).

Figure 22. Priority risks to water and sediment quality as a function of stakeholder identity.



A comparison between the project team and stakeholder prioritization of climate stressors likely to impact to sediment and water quality and natural resources is illustrated in **Figure 24**. There is a strong positive correlation (0.69) between the priority climate stressors to sediment and water quality as identified by the project team and stakeholder groups **(Figure 24)**.


Inspection of climate stressors to sediment and water quality organized as a function of the county from which the stakeholder works (Figure 25) reveals their preferences are not a function of geographic identity. This in turn likely indicates stakeholder views regarding the potential effects of climate change stressors on sediment and water quality are equally applicable to the entire watershed and hence the strong positive correlation. There is also a strong positive correlation (0.72) between the climate stressors to natural resources identified by the project team and stakeholders (Figure 24). Again, this likely indicates stakeholder views regarding the potential effects of climate change stressors on natural resources are equally applicable to the entire watershed (Figure 26).

Given the limited number of options, comparison between the project team and stakeholder prioritization of stakeholder engagement was not conducted.

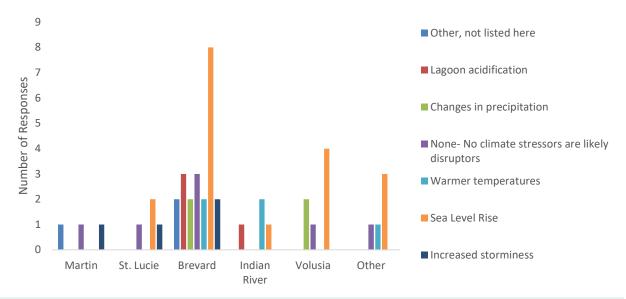

Key to Figure 24					
Acid	Acidification				
Ppt	Precipitation				
SLR	Sea level rise				
Storm	Storminess				
Temp	Temperature				

Figure 24. Comparison between project team and stakeholder climate stressor priorities as identified in real-time polling.

Figure 25. Priority stressors to water and sediment quality as a function of stakeholder identity.

Figure 26. Priority stressors to natural as a function of stakeholder identity.

The scoring, ranking, and prioritization conducted during Phase I of this project were designed to provide guidance during the revision of the current CCMP (2008) and formulation of specific new Action Plans to mitigate risks to the IRLNEP caused by climate change (i.e., Phase II). Based upon the results of this project, there exist distinct geographic differences in the perception of risk that must be assimilated into this process.

REFERENCES

Brevard County, 2009. "Brevard Prepares" Local Mitigation Plan Update.

- Chassignet, E., Jones, J., Misra, V., Obeysekera, J., 2017. Executive Summary, in: Florida's Climate: Changes, Variations, & Impacts. Florida Climate Institute. https://doi.org/10.17125/fci2017.exsum
- Dourte, D.R., Fraisse, C.W. and Bartels, W.L., 2015. Exploring changes in rainfall intensity and seasonal variability in the Southeastern US: Stakeholder engagement, observations, and adaptation. Climate Risk Management, 7, pp.11-19.
- Easterling, D.R., K.E. Kunkel, J.R. Arnold, T. Knutson, A.N. LeGrande, L.R. Leung, R.S. Vose, D.E.
 Waliser, and M.F. Wehner, 2017: Precipitation change in the United States. In: Climate
 Science Special Report: Fourth National Climate Assessment, Volume I [Wuebbles, D.J.,
 D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S.
 Global Change Research Program, Washington, DC, USA, pp. 207-230, doi:
 10.7930/J0H993CC.
- EPA, 2018. Future of Climate Change [WWW Document]. URL /climate-change-science/futureclimate-change (accessed 8.26.18).
- EPA, 2016. Climate Change Indicators in the United States, 2016 (No. Fourth edition). United States Environmental Protection Agency.
- EPA, 2014. Being Prepared for Climate Change A Workbook for Developing Risk-Based Adaptation Plans. EPA Climate Ready Estuaries, Washington, D.C.
- Florida Atlantic University Center for Urban and Environmental Solutions, 2007. Living on the

Edge: Coastal Storm Vulnerability of the Treasure Coast Barrier Islands.

Florida Public Health Risk Assessment Tool (https://flphrat.com/)

Hazards and Vulnerability Research Institute Department of Geography University of South

Carolina, 2012. Incorporating Medical and Social Vulnerability into an All-Hazards

Assessment for the State of Florida, Final Report to the Florida Department of Health Indian River County, 2015. Unified Local Mitigation Strategy.

Indian River Lagoon National Estuary Program, 2008. Indian River Lagoon Comprehensive Conservation and Management Plan Update 2008.

- Ingram, K.T., Dow, K., Carter, L., Anderson, J., Sommer, E.K., 2013. Climate of the Southeast United States: variability, change, impacts, and vulnerability. Springer.
- Kossin, J.P., T. Hall, T. Knutson, K.E. Kunkel, R.J. Trapp, D.E. Waliser, and M.F. Wehner, 2017: Extreme storms. In: Climate Science Special Report: Fourth National Climate Assessment, Volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 257-276, doi: 10.7930/J07S7KXX.
- Knutson, T.R., McBride, J.L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J.P.,
 Srivastava, A.K., Sugi, M., 2010. Tropical cyclones and climate change. Nature
 Geoscience 3, 157–163. https://doi.org/10.1038/ngeo779
- Kunkel, K.E., Stevens, L.E., Stevens, S.E., Sun, L., Janssen, E., Wuebbles, D., Ii, C.E.K., Fuhrman,
 C.M., Keim, B.D., Kruk, M.C., Billet, A., Needham, H., Schafer, M., Dobson, J.G., 2013.
 Part 2. Climate of the Southeast U.S. (Technical Report No. NESDIS 142-2). National
 Oceanic and Atmospheric Administration, Washington D.C.

Martin County Unified Local Mitigation Strategy (no date)

- Robbins, L.L. and Lisle, J.T., 2018. Regional Acidification Trends in Florida Shellfish Estuaries: a 20+ Year Look at pH, Oxygen, Temperature, and Salinity. Estuaries and Coasts, 41(5), pp.1268-1281.
- Runkle, J., K. Kunkel, S. Champion, R. Frankson, B. Stewart, and W. Sweet, 2017: Florida State Climate Summary. NOAA Technical Report NESDIS 149-FL.

St. Lucie County, 2016. St. Lucie County Local Mitigation Strategy Update

- Sweet, W.V., R. Horton, R.E. Kopp, A.N. LeGrande, and A. Romanou, 2017: Sea level rise. In: Climate Science Special Report: Fourth National Climate Assessment, Volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 333-363, doi: 10.7930/J0VM49F2.
- Thompson, P.R., Mitchum, G.T., Vonesch, C. and Li, J., 2013. Variability of winter storminess in the eastern United States during the twentieth century from tide gauges. Journal of Climate, 26(23), pp.9713-9726.

USACE, 2013. Incorporating sea level change in civil works programs (No. ER 1100-2-8162).
Volusia County, 2015. Volusia County Multi-Jurisdictional Local Mitigation Strategy.
USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 470 pp, doi: 10.7930/J0J964J6.

APPENDICES

Appendix A - Risk Identification

Final Report Appendix A. Risk Identification - Water and Sediment Quality

	Issue: Wastewater						
Action: Improve infrastructure to reduce or remove human sources of waste to IRL							
Objective: Attain and maintain water and sediment of sufficient quality to support a healthy estuarine ecosystem							
Climate Stressor/Risk							
Changes in precipitation	Increasing storminess	Acidification	Sea level rise				
Increased pollutant loadings from WWTP and OSTDS during high rainfall events	WWTP and OSTDS due to more	to changes in solubility and/or	WWTP and OSTDS due to rising water	r			
				-			
	Issue: Surface water (storm and fr	resh)		Update			
Action: Redu	uce surface water discharge and pol	lutant loads to IRL		opuate			
ective: Attain and maintain wate	er and sediment of sufficient quality	to support a healthy estuarine eco	system				
	Climate Stressor/Risk						
Changes in precipitation	Increasing storminess	Acidification	Sea level rise				
Increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events	Increased pollutant loadings from surface water storage and conveyance infrastructure caused by more frequent and intense	Increased pollutant loadings due to changes in solubility and/or toxicity caused by acidification	Increased pollutant loadings due to higher water table caused by sea level rise	I			
			Increased pollutant loadings due from water storage and conveyance infrastructure caused by rising water table and sea level (erosion, inundation)				
	Changes in precipitation Increased pollutant loadings from WWTP and OSTDS during high rainfall events Action: Reduce ective: Attain and maintain wate Changes in precipitation Increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events	Action: Improve infrastructure to reduce or remove hun active: Attain and maintain water and sediment of sufficient quality Climate Stressor/Risk Changes in precipitation Increasing storminess Increased pollutant loadings Increased pollutant loadings from WWTP and OSTDS during Increased pollutant loadings high rainfall events Increased pollutant loadings state: Surface water (storm and frequent and intense storm events ction: Reduce surface water discharge and polective: Action: Reduce surface water discharge and polective: Attain and maintain water and sediment of sufficient quality Climate Stressor/Risk Changes in precipitation Increasing storminess Increased pollutant loadings Increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events Increased pollutant loadings from surface water storage and conveyance infrastructure caused by more frequent and intense storm events storm events Increased pollutant loadings from surface water storage and intense storm events	Action: Improve infrastructure to reduce or remove human sources of waste to IRL active: Attain and maintain water and sediment of sufficient quality to support a healthy estuarine ecc Climate Stressor/Risk Action: Increased pollutant loadings Increased pollutant loadings Increased pollutant loadings from WVTP and OSTDS during Increased pollutant loadings from high rainfall events Increased pollutant loadings from State: Surface water (storm and fresh) Action: Reduce surface water discharge and pollutant loads to IRL eactive: Action: Reduce surface water discharge and pollutant loads to IRL Changes in precipitation Increasing storminess Actification Increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events Increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events Increased pollutant loadings from events Increased pollutant loadings form events	Action: Improve infrastructure to reduce or remove human sources of waste to IRL ettive: Attain and maintain water and sediment of sufficient quality to support a healthy estuarine ecosystem Climate Stressor/Risk Changes in precipitation Increased pollutant loadings from Increased pollutant loadings from WWTP and OSTDS due to orising water high rainfall events Meter of sufficient quality to support a healthy estuarine ecosystem WWTP and OSTDS due to orising wate table and intense storm events Meter of sufficient quality to support a healthy estuarine ecosystem Meter of sufficient quality to support a healthy estuarine ecosystem Lisue: Surface water (storm and fresh) Action: Reduce surface water discharge and pollutant loads to IRL Action: Reduce surface water discharge and pollutant loadings from surface water storage and and conveyance infrastructure during high rainfall events Sea level rise Increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events Sea level rise Increased pollutant loadings from surface water storage and conveyance infrastructure caused by acidification Sea level rise Increased pollutant loadings from surface water storage and conveyance infrastructure caused by rising water table and sea level (erosion, inundatio			

