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ABSTRACT

This paper describes a time-sensitive approach to climate change projections thatwas developed as part ofNew
York City’s climate change adaptation process and that has provided decision support to stakeholders from 40
agencies, regional planning associations, and private companies. The approach optimizes production of pro-
jections given constraints faced by decision makers as they incorporate climate change into long-term planning
and policy. NewYorkCity stakeholders, who arewell versed in riskmanagement, helped to preselect the climate
variables most likely to impact urban infrastructure and requested a projection range rather than a single ‘‘most
likely’’ outcome. The climate projections approach is transferable to other regions and is consistent with broader
efforts to provide climate services, including impact, vulnerability, and adaptation information. The approach
uses 16 GCMs and three emissions scenarios to calculate monthly change factors based on 30-yr average future
time slices relative to a 30-yrmodel baseline. Projecting thesemodelmean changes onto observed station data
for New York City yields dramatic changes in the frequency of extreme events such as coastal flooding and
dangerous heat events. On the basis of these methods, the current 1-in-10-year coastal flood is projected to
occur more than once every 3 years by the end of the century and heat events are projected to approximately
triple in frequency. These frequency changes are of sufficient magnitude to merit consideration in long-term
adaptation planning, even though the precise changes in extreme-event frequency are highly uncertain.

1. Introduction

This paper describes a methodological approach to
stakeholder-driven climate hazard assessment developed
for theNewYork,NewYork,metropolitan region (Fig. 1).

The methods were developed in support of the New York
City Panel on Climate Change (NPCC; Rosenzweig and

Solecki 2010). The NPCC is an advisory body to New

York City’s Climate Change Adaptation Task Force

(CCATF), formed byMayorMichael Bloomberg in 2008

and overseen by the Mayor’s Office of Long Term Plan-

ning and Sustainability. As described in Rosenzweig and

Solecki (2010), the CCATF is composed of stakeholders

from 40 city and state agencies, authorities, regional
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planning associations, and private companies, divided
into four infrastructure working groups (communication,
energy, transportation, and water and waste) and one
policy working group.
The CCATF effort was motivated by the fact that the

population and critical infrastructure of New York City
(NYC) are exposed to a range of climate hazards, with
coastal flooding associated with storms and sea level rise
themost obvious threat. Approximately 7% (11%) of the
NYC area is within 1 m (2 m) of sea level (Weiss et al.
2011). A recent study ranked NYC seventh globally
among port cities in exposed population and second
globally in assets exposed to storm-surge flooding and
high winds (Nicholls et al. 2008). Furthermore, because
NYC, like much of the United States (ASCE 2009), has
aging infrastructure, climate vulnerability may be en-
hanced. By showing leadership in the infrastructure ad-
aptation process, the NYC effort may be able to provide
lessons to other cities as they plan adaptation strategies.
Stakeholder input regarding climate information was

collected in several ways. Between September of 2008
and September of 2009, each CCATF sector working
group held monthly meetings in conjunction with the
Mayor’s Office of Long Term Planning and Sustain-
ability. During the initial meetings, representatives from
each sector identified key climate hazards; they also
interacted iteratively with the scientists, seeking clarifi-
cation and requesting additional information. They com-
mented on draft documents that describe the region’s
climate hazards, and climate seminars were held with in-
dividual agencies as requested. The climate hazard

assessment process was facilitated by prior collaborative
experience between the NPCC’s climate scientists and
stakeholders in earlier assessments, including the Metro
East Coast Study (Rosenzweig and Solecki 2001), as
well as work with the New York City Department of
Environmental Protection (NYCDEP; NYCDEP 2008;
Rosenzweig et al. 2007) and the Metropolitan Trans-
portation Authority (MTA; MTA 2007).
The climate hazard approach is tailored toward im-

pact assessment; it takes into consideration the resource
and time constraints faced by decision makers as they
incorporate climate change into their long-term plan-
ning. For example, the formal write-up of the climate
risk information was neededwithin less than 8months of
the NPCC’s launch (National Research Council 2009);
given this time frame and the broad array of stake-
holders in the CCATF, a standardized set of climate
variables of broad interest was emphasized, with the un-
derstanding that future studies could provide climate in-
formation tailored to unique applications.1

Within this framework, the NPCC worked with stake-
holders to preselect for analysis those climate variables
and metrics that are most likely to impact existing

FIG. 1. Satellite map of the New York metropolitan region. Shown on the map are the Central
Park weather station (circle) and the Battery tide gauge (triangle). Source: Esri World Imagery.