Consistency

New

Updated

with draft 2030 CCMP

		· · · ·	-	20				
		agoon Hydrology (groundwater, nat						
		hance scientific understanding of ba						
Obje	ctive: Provide scientific knowledge t	o better inform and advise strategie	es to support a healthy estuarine e	cosystem				
	Climate Stressor/Risk							
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise				
Changes in thermohaline	Changes in thermohaline			Changes in circulation, groundwater				
circulation due to warmer	circulation due to polyline			and surface water hydrology due to				
temperature	conditions caused by intervals of			rising water table and sea level				
	higher rainfall and drought			(erosion, inundation)				
		Issue: Marina and Boating Pollutic	on					
	Action: Implement marina and be	pating education and management p	plans to reduce impacts to ecosyste	em				
	Objective: Reduction of nut	rient and chemical pollutant loading	g, seabed disturbance and trash					
		Climate Stressor/Risk						
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise				
Increased pollutant loadings	Increased pollutant loadings from	Reduced pollutant loadings due to		Increased pollutant loadings due to				
from site runoff due to	site runoff during high rainfall	decrease in number of		failure of pump out facilities,				
changes in solubility and/or	events, especially after extended	recreational boating days caused		portable toilet dump stations, fuel				
toxicity caused by warmer	periods of drought	by more frequent and intense		stations, and rest rooms caused by				
temperature		storm events		rising water table and sea level				
				(erosion, inundation)				
		Increased pollutant loadings from						
		access facilities and associated						
		infrastructure due to increased						
		coastal erosion						
		caused by more frequent and						
		intense storm events						
		Issue: Atmospheric Deposition	I					
	Action: Research, develop a	nd implement strategies to reduce of	or remove atmospheric pollutants					
		Objective: Reduce nitrogen flux	x					
		Climate Stressor/Risk						
Warmer temperature	Changes in	Increasing storminess	Acidification	Sea level rise				
	precipitation							
Increased atmospheric	Increased atmospheric deposition							
deposition of nitrogen and	of nitrogen and other pollutants	of nitrogen and other pollutants						
other pollutants due to	during high rainfall events	due to more frequent and intense						
increasing demand for		storm events						
electricity caused								
by warmer temperature								
<u> </u>	1							

Consistency with draft

Final Report Appendix A. Risk Identification - Water and Sediment Quality

				20	30 CCMP
		Issue: Water Clarity			
		ent strategies to improve water clarity			
		r clarity sufficient to support a healthy es	tuarine ecosystem		
	C	limate Stressor/Risk			
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise	
Decreased clarity due to an increase		Decreased clarity due to erosion of seabed		Increased clarity due to reduction in	
in the growth rates and survival of	loadings from WWTP and OSTDS during high	and shoreline caused by more frequent		erosion of seabed caused by caused	
algae and other taxa induced by warmer temperature	rainfall events	and intense storm events		by increased bathymetry	Not
	Decreased clarity due to Increased pollutant	Decreased clarity due to Increased		Decreased clarity due to erosion of	listed
	loadings from surface water storage and	pollutant loadings from WWTP and OSTDS		shoreline caused by sea level rise	
	conveyance infrastructure during high rainfall	during more frequent and intense storm			
	events	events			
		Decreased clarity due to Increased		Decreased clarity due to Increased	
		pollutant loadings from surface water		pollutant loadings from WWTP	
		storage and conveyance infrastructure		caused by rising water table and sea	
		caused by more frequent and intense		level (erosion, inundation)	
		storm events		Decreased clarity due to increased	
				pollutant loadings from water	
				storage and conveyance infrastructure	
				caused by rising water table and sea	
				level (erosion, inundation)	
		Issue: DO			
	Action: Impleme	ent strategies to increase DO content			
Obj	jective: Reduce frequency and duration of		althy estuarine ecosys	tem	
		Climate Stressor/Risk			
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise	
Decreased DO solubility due to	Increased pollutant loadings from WWTP and		Addition	Decreased DO availability due to	
warmer temperature	OSTDS high rainfall events	seabed and shoreline caused by caused by		Increased pollutant loadings from	
		more frequent and intense storm events		WWTP caused by rising water table	Not
				and sea level (erosion,	listed
				inundation)	
Decreased DO availability due to	Decreased DO availability due to Increased	Decreased DO availability due to Increased		Decreased DO availability due to	
accelerated	pollutant loadings from surface water	pollutant loadings from WWTP and OSTDS		increased pollutant loadings from	
decomposition of organic matter	storage and conveyance infrastructure	during more frequent and intense		water storage and conveyance	
caused by warmer temperature	during high rainfall events	storm events		infrastructure caused by rising water	
				table and sea level (erosion,	
				inundation)	
Decreased DO availability due to more		Decreased DO availability due to Increased			
frequent algae		pollutant loadings from surface water			
blooms caused by warmer		storage and conveyance infrastructure			
temperature		caused by more frequent and intense			
		storm events			

Final Report Appendix A. Risk Identification - Water and Sediment Quality

		Issue: Chlorophyll a			
	Action:	Implement strategies to reduce Chl	orophyll a		
Objective		f elevated Chlorophyll a events suffi		ne ecosystem	
		Climate Stressor/Risk	cient to support a nearing estuant		
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise	
Increased Chlorophyll a	Increased Chlorophyll a	Increased Chlorophyll a		Increased Chlorophyll a	
concentration due to more	concentration due to increased	concentration due to erosion of		concentration due to Increased	
frequent algae blooms caused	pollutant loadings from WWTP	seabed and shoreline caused by		pollutant loadings from WWTP	
by warmer temperature	and OSTDS during high rainfall	more frequent and intense storm		caused by rising water table and	Not listed
	events	events		sea level (erosion, inundation)	Not listed
	Increased Chlorophyll a	Increased Chlorophyll a		Increased Chlorophyll a	
	concentration due to Increased	concentration due to Increased		concentration due to increased	
	pollutant loadings from surface	pollutant loadings from WWTP		pollutant loadings from water	
	water storage and conveyance	and OSTDS during more frequent		storage and conveyance	
	infrastructure during high rainfall	and intense storm events		infrastructure caused by rising	
	events			water table and sea level (erosion,	
				inundation)	
		Increased Chlorophyll a			
		concentration due to Increased			
		pollutant loadings from surface			
		water storage and conveyance			
		infrastructure caused by more			
		frequent and intense storm			
		events			
		egacy nutrient, pollutant, and sedim			
		lement strategies to remove and/or			
Objectiv	e: Restore natural sediments, decre	ase turbidity and nutrient flux suffic	ient to support a healthy estuarin	e ecosystem	
		Climate Stressor/Risk			
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise	Modified
		Decrease in water quality due to		Decreased muck redistribution due	
		erosion and resuspension of		to reduction in erosion of seabed	
1		seabed caused by more frequent		by increased bathymetry	
		and intense storm events			

		Target: Biodiversity			
<i>I</i>		rategy based upon a comprehensiv			
	Objecti	ve: Restore and protect biodiversi	ty		
		Climate Stressor/Risk			
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise	
Increased habitat and species	Increased habitat and species	Increased habitat and species	Decreased vitality of calcifying	Decreased habitat and species	
disruption/migration due to warmer	disruption due to polyhaline	disruption due to seabed and	organisms (i.e., shellfish) and	disruption due to less seabed	
temperature	conditions caused by intervals	shoreline erosion caused by	other habitat dependent taxa	erosion caused by deepening	
	of higher rainfall and extended	more frequent and intense	due to more acidic conditions	bathymetry	Updated
	periods of drought	storm events			
Increased habitat and species	Increased habitat and species	Increased habitat and species		Increased habitat and species	
disruption due to elevated pollutant	disruption due to increased	disruption due to increased		disruption due to increased	
loadings caused by changes in	pollutant loadings from WWTP	pollutant loading from WWTP		pollutant loading from WWTP	
solubility and/or toxicity induced by	and OSTDS during high rainfall	and OSTDS during more		and OSTDS caused by rising	
warmer temperature	events	frequent and intense storm		water table and sea	
		events		level (inundation, erosion)	
Increased habitat and species	Increased habitat and species	Increased habitat and species		Increased habitat and species	
disruption due to elevated pollutant	disruption due to increased	disruption due to increased		disruption due to increased	
loadings in surface water storage	pollutant loadings from surface	pollutant loading from surface		pollutant loading from surface	
and conveyance infrastructure	water storage and conveyance	water storage and conveyance		water storage and conveyance	
caused by caused by longer growing	infrastructure caused by high	infrastructure during more		infrastructure caused by rising	
season induced by warmer	rainfall events	frequent and intense storm		water table and sea level	
temperature		events		(inundation, erosion)	
				Increased habitat and species	
				disruption due to rising water	
				table and sea level (inundation,	
				erosion)	

Target: Seagrass								
	Action: Support the implementation of a strategy to restore and protect seagrass habitat							
Objective: Restore and protect a functioning ecosystem								
	Climate Stressor/Risk							
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise				
Increased habitat and species	Increased habitat and species	Increased habitat and species	Decreased vitality of calcifying	Decreased habitat and species				
disruption due to warmer	disruption due to polyhaline	disruption due to erosion of	organisms (i.e., shellfish) and	disruption due to less seabed				
temperature	conditions caused by intervals	seabed and shoreline caused by	other habitat dependent taxa	erosion and increased water				
	of higher rainfall and extended	more frequent and intense storm	due to more acidic conditions	clarity caused by deepening				
	periods of drought	events		bathymetry				
Increased habitat and species	Increased habitat and species	Increased habitat and species		Increased habitat and species				
disruption due to increased pollutant	disruption due to increased	disruption due to increased		disruption due to increased				
loading caused by changes in	pollutant loadings from WWTP	pollutant loadings from WWTP		pollutant loadings from WWTF				
solubility and/or toxicity induced by	and OSTDS during high rainfall	and OSTDS during more		and OSTDS in response to rising				
warmer	events	frequent and intense storm		water table and sea level				
temperature		events		(inundation, erosion)				
Increased habitat and species	Increased habitat and species	Increased habitat and species		Increased habitat and species				
disruption due to elevated pollutant	disruption due to increased	disruption due to increased		disruption due to increased				
loadings from surface water storage	pollutant loadings from surface	pollutant loadings from surface		pollutant loadings from surface				
and conveyance infrastructure	water storage and conveyance	water storage and conveyance		water storage and conveyance				
caused by warmer temperature	infrastructure during high	infrastructure during more		infrastructure in response to				
	rainfall events	frequent and intense storm		rising water table and sea leve				
		events		(inundation, erosion)				
Increased in carbon sequestration				Increased habitat and species				
due to increased coverage caused by				opportunities due to				
warmer temperature				submergence and flooding of				
				upland areas caused by sea				
				level rise				

Consistency with draft

2030 CCMP

	Target: Wetl	ands and Impounded Marshes			
	Action: Support the implementatio	n of a strategy to restore and pro	tect wetland habitat		
Objective: Restore and maintain a functioning ecosystem					
Climate Stressor/Risk					
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise	
Increased habitat and species disruption	Increased habitat and species	Increased habitat and species		Increased habitat and species	
due to warmer temperature	disruption due to polyhaline	disruption due to shoreline		disruption due to rising water	
	conditions caused by intervals of	erosion caused by more		table and sea level (inundation,	
	higher rainfall and extended	frequent and intense storm		erosion)	
	periods of drought	events			
Increased habitat and species disruption				Increased habitat and species	
due to changes in evapotranspiration				opportunities due to	
				submergence and flooding of	Updated
				upland areas caused by sea level	
				rise	
Increased carbon sequestration due to				Increased habitat and species	
transition expansion of mangrove habitat				disruption due to upland	
caused by warmer temperature				barriers to existing wetland	
				migration into upland areas	
				during sea level rise	
				Change in carbon sequestration	
				due to habitat and species	
				disruption caused by warmer	
				temperature	

Consistency with draft

2030 CCMP

	Target: Rare, Threatened	, Endangered, and Species of Spe	ecial Concern		
Action: Support the implementation of a strategy to protect and manage species Objective: Species recovery					
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise	
Increased habitat and species disruption	Increased habitat and species	Increased habitat and species	Decreased vitality of	Decreased habitat and species	
due to warmer temperature	disruption due to polyhaline	disruption due to erosion of	calcifying organisms (i.e.,	disruption due to less seabed	
	conditions caused by intervals of	seabed and shoreline caused by	shellfish) and other habitat	erosion and increased water	
	higher rainfall and extended	more frequent and intense	dependent taxa due to	clarity caused by deepening	
	periods of drought	storm events	more acidic conditions	bathymetry	
Increased habitat and species disruption	Increased habitat and species	Increased habitat and species		Increased habitat and species	
due to lower oxygen solubility caused by	disruption due to increased	disruption due to increased		disruption due to increased	
warmer temperature	pollutant loading from WWTP	pollutant loading from WWTP		pollutant loadings from WWTP	
	and OSTDS during high rainfall	and OSTDS during more		and OSTDS caused by rising water	r
	events	frequent		table and sea level (inundation,	
		and intense storm events		erosion)	
Increased habitat and species disruption	Increased habitat and species	Increased habitat and species		Increased habitat and species	Up
due to lower oxygen availability cause by	disruption due to increased	disruption due to increased		disruption due to increased	
more frequent algae blooms induced by	pollutant loading from surface	pollutant loading from surface		pollutant loadings from surface	
warmer temperature	water storage and conveyance	water storage and conveyance		water storage and conveyance	
	infrastructure during high rainfall	infrastructure during more		infrastructure caused by rising	
	events	frequent and intense storm		water table and sea level	
		events		(inundation, erosion)	
ncreased habitat and species disruption				Increased habitat and species	
due to lower oxygen availability caused				disruption due to rising water	
by accelerated growth and decay of				table and sea level (inundation,	
invasive plants within basin induced by				erosion)	
warmer temperature					

	Target: Fish	eries (Forage, Recreational, Comm	ercial)		
		mentation of a strategy to restore	•		
Objective: Species recovery					
		Climate Stressor/Risk			
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise	
Increased habitat and species	Increased habitat and species	Increased habitat and species	Decreased vitality of calcifying	Decreased habitat and species	
disruption due to warmer temperature	disruption due to polyhaline	disruption due to seabed and	organisms (i.e., shellfish) and other	disruption due to less seabed	
	conditions caused by intervals of	shoreline erosion caused by more	habitat dependent taxa due to	erosion and increased water	Updated
	higher rainfall and extended	frequent and intense storm events	more acidic conditions	clarity caused by deepening	
	periods of drought			bathymetry	
Increased habitat and species	Increased habitat and species	Increased habitat and species		Increased habitat and species	
disruption due to lower oxygen	disruption due to increased	disruption due to increased		disruption due to increased	
solubility caused by warmer	pollutant loadings from WWTP	pollutant loadings from WWTP		pollutant loadings from WWTP	
temperature	and OSTDS during high rainfall	and OSTDS during more frequent		and OSTDS caused by rising	
	events	and intense storm events		water table and sea level	
				(inundation, erosion)	
Increased habitat and species	Increased habitat and species	Increased habitat and species		Increased habitat and species	
disruption due to lower oxygen	disruption from surface water	disruption due to increased		disruption due to increased	
availability	storage and conveyance	pollutant loadings from surface		pollutant loadings from surface	
cause by more frequent algae blooms	infrastructure during high rainfall	water storage and conveyance		water storage and conveyance	
induced by warmer temperature	events	infrastructure during more		infrastructure caused by rising	
		frequent and intense storm events		water table and sea level	
	Tavaatu	Distaving Infections and Other II	aalth Thwaata	(inundation, erosion)	
		Biotoxins, Infections, and Other H lementation of a strategy to reduc			
	•••••	Objective: Biotoxins, infections, dis			
		Climate Stressor/Risk			
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise	
Accelerated spread of existing or new	Accelerated spread of existing or	Accelerated spread of existing or	Accelerated spread of existing or	Accelerated spread of existing	Updated
threats to ecosystem health due to	new threats to ecosystem health	new threats to ecosystem health	new threats to ecosystem health	or new threats to ecosystem	opulled
warmer temperature	from WWTP and OSTDS during	from WWTP and OSTDS during	due to more acidic conditions	health from WWTP and OSTDS	
	high rainfall events	more frequent and intense storm		caused by rising water table	
		events		and sea level	
				(inundation, erosion)	
	Accelerated spread of existing or	Accelerated spread of existing or		Accelerated spread of existing	
	new threats to ecosystem health	new threats to ecosystem health		or new threats to ecosystem	
	from surface water storage and	from surface water storage and		health from surface water	
	conveyance infrastructure during	conveyance infrastructure during		storage and conveyance	
	high rainfall events	more frequent and intense storm		infrastructure caused by rising	
		events		water table and sea level	
				(inundation, erosion)	

Та	rget: Exotic and Invasive Species				
Target: Remove exotic a	and invasive species to compliment	habitat restoration			
Objective: Decrease exotic and invasive species competitive impacts on native habitats and species					
Climate Stressor/Risk					
		Acidification	Sea level rise		
	•		•		
	•			Update	
	- .		sea level (inundation, erosion)		
-	intense storm events				
•			•		
OSTDS during high rainfall events	. ,		, .		
	-		•		
	frequent and intense storm events		,		
•					
•					
			5		
			, .		
rainfall events	Townsto Living Changlings		level (erosion and inundation)		
• • •		<u> </u>			
Objective: Restore and		osystem function			
	· · · · · · · · · · · · · · · · · · ·			New	
		more acidic conditions	and sea level (inundation, erosion)		
0	and intense storm events				
		is, middens)			
(• •				
			Conclosed stor	New	
				1.01	
-					
due to higher raintail	-	0	•		
	frequent and intense storm events	ground-, and lagoon-	and sea level (inundation, erosion)		
	Target: Remove exotic ad Dbjective: Decrease exotic and invasive: Decrease exotic and invasive species due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought Accelerated spread of exotic and invasive species from WWTP and OSTDS during high rainfall events Accelerated spread of exotic and invasive species from Surface water storage and conveyance infrastructure during high rainfall events Accelerated spread of exotic and invasive species from surface water storage and conveyance infrastructure during high rainfall events Action: Support researce Objective: Restore and Objective: Restore and increased habitat and species distribution due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought	Target: Remove exotic and invasive species to complimentDbjective: Decrease exotic and invasive species competitive impactsClimate Stressor/RiskChanges in precipitationIncreasing storminessAccelerated spread of exotic and invasive species due to polyhaline conditions caused by intervals of higher rainfall and extended periods of droughtAccelerated spread of exotic and invasive species from WWTP and OSTDS during high rainfall eventsAccelerated spread of exotic and invasive species from WWTP and OSTDS during high rainfall eventsAccelerated spread of exotic and invasive species from surface water storage and conveyance infrastructure during high rainfall eventsAccelerated spread of exotic and invasive species from surface water storage and conveyance infrastructure during high rainfall eventsTarget: Living ShorelinesAction: Support research to optimize function and resilier Objective: Restore and protect shoreline habitat and ecc Climate Stressor/RiskChanges in precipitation higher rainfall and extended periods of droughtIncreasing storminessIncreased habitat and species distribution due to polyhaline conditions caused by intervals of higher rainfall and extended periods of droughtIncreasing storminessTarget: Archeological resources (shell works, mound degradation due to higher rainfallIncreasing storminessIncreased chemical degradation due to higher rainfallIncreasing storminessIncreased chemical degradation due to higher rainfallIncreasing storminess	Target: Remove exotic and invasive species to compliment habitat restoration Dijective: Decrease exotic and invasive species competitive impacts on native habitats and spece Climate Stressor/Risk Changes in precipitation Increasing storminess Acidification Accelerated spread of exotic and invasive species from WWTP and conditions caused by intervals of higher rainfall and extended periods of drought Accelerated spread of exotic and invasive species from Surface Increasing storm events Accelerated spread of exotic and invasive species from WWTP and OSTDS during more frequent and invasive species from WWTP and OSTDS during more frequent and invasive species from Surface water storage and conveyance infrastructure during more frequent and intense storm events Accelerated spread of exotic and invasive species from Surface water storage and conveyance infrastructure during high rainfall events Target: Living Shorelines Action: Support research to optimize function and resilience of installations Objective: Restore and protect shoreline habitat and ecosystem function Increased habitat and species distribution due to polyhaline erosion caused by intervals of distribution due to polyhaline and intense storm events Increased habitat and species distribution due to polyhaline erosion caused by more frequent and intense storm events Increased habitat and species Increased habitat and species distribution due to polyhaline erosion caused by more frequent and intense storm events Increased habitat and species distribution due to polyhaline eros	Target: Remove exotic and invasive species to competitive impacts on native habitats and species Climate Stressor/Risk Changes in precipitation Increasing storminess Acidification Sea level rise Accelerated spread of exotic and invasive species for out polyhaline extended periods of drought Accelerated spread of exotic and intense storm events Reduction in upland exotic and invasive species form Surface infrastructure during more frequent and intense storm events Accelerated spread of exotic and invasive species from surface infrastructure during more frequent and intense storm events Accelerated spread of exotic and invasive species from Surface infrastructure during more frequent and intense storm events Accelerated spread of exotic and invasive species from Surface water storage and conveyance infrastructure during high rainfall events Accelerated spread of exotic and invasive species from surface water storage and conveyance infrastructure during high rainfall events Accelerated spread of exotic and invasive species from surface water storage and conveyance infrastructure during high rainfall events Increased of exotic and invasive species from surface water storage and conveyance infrastructure during high rainfall events Increased of exotic and invasive species from surface water storage and conveyance infrastructure during high rainfall events Increased species do exotic and invasive species do exotic and invasive species do exotic shoreline habitat and species distribution due to polyhaline distribution due to polyhaline and intense storm events Increased habitat and species disruption due to rising water table and se	

Final Report Appendix A. Risk Identification – Stakeholder Engagement

Consistency with draft 2030 CCMP

		Target: Public Access			
	Action: Imp	lement strategies to increase pu	ıblic access		
	Object	ive: Adequate and appropriate a	access		-
		Climate Stressor/Risk			
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise	_
Decreased recreational activities due to warmer temperature	Decreased recreational activities due to increased number of high rainfall events	Decreased recreational activities, especially boating related, due to failure of infrastructure caused by more frequent and intense storm events		Decreased access due flooding of land or access infrastructure caused by rising water table and sea level	Ţ
Decreased recreational activities due to accelerated spread of existing or new viral, bacterial, fungal, and parasitic infections caused by warmer temperature	Decreased recreational activities due to increased habitat and species disruption due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought			Decreased access due increased presence of navigational obstacles caused by rising sea level	Not listed
Decreased recreational activities due to reduced water clarity caused by increased pollutant loadings					
	Targe	t: Public education and involver	nent		
	Action: Create a co	nstituency of informed and invo	olved stakeholders		
	Objective: Achiev	e heightened public awareness	of the ecosystem		
		Climate Stressor/Risk	-		
Warmer temperature	Changes in precipitation	Increasing storminess	Acidification	Sea level rise	
Decreased volunteer participation in activities due to warmer temperature	increased number of high rainfall events	Decreased volunteer participation in activities due to more frequent and intense storm events	Decreased volunteer participation in activities due to learned helplessness and self- efficacy issues	Decreased volunteer participation in activities due to learned helplessness and self-efficacy issues	Updated
Decreased volunteer participation in activities due to learned helplessness and self-efficacy issues	Decreased volunteer participation in activities due to learned helplessness and self- efficacy issues	Decreased volunteer participation in activities due to learned helplessness and self- efficacy issues			

Appendix B – Risk Evaluation

– h	igher	Score Ke = high = moderate	· · · · · · · · · · · · · · · · · · ·	= not applical	ble				
Organizational goal	- <u> </u>	Risk	Opportunity			Spatial Extent	Time Horizon	Preliminary Score	Confidence
DO	Warmer temperature	Decreased DO solubility due to warmer temperature		3	3	3	3	12	High
DO	Warmer temperature	Decreased DO availability due to more frequent algae blooms caused by warmer temperature		3	3	3	3	12	High
Chl a	Warmer temperature	Increased Chlorophyll a concentration due to more frequent algae blooms caused by warmer temperature		3	3	3	3	12	High
Wastewater	Increased storminess	Increased pollutant loadings from WWTP and OSTDS due to more frequent and intense storm events		2	3	2	3	10	Moderate
Surfacewater	Changes in precipitation	Increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events		2	3	2	3	10	Moderate
Surfacewater	Increased storminess	Increased pollutant loadings from surface water storage and conveyance infrastructure caused by more frequent and intense storm events		2	3	2	3	10	High
Surfacewater	Sea level rise	Increased pollutant loadings due from water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)		2	3	2	3	10	High
Lagoon hydrology	Sea level rise	Changes in circulation, groundwater and surface water hydrology due to rising water table and sea level (inundation, erosion)		2	3	3	2	10	High
Water Clarity	Warmer temperature	Decreased clarity due to an increase in the growth rates and survival of algae and other taxa induced by warmer temperature		2	3	3	2	10	High
Water Clarity	Changes in precipitation	Decreased clarity due to increased pollutant loadings from WWTP during high rainfall events		2	3	2	3	10	Moderate
Water Clarity	Changes in precipitation	Decreased clarity due to increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events		2	3	2	3	10	Moderate
Water Clarity	Increased storminess	Decreased clarity due to increased pollutant loadings from WWTP and OSTDS during more frequent and intense storm events		2	3	2	3	10	High
Water Clarity	Increased storminess	Decreased clarity due to increased pollutant loadings from surface water storage and conveyance infrastructure caused by more frequent and intense storm events		2	3	2	3	10	High

Score Key

= hi	igher	= high= moderate		= not applical	ple				
Organizational goal	Climate Stressor	Risk	Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Water Clarity	Sea level rise	Decreased clarity due to increased pollutant loading from WWTP caused by rising water table and sea leve (inundation, erosion)		2	3	2	3	10	High
Water Clarity	Sea level rise	Decreased clarity due to increased pollutant loading from water storage and conveyance infrastructure caused by rising water table and sea level (inundation erosion)		2	3	2	3	10	High
DO	Changes in precipitation	Increased pollutant loadings from WWTP and OSTD high rainfall events	5	2	3	2	3	10	Moderate
DO	Changes in precipitation	Decreased DO availability due to Increased pollutan loadings from surface water storage and conveyance infrastructure during high rainfall events		2	3	2	3	10	Moderate
DO	Increased storminess	Decreased DO availability due to Increased pollutan loadings from surface water storage and conveyance infrastructure caused by more frequent and intense storm events		2	3	2	3	10	High
DO	Sea level rise	Decreased DO availability due to Increased pollutan loadings from WWTP caused by rising water table and sea level (inundation, erosion)		2	3	2	3	10	High
DO	Sea level rise	Decreased DO availability due to increased pollutan loadings from water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)		2	3	2	3	10	High

		Score K			_				
= h	ligher	= high= moderate	:	= not applicab	le				
Organizational goal	Climate Stressor	Risk	Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Chl a	Changes in precipitation	Increased Chlorophyll a concentration due to increased pollutant loadings from WWTP and OSTDS during high rainfall events		2	3	2	3	10	Moderate
Chl a	Changes in precipitation	Increased Chlorophyll a concentration due to Increase pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events		2	3	2	3	10	Moderate
Chl a	Increased storminess	Increased Chlorophyll a concentration due to Increased pollutant loadings from surface water storage and conveyance infrastructure caused by more frequent and intense storm events	t i i i i i i i i i i i i i i i i i i i	2	3	2	3	10	Moderate
Chl a	Sea level rise	Increased Chlorophyll a concentration due to increased pollutant loadings from water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)		2	3	2	3	10	Moderate
Wastewater	Changes in precipitation	Increased pollutant loadings from WWTP and OSTD during high rainfall events	S	2	3	2	2	9	Moderate
Wastewater	Sea level rise	Increased pollutant loadings from WWTP and OSTD due to rising water table and sea level (inundation erosion)		2	3	2	2	9	High
DO	Warmer temperature	Decreased DO availability due to accelerated decomposition of organic matter caused by warme temperature		1	3	3	2	9	Moderate
DO	Increased storminess	Decreased DO availability due to Increased pollutan loadings from WWTP and OSTDS during more frequen and intense storm events		2	3	2	2	9	High
Chl a	Increased storminess	Increased Chlorophyll a concentration due to Increased pollutant loadings from WWTP and OSTDS during more frequent and intense storm events		2	3	2	2	9	Moderate
Chl a	Sea level rise	Increased Chlorophyll a concentration due to Increased pollutant loadings from WWTP caused by rising wate table and sea level (inundation, erosion)		2	3	2	2	9	Moderate
Surfacewater	Warmer temperature	Increased pollutant loadings (urban, rural) due to changes in solubility and/or toxicity caused by warme temperature		2	3	2	2	9	Moderate

	_	Score Key	/					
= h	igher	= high= moderate	= not applica	able				
Organizational goal	Climate Stressor	Risk	Opportunity Consequent	ce Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Surfacewater	Warmer temperature	Increased pollutant loadings due to increased maintenance (cuttings, chemical applications) of greenspace caused by warmer temperature	2	2	2	2	8	Moderate
Lagoon hydrology	Warmer temperature	Changes in thermohaline circulation due to warmer temperature	1	2	3	2	8	Moderate
Lagoon hydrology	Changes in precipitation	Changes in thermohaline circulation due to polyline conditions caused by intervals of higher rainfall and drought	1	2	3	2	8	Moderate
Atmospheric Deposition	Warmer temperature	Increased atmospheric deposition of nitrogen and other pollutants due to increasing demand for electricity caused by warmer temperature	1	2	3	2	8	Low
Atmospheric Deposition	Changes in precipitation	Increased atmospheric deposition of nitrogen and other pollutants during high rainfall events	1	2	3	2	8	Low
Atmospheric Deposition	Increased storminess	Increased atmospheric deposition of nitrogen and other pollutants due to more frequent and intense storm events	1	2	3	2	8	Low
Water Clarity	Increased storminess	Decreased clarity due to erosion of seabed and shoreline caused by more frequent and intense storm events	1	2	2	2	7	High
Water Clarity	Sea level rise	Decreased clarity due to erosion of shoreline caused by sea level rise	1	2	2	2	7	High
DO	Increased storminess	Decreased DO availability due to erosion of seabed and shoreline caused by caused by more frequent and intense storm events	1	2	2	2	7	High

		Score Key	/
= higher	= high	= moderate	= not applicable

Organizational goal	Climate Stressor	Risk	Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Chl a	Increased storminess	Increased Chlorophyll a concentration due to erosion of seabed and shoreline caused by more frequent and intense storm events		1	2	2	2	7	Moderate
Legacy nutrients	Increased storminess	Decrease in water quality due to erosion and resuspension of seabed caused by more frequent and intense storm events		1	2	2	2	7	High
Wastewater	Warmer temperature	Increased pollutant loadings due to changes in solubility and/or toxicity caused by warmer temperature		1	1	2	2	6	Medium
Wastewater	Acidification	Increased pollutant loadings due to changes in solubility and/or toxicity caused by acidification of lagoon water		1	1	2	2	6	Moderate
Surfacewater	Warmer temperature	Increased pollutant loadings due to increased use of chemical treatments in surface water storage and conveyance infrastructure to reduce more frequent algae blooms or expanding invasive plants caused by warmer temperature	2	1	1	2	2	6	Moderate
Surfacewater	Acidification	Increased pollutant loadings due to changes in solubility and/or toxicity caused by acidification		1	1	2	2	6	Moderate
Surfacewater	Sea level rise	Increased pollutant loadings due to higher water table caused by sea level rise		1	1	2	2	6	Moderate
Marina and Boat Pollution	Increased storminess	Increased pollutant loadings from access facilities and associated infrastructure due to increased coastal erosion caused by more frequent and intense storm events		1	2	1	2	6	High
Marina and Boat Pollution	Sea level rise	Increased pollutant loadings due to failure of pump out facilities, portable toilet dump stations, fuel stations, and rest rooms caused by rising water table and sea level (inundation, erosion)		1	2	1	2	6	High
Marina and Boat Pollution	Warmer temperature	Increased pollutant loadings from site runoff due to changes in solubility and/or toxicity caused by warmer temperature		1	1	1	2	5	Moderate
Marina and Boat Pollution	Changes in precipitation	Increased pollutant loadings from site runoff during high rainfall events, especially after extended periods of drought		1	1	1	2	5	Moderate

		Score Key	1	-			-		
= hi	igher	= high= moderate	=	not applicab	ole				
Organizational goal	Climate Stressor	Risk	Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Wastewater	Warmer temperature	Decreased pollut+C4:C19ant loadings due to increased bioremediation effectiveness caused by warmer temperatures	Yes					na	High
Lagoon hydrology	Increased storminess	na						na	
Lagoon hydrology	Acidification	na						na	
Marina and Boat Pollution	Increased storminess	Reduced pollutant loadings due to decrease in number o recreational boating days caused by more frequent and intense storm events	f Yes					na	Low
Marina and Boat Pollution	Acidification	na						na	
Atmospheric Deposition	Acidification	na						na	
Atmospheric Deposition	Sea level rise	na						na	
Water Clarity	Acidification	na						na	
Water Clarity	Sea level rise	Increased clarity due to reduction in erosion of seabed caused by caused by increased bathymetry	Yes					na	Moderate

		Score Key	/
= higher	= high	= moderate	= not applicable

Organizational	Climate	Risk	Opportunity	Consequence	Likelihood	Spatial	Time	Preliminary	Confidence
goal	Stressor					Extent	Horizon	Score	
DO	Acidification	na						na	
Chl a	Acidification	na						na	
Legacy	Warmer	na						na	
nutrients	temperature								
Legacy	Changes in	na						na	
nutrients	precipitation								
Legacy	Increased	na						na	
	storminess								
Legacy	Acidification	na						na	
nutrients									
Legacy	Sea level rise	Decreased muck redistribution due to reduction in	Yes					na	Moderate
nutrients		erosion of seabed by increased bathymetry							

		Score Ke	y						
= hi	gher	= high= moderate	=	not applicabl	le				
Organizational goal	Climate Stressor	Risk	Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Wetlands and Impounded Marshes	Sea level rise	Increased habitat and species disruption due to upland barriers to existing wetland migration into upland areas during sea level rise		3	3	3	2	11	High
Living shorelines	Increased storminess	Increased habitat and species disruption due to shoreline erosion caused by more frequent and intense storm even	ts	2	3	3	3	11	High
Wetlands and Impounded Marshes	Increased storminess	Increased habitat and species disruption due to shoreline erosion caused by more frequent and intense storm even	ts	2	3	3	2	10	High
Wetlands and Impounded Marshes	Sea level rise	Increased habitat and species disruption due to rising wat table and sea level (inundation, erosion)		2	3	3	2	10	High
Living shorelines	Sea level rise	Increased habitat and species disruption due to rising wat table and sea level (inundation, erosion)	er	2	3	3	2	10	High
Archeological resources	Increased storminess	Increased physical and chemical degradation due to shoreline erosion and flooding during more frequent and intense storm events		2	3	3	2	10	High
Archeological resources	Sea level rise	Increased physical and chemical degradation due to rising water table and sea level (inundation, erosion)		2	3	3	2	10	High
Biodiversity	Changes in precipitation	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS during high rainfall events		2	3	2	2	9	Moderate
Biodiversity	Changes in precipitation	Increased habitat and species disruption due to increased pollutant loadings from surface water storage and conveyance infrastructure caused by high rainfall events		2	3	2	2	9	Moderate
Biodiversity	Increased storminess	Increased habitat and species disruption due to increased pollutant loading from WWTP and OSTDS during more frequent and intense storm events		2	3	2	2	9	Moderate
Biodiversity	Increased storminess	Increased habitat and species disruption due to increased pollutant loading from surface water storage and conveyance infrastructure during more frequent and intense storm events		2	3	2	2	9	Moderate
Biodiversity	Acidification	Decreased vitality of calcifying organisms (i.e., shellfish) an other habitat dependent taxa due to more acidic conditio		1	3	3	2	9	High
Biodiversity	Sea level rise	Increased habitat and species disruption due to increased pollutant loading from WWTP and OSTDS caused by rising water table and sea level (inundation, erosion)		2	3	2	2	9	High

= h	igher	Score Key = high = moderate	=	not applicab	le				
Organizational goal	Climate Stressor	Risk	Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Biodiversity	Sea level rise	Increased habitat and species disruption due to rising water table and sea level (inundation, erosion)		1	3	3	2	9	Moderate
Seagrass	Warmer temperature	Increased habitat and species disruption due to elevated pollutant loadings from surface water storage and conveyance infrastructure caused by warmer temperature		2	3	2	2	9	Moderate
Seagrass	Changes in precipitation	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS during high rainfall events		2	3	2	2	9	Moderate
Seagrass	Changes in precipitation	Increased habitat and species disruption due to increased pollutant loadings from surface water storage and conveyance infrastructure during high rainfall events		2	3	2	2	9	High
Seagrass	Increased storminess	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS during more frequent and intense storm events		2	3	2	2	9	Moderate
Seagrass	Increased storminess	Increased habitat and species disruption due to increased pollutant loadings from surface water storage and conveyance infrastructure during more frequent and intense storm events		2	3	2	2	9	Moderate
Seagrass	Acidification	Decreased vitality of calcifying organisms (i.e., shellfish, epiphytes) and other habitat dependent taxa due to more acidic conditions		1	3	3	2	9	High

			Score Ke		isequence/ rior		- Natural Ne.	bources		
= high	ner	= high	= moderate	=	not applicabl	le				
Organizational goal	Climate Stressor		Risk	Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Seagrass	Sea level rise	pollutant loadings from	pecies disruption due to increased WWTP and OSTDS in response to ea level (inundation, erosion)		2	3	2	2	9	Moderate
Seagrass	Sea level rise	pollutant loadings fro conveyance infrastructu	pecies disruption due to increased om surface water storage and are in response to rising el (inundation, erosion)		2	3	2	2	9	Moderate
Wetlands and Impounded Marshes	Warmer temperature		species disruption due to warme		1	2	3	3	9	Moderate
Rare, threatened, endangered, and SOSC	Changes in precipitation		pecies disruption due to increased WWTP and OSTDS during high		2	3	2	2	9	Moderate
Rare, threatened, endangered, and SOSC	Changes in precipitation	pollutant loading fro	pecies disruption due to increased m surface water storage and ire during high rainfall events		2	3	2	2	9	Moderate
Rare, threatened, endangered, and SOSC	Increased storminess		pecies disruption due to increased WWTP and OSTDS during more orm events		2	3	2	2	9	Moderate
Rare, threatened, endangered, and SOSC		pollutant loading fro	pecies disruption due to increased m surface water storage and ture during more frequent and	i	2	3	2	2	9	Moderate
Rare, threatened, endangered, and SOSC	Acidification		alcifying organisms (i.e., shellfish abitat dependent taxa due to more		1	3	3	2	9	High
Rare, threatened, endangered, and SOSC	Sea level rise	pollutant loadings from	pecies disruption due to increased WWTP and OSTDS caused by rising el (inundation, erosion)		2	3	2	2	9	Moderate
Rare, threatened, endangered, and SOSC	Sea level rise	pollutant loadings fro	pecies disruption due to increased om surface water storage and ire caused by rising water table and rosion)	i	2	3	2	2	9	Moderate
Rare, threatened, endangered, and SOSC	Sea level rise		species disruption due to rising el (inundation, erosion)		1	3	3	2	9	Moderate

		Score Key	, ,	,				
= hig	her	= high= moderate	= not applicat	ble				
Organizational goal	Climate Stressor	Risk	Opportunity Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Fisheries	Changes in precipitation	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS during high rainfall events	2	3	2	2	9	Moderate
Fisheries	Changes in precipitation	Increased habitat and species disruption from surface water storage and conveyance infrastructure during high rainfall events	2	3	2	2	9	Moderate
Fisheries	Increased storminess	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS during more frequent and intense storm events	2	3	2	2	9	Moderate
Fisheries	Increased storminess	Increased habitat and species disruption due to increased pollutant loadings from surface water storage and conveyance infrastructure during more frequent and intense storm events	2	3	2	2	9	Moderate
Fisheries	Acidification	Decreased vitality of calcifying organisms (i.e., shellfish) and other habitat dependent taxa due to more acidic conditions	1	3	3	2	9	High
Fisheries	Sea level rise	Increased habitat and species disruption due to increased pollutant loadings from WWTP and OSTDS caused by rising water table and sea level (i.e., inundation, erosion)	2	3	2	2	9	Moderate
Fisheries	Sea level rise	Increased habitat and species disruption due to increased pollutant loadings from surface water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)	2	3	2	2	9	Moderate
Toxins, infectious agents, and other health threats	Warmer temperature	Accelerated spread of existing or new threats to ecosystem health due to warmer temperature	2	2	3	2	9	Med

		Score Ke	у						
= hi	gher 📃	= high= moderate	=	not applicabl	le				
Organizational goal	Climate Stressor	Risk	Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Biodiversity	Warmer temperature	Increased habitat and species disruption due to warmer temperature		1	2	3	2	8	Moderate
Biodiversity	Warmer temperature	Increased habitat and species disruption due to elevated pollutant loadings caused by changes in solubility and/or toxicity induced by warmer temperature		1	2	3	2	8	Moderate
Biodiversity	Warmer temperature	Increased habitat and species disruption due to elevated pollutant loadings in surface water storage and conveyance infrastructur caused by caused by longer growing season induced by warmer temperature		2	2	2	2	8	Moderate
Biodiversity	Changes in precipitation	Increased habitat and species disruption due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought		1	2	3	2	8	Moderate
Biodiversity	Increased storminess	Increased habitat and species disruption due to erosion of seabed and shoreline caused by more frequent and intense storm events		1	2	3	2	8	Moderate
Biodiversity	Sea level rise	Increased habitat and species disruption due to increased pollutant loading from surface water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)	1	3	2	2	8	Moderate
Seagrass	Warmer temperature	Increased habitat and species disruption due to warmer temperature		1	2	3	2	8	Moderate
Seagrass	Warmer temperature	Increased habitat and species disruption due to increased pollutant loading caused by changes in solubility and/or toxicity induced by warmer temperature		1	2	3	2	8	Moderate
Seagrass	Warmer temperature	Change in carbon sequestration due to habitat and species disruption caused by warmer temperature		1	2	3	2	8	Moderate
Seagrass	Changes in precipitation	Increased habitat and species disruption due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought		1	2	3	2	8	Moderate

= hi	gher	s high = mode=	Score Key rate =	not applicabl	е				
Organizational goal	Climate Stressor	Risk	Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Seagrass	Increased storminess	Increased habitat and species disruption du erosion of seabed and shoreline caused by frequent and intense storm events		1	2	3	2	8	Moderate
Wetlands and Impounded Marshes	Warmer temperature	Increased habitat and species disruption du changes in evapotranspiration	Je to	1	2	3	2	8	Moderate
Wetlands and Impounded Marshes	Warmer temperature	Change in carbon sequestration due to hab species disruption caused by warmer temp		1	2	3	2	8	Moderate
Wetlands and Impounded Marshes	Changes in precipitation	Increased habitat and species disruption du polyhaline conditions caused by intervals o rainfall and extended periods of drought		1	2	3	2	8	Moderate
Wetlands and Impounded Marshes	Sea level rise	Change in carbon sequestration due to hab species disruption caused by warmer temp		1	2	3	2	8	Moderate
Rare, threatened, endangered, and SOSC	Warmer temperature	Increased habitat and species disruption du warmer temperature	ue to	1	2	3	2	8	Moderate
Rare, threatened, endangered, and SOSC	Warmer temperature	Increased habitat and species disruption du lower oxygen solubility caused by warmer temperature	ue to	1	2	3	2	8	Moderate
Rare, threatened, endangered, and SOSC	Warmer temperature	Increased habitat and species disruption du lower oxygen availability cause by more fre algae blooms induced by warmer temperat	equent	1	2	3	2	8	Low
Rare, threatened, endangered, and SOSC	Warmer temperature	Increased habitat and species disruption du lower oxygen availability caused by acceler growth and decay of invasive plants within induced by warmer temperature	ated	1	2	3	2	8	Low

		Score	Key						
= high	er	= high= moderate	= 1	not applicable	•				
Organizational goal	Climate Stressor	Risk	Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Rare, threatened, endangered, and SOSC	-	Increased habitat and species disruption due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought		1	2	3	2	8	Moderate
Rare, threatened, endangered, and SOSC		Increased habitat and species disruption due to erosion of seabed and shoreline caused by more frequent and intense storm events		1	2	3	2	8	Moderate
Fisheries		Increased habitat and species disruption due to warmer temperature		1	2	3	2	8	Moderate
Fisheries	Warmer temperature	Increased habitat and species disruption due to lower oxygen solubility caused by warmer temperature		1	2	3	2	8	Moderate
Fisheries	Warmer temperature	Increased habitat and species disruption due to lower oxygen availability caused by more frequent algae blooms induced by warmer temperature		1	2	3	2	8	Low
Fisheries	precipitation	Increased habitat and species disruption due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought		1	2	3	2	8	Moderate
Fisheries	storminess	Increased habitat and species disruption due to seabed and shoreline erosion caused by more frequent and intense storm events		1	2	3	2	8	Moderate
Toxins, infectious agents, and other health threats	Changes in precipitation	Accelerated spread of existing or new threats to ecosystem health from surface water storage and conveyance infrastructure during high rainfall events		2	1	3	2	8	High
Toxins, infectious agents, and other health threats	Sea level rise	Accelerated spread of existing or new threats to ecosystem health from WWTP and OSTDS caused by rising water table and sea level (inundation, erosion)		2	2	2	2	8	Med
Exotic and invasive species	Warmer temperature	Accelerated spread of exotic and invasive species due to warmer temperature		1	2	3	2	8	Moderate

		Score I	Key						
= high	ner 📃	= high= moderate	= r	not applicabl	е				
Organizational goal	Climate Stressor	Risk	Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Exotic and invasiv	e Changes in	Accelerated spread of exotic and invasive species	5						
species	precipitation	due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drough	it	1	2	3	2	8	Moderate
Toxins, infectious	Changes in	Accelerated spread of existing or new threats to							
agents, and other health threats	precipitation	ecosystem health from WWTP and OSTDS during high rainfall events		1	1	3	2	7	Med
Toxins, infectious	Increased	Accelerated spread of existing or new threats to							
agents, and other health threats	storminess	ecosystem health from WWTP and OSTDS during more frequent and intense storm events		2	1	2	2	7	High
Toxins, infectious		Accelerated spread of existing or new threats to							
gents, and other health threats	Acidification	ecosystem health due to more acidic conditions		1	1	3	2	7	Med
Exotic and	Warmer	Accelerated spread of exotic and invasive species	;	1	2	2	2	7	Moderate
invasive species	temperature	e due to increased wildfires caused by warmer temperature							
Exotic and	Changes in	Accelerated spread of exotic and invasive species	;	1	1	3	2	7	Moderate
invasive species	precipitation	from WWTP and OSTDS during high rainfall even	<mark>ts</mark>						
Exotic and	Changes in	Accelerated spread of exotic and invasive specie		1	1	3	2	7	Moderate
invasive species	precipitation	from surface water storage and conveyance infrastructure during high rainfall events							
Living shorelines	Warmer	Increased habitat and species distribution due to		1	1	3	2	7	Moderate
	temperature	warmer temperature							
Living shorelines	Changes in	Increased habitat and species distribution due to		1	1	3	2	7	Moderate
	precipitation	polyhaline conditions caused by intervals of high	er						
		rainfall and extended periods of drought							
Living shorelines	Acidification	Increased habitat and species disruption due to more acidic conditions		1	1	3	2	7	Moderate
Archeological	Warmer	Increased biological and chemical degradation		1	1	3	2	7	Moderate
resources	temperature	e due to warmer temperature							
Archeological	Changes in	Increased chemical degradation due to higher		1	1	3	2	7	Moderate
resources	precipitation	rainfall							

Final Report Appendix B. Risk Evaluation Consequence/Probability Matrix - Stakeholder Engagement

			Score Ke	ey						
= high	er	= high	= moderate	= 1	not applicable					
Organizational goal	Climate Stressor	Risk		Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Toxins, infectious agents, and other health threats	Increased storminess	Accelerated spread of exi ecosystem health from su conveyance infrastructure and intense storm events	rface water storage and	b	1	1	2	2	6	High
Toxins, infectious agents, and other health threats	Sea level rise	Accelerated spread of exi ecosystem health from su conveyance infrastructure table and sea level (inunda	rface water storage and caused by rising wate	t l	1	1	2	2	6	Med
Exotic and invasive species	Increased storminess	Accelerated spread of exo from WWTP and OSTDS du more frequent and intense	ring	s	1	1	2	2	6	Moderate
Exotic and invasive species	Increased storminess	Accelerated spread of exo from surface water sto infrastructure during more storm events	rage and conveyance	2	1	1	2	2	6	Moderate
Exotic and invasive species	Sea level rise	Accelerated spread of exo from WWTP and OSTDS cau and sea level (inundation, e	used by rising water table		1	1	2	2	6	Moderate
Exotic and invasive species	Sea level rise	Accelerated spread of exo from surface water sto infrastructure caused by ris level (erosion and inundation	rage and conveyance sing water table and sea		1	1	2	2	6	Moderate
Biodiversity	Sea level rise	Decreased habitat and spec seabed erosion caused by c		s Yes					na	Moderate
Seagrass	Sea level rise	Decreased habitat and spec seabed erosion and increa by deepening bathymetry	•	163					na	Moderate
Seagrass	Sea level rise	Increased habitat and spec submergence and flooding by sea level rise		163					na	Moderate
Wetlands and Impounded Marshes	Acidification	na								

Final Report Appendix B. Risk Evaluation Consequence/Probability Matrix - Stakeholder Engagement

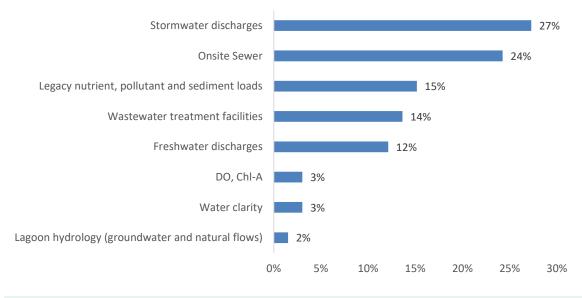
		Score Ke	y			00			
= high	er	= high= moderate	=	not applicab	le				
Organizational goal	Climate Stressor	Risk	Opportunity	Consequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Wetlands and Impounded Marshes	Sea level rise	Increased habitat and species opportunities due to submergence and flooding of upland areas caused by sea level rise	Yes					na	Moderate
Rare, threatened, endangered, and SOSC	Sea level rise	Decreased habitat and species disruption due to less seabed erosion and increased water clarity caused by deepening bathymetry	Yes					na	Moderate
Fisheries	Sea level rise	Decreased habitat and species disruption due to less seabed erosion and increased water clarity caused by deepening bathymetry	Yes					na	Moderate
Exotic and invasive species	Sea level rise	Reduction in upland exotic and invasive species due to rising water table and sea level (inundation, erosion)	Yes					na	Moderate
Archeological resources	Acidification	na							

Final Report Appendix B. Risk Evaluation Consequence/Probability Matrix - Stakeholder Engagement

	1.1.0	Score	•		otakenoraer				
= hig	gher 🛛	= high= moderate	= nc	ot applicab	le				
Organizational goal	Climate Stressor	Risk	Opportunity Co	nsequence	Likelihood	Spatial Extent	Time Horizon	Preliminary Score	Confidence
Public access	Warmer temperature	Decreased recreational activities due to accelerated spread of existing or new viral, bacterial, fungal, and parasitic infections caused by warmer temperature	2		2	3	3	10	High
Public access	Sea level rise	Decreased access due increased presence of navigational obstacles caused by rising sea leve	2		3	3	2	10	High
Public access	Warmer temperature	Decreased recreational activities due to reduced water clarity caused by increased pollutant loadings	2		2	3	2	9	Moderate
Public access	Increased storminess	Decreased recreational activities, especially boating related, due to failure of infrastructure caused by more frequent and intense storm events	2		2	3	2	9	Moderate
Public access	Sea level rise	Decreased access due flooding of land or acces infrastructure caused by rising water table and sea level	s 2		2	3	2	9	Moderate
Dudalla a second	Changes in precipitation	Decreased recreational activities due to increased habitat and species disruption due to polyhaline conditions caused by intervals of higher rainfall and extended periods of drought) 1		2	3	2	8	Moderate
Public access	Warmer temperature	Decreased recreational activities due to warmer temperature	1		1	3	2	7	Moderate
T UDIIC ACCESS	Changes in precipitation	Decreased recreational activities due to increased number of high rainfall events	1		1	3	2	7	Low
Public education and involvement	Warmer temperature	Decreased volunteer participation in activities due to warmer temperature	1		1	3	2	7	Moderate
Public education and involvement	Warmer temperature	Decreased volunteer participation in activities due to learned helplessness and self efficacy issues	1		1	3	2	7	Moderate
Public education and involvement	Changes in precipitation	Decreased volunteer participation in activities due to increased number of high rainfall events	1		1	3	2	7	Low
Public	Changes in	Decreased volunteer participation in activities	1		1	3	2	7	Moderate

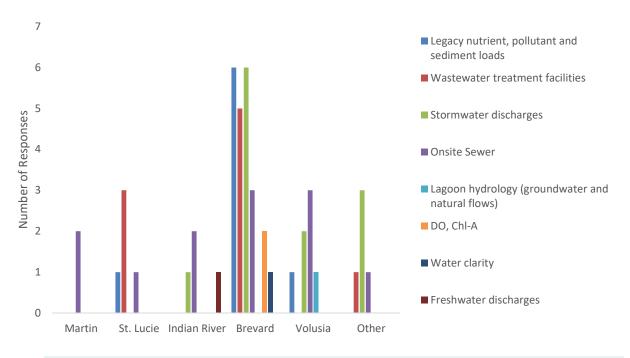
Organizational	Climate	Risk	Opportunity	Consequence	Likelihood	Spatial	Time	Preliminary	Confidence
goal	Stressor					Extent	Horizon	Score	
education and	precipitation	due to learned helplessness and							
involvement		self efficacy issues							
Public	Increased	Decreased volunteer participation in activities		1	1	3	2	7	Low
education and	storminess	due to more frequent and intense		_		-			
involvement		storm events							
Public	Increased	Decreased volunteer participation in activities		1	1	3	2	7	Moderate
education and	storminess	due to learned helplessness and							
involvement		self efficacy issues							
Public	Acidification	Decreased volunteer participation in activities		1	1	3	2	7	Low
education and		due to learned helplessness and							
involvement		self efficacy issues							
Public	Sea level rise	Decreased volunteer participation in activities		1	1	3	2	7	Moderate
education and		due to learned helplessness and							
involvement		self efficacy issues							
Public access	Acidification	na							Moderate

Final Report Appendix B. Risk Evaluation Consequence/Probability Matrix - Stakeholder Engagement


Appendix C – Results of Real-Time Polling

Summary of Surveys and Real-time Polling

Real-time polling and surveys were conducted during four stakeholder engagement meetings in 2018 and through follow-up communication via the IRLNEP. Stakeholder groups included subject matter experts from, for example, estuarine restoration councils, coastal observations, marine engineering, and local, state and federal government; each representing a respective constituency. Survey results are summarized in the following sections. Results represent a total (non-redundant) sample size of 66 respondents. These results were used by the project team as a means of ensuring the results of the risk-based vulnerability assessment were appropriately informed by stakeholders within the IRL watershed.


Focus Areas for Management Practices – Water and Sediment Quality

Respondents were asked to choose a single management target associated with sediment and water quality that was most important and could be realistically addressed. Stormwater discharges and onsite were most commonly selected by respondents, accounting for 27% and 24% of responses. **Figure C-1** shows the breakdown of responses by target option.

Figure C-1. Targets for Management Actions – sediment and water quality

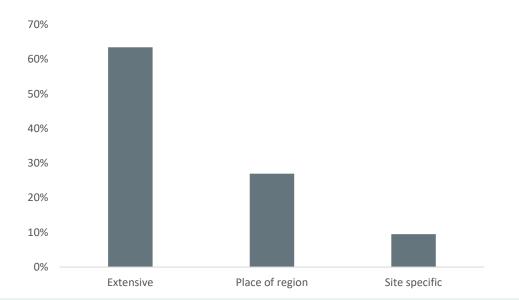

The breakdown of most important targets by county is shown in **Figure C- 2 (a**lthough it is important to note that the county-level breakdown has to be interpreted in the context of the varied level of response by county).

Figure C- 2: Most Important Targets by County – sediment and water quality

Scale of Impact, Time Horizon, Effects and Cost of Management Practices –water and sediment quality

The majority of respondents (63%) indicated that the effects of their chosen management targets would most likely be extensive, meaning that most of the watershed or estuary would be affected. About a quarter of respondents indicated that the place of region (e.g community, harbor, state park, wildlife refuge, sub-watershed) would be most impacted, while 10% indicated sites (e.g. a few waterfront lots, a bridge, a sewage treatment plant) would be affected (**Figure C- 3**). Respondents most commonly indicated that likely impacts would occur over the next 5 to 10 years (45% of responses; **Figure C- 4**). Concerning costs of the interventions associated with their selected management target, 70% of respondents indicated that cost of implementation is a major barrier and external sources for funding would be needed (**Figure C- 5**). The remaining 30% indicated that the funding needed is reasonable and local sources should be sufficient.

Figure C- 3: Spatial Extent of Impacts of Chosen Management Targets – Sediment and Water Quality



Figure C- 4: Timing of impacts of chosen management targets – sediment and water quality

Impact of Climate on Management Targets – Water and Sediment Quality

Respondents were asked to consider how six potential climate stressors would affect their selected management target to address water and sediment quality. Changes in precipitation (35% of responses) and sea level rise (23% of responses) were most commonly selected (**Figure C- 6**). Prioritization as a function of stakeholder geography is illustrated in **Figure C- 7**.

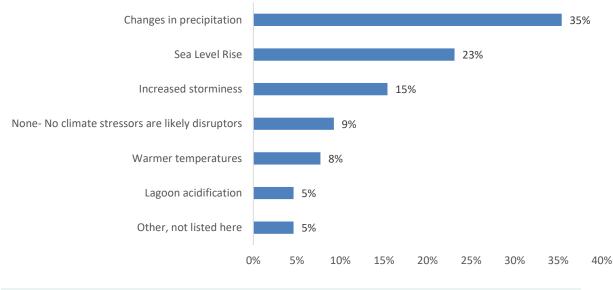


Figure C- 6. Potential Climate Stressors – sediment and water quality

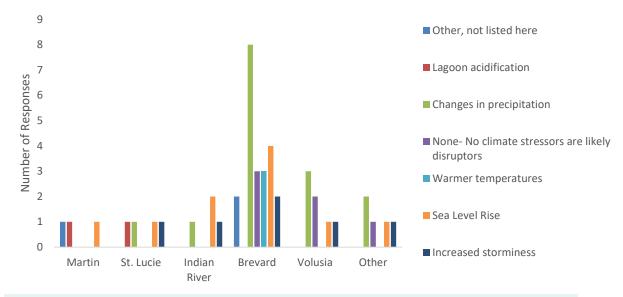


Figure C- 7. Potential Climate Stressors by County – Sediment and Water Quality

Survey respondents reported on the likelihood of occurrence of the climate stressor they selected as the most concerning. Medium confidence (40% of respondents) and high confidence (also 40% of respondents) were selected as the perceived likelihood of occurrence of the most-concerning climate stressor (Figure C-8). If the climate stressor did occur, the majority of survey respondents indicated that there would be moderate consequences in terms of impacts on their selected management target associated with water and sediment quality (Figure C-9).

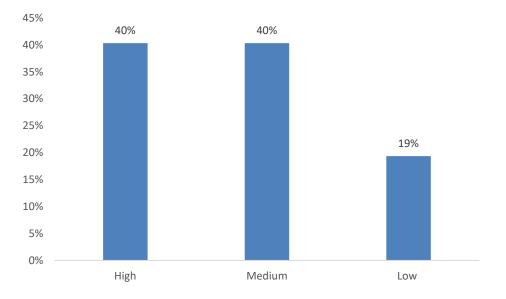


Figure C- 8: Likelihood Climate Stressor Will Occur – Sediment and Water Quality

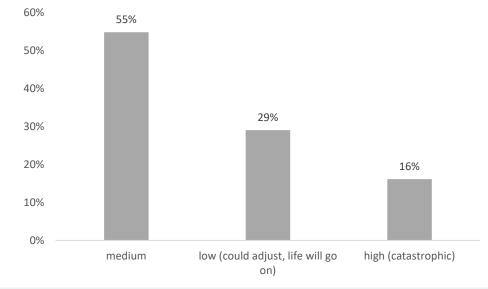
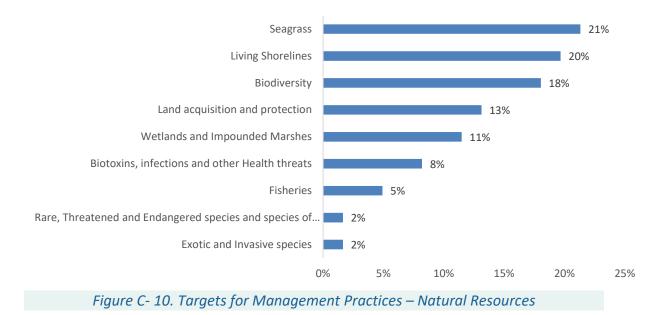
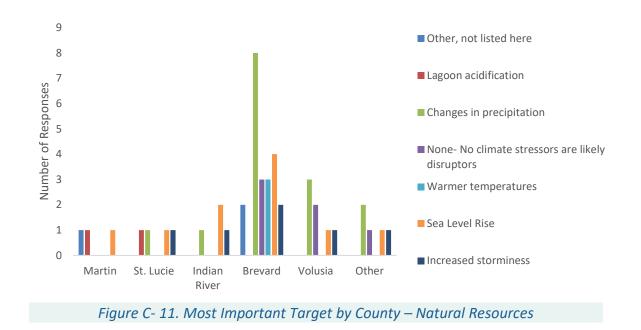
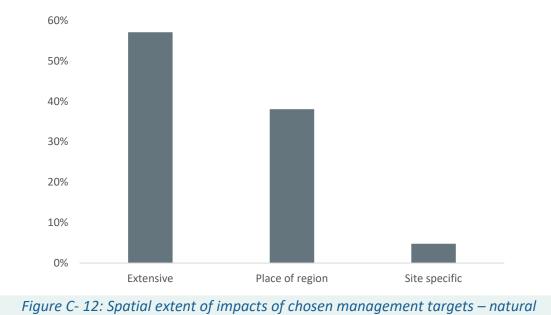




Figure C- 9: Consequences of Climate Stressor – sediment and water quality

Focus Areas for Management Practices – Natural Resources

Stakeholders were asked to select their top management target associated with natural resources. Management initiatives associated with seagrass (21% of responses), living shorelines (20% of responses), and biodiversity (18%) were the top three targets chosen. **Figure C- 10** shows the breakdown of responses by target option and **Figure C- 11** shows the breakdown by target option and by county.



Scale of Impact, Time Horizon, Effects and Cost of Management Practices – Natural Resources

Respondents most commonly indicated that the effect of their chosen management initiatives would most likely be extensive, meaning that it would impact most of the watershed or estuary (57% of responses) (**Figure C- 12**).

Respondents most commonly indicated that the likely impacts of their chosen natural resources' management target would occur in 10+ years (38% of responses). Overall, the estimates of impact timing were relatively even in distribution: 5-10 years (35% of responses and less than 5 years (27% of responses) (**Figure C- 13**).

resources

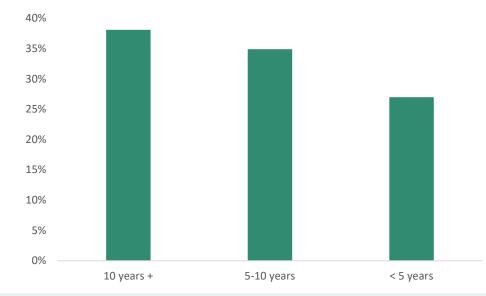
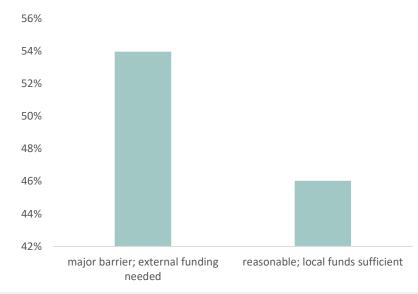



Figure C- 13. Timing of impacts of chosen management targets – Natural Resources

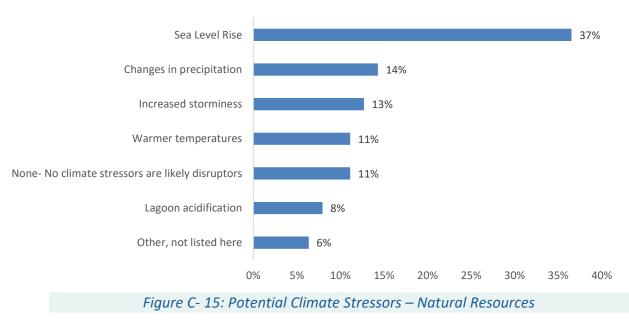

Concerning costs of the interventions associated with their selected management target, respondents were split on what the cost to implement their select management targets would be. Fifty-four % indicated that cost would be a major barrier and external sources for funding would be needed, and the remaining 46% indicated that the funding needed is reasonable and that local sources would be sufficient (**Figure C- 14**).

Figure C- 14. Perception of costs of chosen management targets – natural resources

Impact of Climate on Management Plans – Natural Resources

Respondents reported which climate stressor would most likely impact their chosen management approach associated with natural resources. Sea level rise was the leading perceived climate stressor to management targets (37% of the respondents), followed by precipitation changes (14% of responses) and increased storminess (13% of responses; **Figure C- 15**). Prioritization as a function of stakeholder geography is illustrated in **Figure C- 16**.

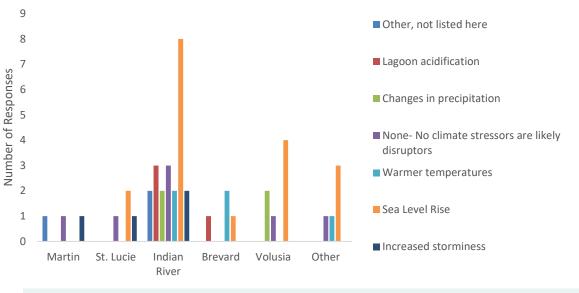


Figure C- 16: Potential Climate Stressors by county – Natural Resources

Survey respondents reported on the likelihood of occurrence of the climate stressor they selected as the most concerning to their chosen management target associated with natural resources. Medium confidence (40% of respondents) and high confidence (38% of respondents) were selected as the perceived likelihood of occurrence of the most-concerning climate stressor (**Figure C- 17**). If the climate stressor did occur, the majority of respondents (52%) indicated that the consequences would be moderate (**Figure C- 18**).

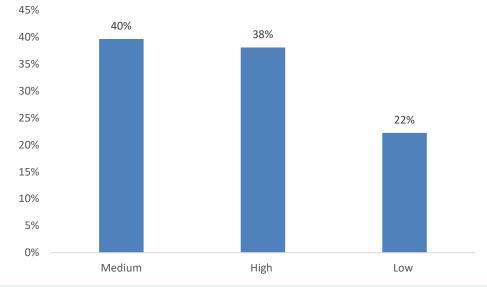
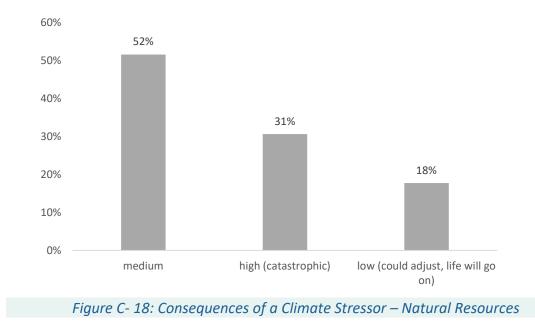



Figure C- 17: Likelihood Climate Stressor Will Occur – Natural Resources

Focus Areas for Management Practices – Stakeholder Engagement

During real-time polling exercises, respondents were asked to pick a third most important target that could effectively be addressed with management. The following section is an analysis of their responses.

Public education and involvement were widely selected that chosen target to improve stakeholder engage (92% of responses). **Figure C- 19** shows the breakdown of responses by target option. The breakdown of most important targets by county is shown in **Figure C- 20**.

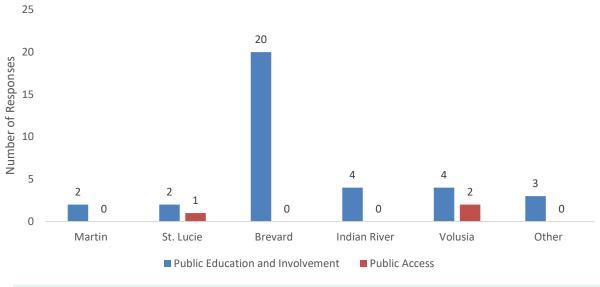
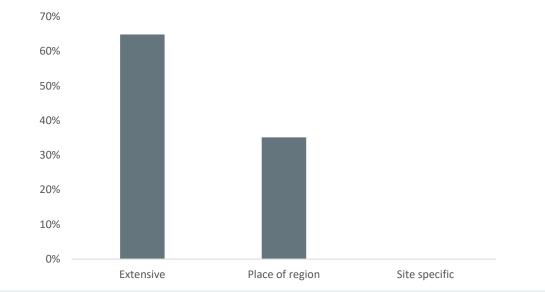
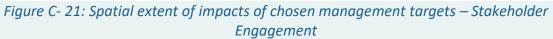




Figure C- 20: Most Important Target by County – Stakeholder Engagement

Scale of Impact, Time Horizon, Effects and Cost of Management Practices – Stakeholder Engagement

The majority of respondents believe that the effect of the potential management plans would most likely be extensive, meaning that it would impact most of the watershed or estuary. About two-thirds of respondents indicated that the secondary effects of their chosen management target would be extensive (65% of responses) (**Figure C- 21**). Most of respondents believe that the management plans would have an immediate impact (less than 5 years; **Figure C- 22**). Concerning costs to implement their selected stakeholder engagement target, 54% of respondents indicated that the funding needed is reasonable and that local sources would be sufficient (**Figure C- 23**).

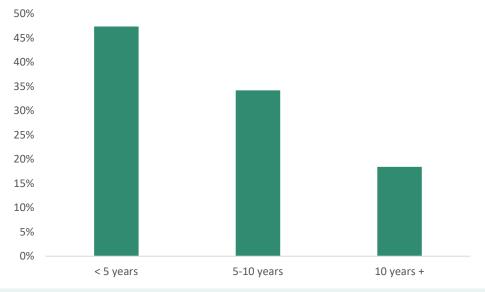


Figure C- 22: Timing of Impacts of Chosen Management Targets – Stakeholder Engagement

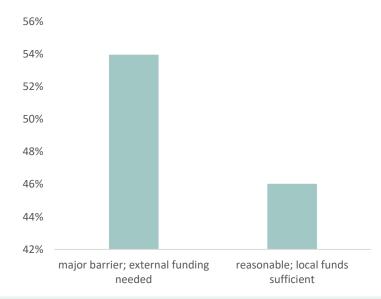
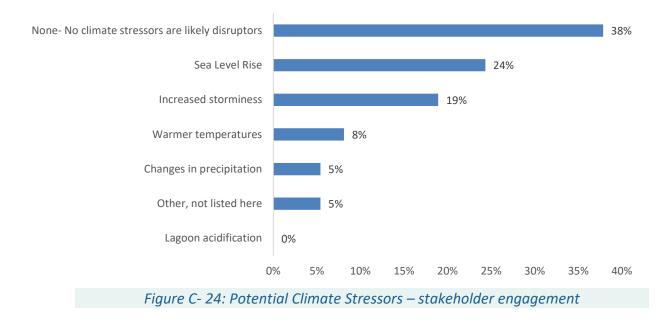
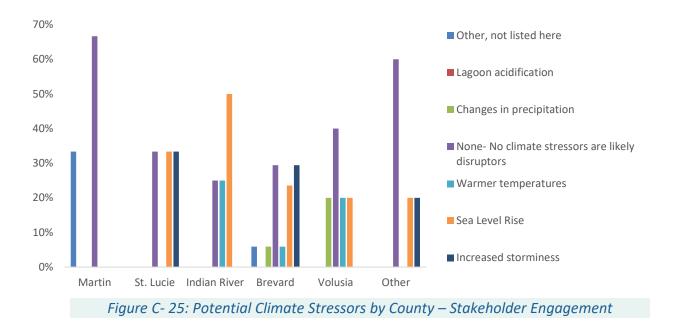




Figure C- 23: Perception of costs of chosen management targets – stakeholder engagement

Impact of Climate on Management Plans – Stakeholder Engagement

Respondents reported which climate stressor would most likely impact the management approach they chose, with 38% of the respondents indicating that no climate stressors would influence management plans and 24% of respondents indicating that sea level rise would likely influence their chosen management target (Figure C- 24). Prioritization as a function of stakeholder geography is illustrated in Figure C- 25).

Survey respondents mainly believe that the occurrence of a climate stressor is low. The perceived likelihood of occurrence of the most-concerning climate stressor were as follows: 33% of respondents believe the likelihood is high that a climate stressor will occur, 21% believe the likelihood is medium and 46% believe the likelihood is low (less than 25%), as shown in **Figure C- 26**. If a climate stressor were to occur, respondents most commonly indicated the consequences associated with stakeholder engagement would be low (44% of responses; **Figure C- 27**).

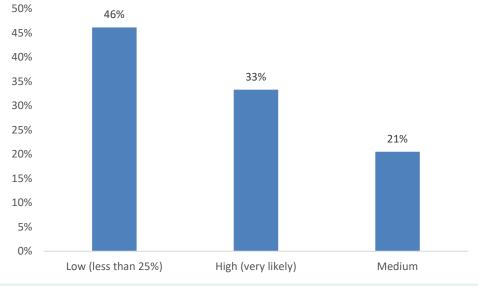



Figure C- 26: Likelihood Climate Stressor Will Occur – Stakeholder Engagement