1 For example, a tailored assessment of changes in snow depth
and timing of snowmelt in the Catskill Mountains approximately
100 mi (160 km) north of NYC (NYCDEP 2008) would be of
interest to managers of only a small but important subset of
infrastructure—reservoirs and water tunnels. Such a finescale
assessment would benefit from more complex downscaling ap-
proaches than those applied here.
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assets, planned investments, and operations (Horton
and Rosenzweig 2010). For example, the number of
days below freezing was identified as an important
metric for many sectors because of the impacts of
freeze–thaw cycles on critical infrastructure (this pro-
cess took place over 2008–09 at CCATF and working
group meetings of the Mayor’s Office of Long Term
Planning and Sustainability). Because of the diversity of
agencies, projections were requested for multiple time
periods spanning the entire twenty-first century.
Stakeholders also helped to determine the presenta-

tion of climate hazard information. Because NYC stake-
holders are used to making long-term decisions under
uncertainty associated with projections of future reve-
nues, expenditures, and population trends, for example,
they (CCATF) preferred projection ranges to a single
‘‘most likely’’ value.
Itemized risks associated with each climate variable

were ultimately mapped to specific adaptation strategies.
For example, more frequent and intense coastal flooding
due to higher mean sea level was linked to increased
seawater flow into New York City’s gravity-fed and low-
lying wastewater pollution control plants, resulting in
reduced ability to discharge treated effluent (Rosenzweig
and Solecki 2010; NYCDEP 2008). NYCDEP is reducing
the risk at the Far Rockaway Wastewater Treatment
Plant by raising pumps and electrical equipment to 14 ft
(4.3 m) above sea level on the basis of the projections
described here (NewYorkCityOffice of theMayor 2009).
Climate hazard assessment was only one component

of the NPCC’s impact and adaptation assessment. Vul-
nerability of infrastructure (and the populations that
rely on it) to climate impacts can be driven asmuch by its
state of repair (and how it is used) as by climate hazards
(National Research Council 2009). Climate adaptation
strategies should be based on many nonclimate-related
factors, such as cobenefits (e.g., some infrastructure in-
vestments that reduce climate risks will also yield more
efficient and resilient infrastructure in the face of non-
climate hazards; National Research Council 2010a) and
cocosts (e.g., adapting by using more air conditioning in-
creases greenhouse gas emissions). NPCC experts in
the risk management, insurance, and legal fields pro-
vided guidance on these broader issues of vulnerability
and adaptation, developing, for example, an eight-step
adaptation assessment process and templates for rank-
ing relative risk and prioritizing adaptation strategies
(Rosenzweig and Solecki 2010). This paper focuses on
the provision of stakeholder-relevant climate informa-
tion in support of the broader NPCC assessment.
Section 2 describes the method used for the NPCC’s

climate hazard assessment. Section 3 compares climate-
model hindcasts with observational results for the New

York metropolitan region. Hindcast results are a re-
curring stakeholder request, and they helped to inform
the global climate model (GCM)–based projection
methods. Section 4 documents the regional projections
in the context of stakeholder usability. Section 5 covers
conclusions and recommendations for future work.

2. Methods

a. Observations

Observed data are from two sources. Central Park
station data from the National Oceanic and Atmospheric
Administration National Climatic Data Center U.S. His-
torical ClimatologyNetwork, version 1, dataset (Karl et al.
1990; Easterling et al. 1999; Williams et al. 2005) formed
the basis of the historical analysis and projections of tem-
perature and precipitation. Gridded output corresponding
to NYC from the National Centers for Environmental
Prediction–U.S. Department of Energy (NCEP–DOE)
Reanalysis 2 dataset (Kanamitsu et al. 2002) is also used
for GCM temperature validation (section 3).

b. Climate projections: General approach

1) GLOBAL CLIMATE MODELS AND EMISSIONS

SCENARIOS

Climate projections are based on the coupled GCMs
used for the Intergovernmental Panel on Climate Change
Fourth Assessment Report (IPCC AR4; Solomon et al.
2007). The outputs are provided by the World Cli-
mate Research Programme (WCRP) Coupled Model
Intercomparison Project, phase 3, (CMIP3) multimodel
dataset (Meehl et al. 2007a). Of 23 available GCM con-
figurations from 16 centers, selected were the 16 GCMs
that had available output for all three emissions scenarios
(‘‘A2,’’ ‘‘A1B,’’ and ‘‘B1’’) from the IPCC Special Report
on Emissions Scenarios (SRES; Nakicenovic et al. 2000)
and that were archived by the WCRP (Table 1).
The 16 GCMs and three emissions scenarios com-

bine to produce 48 output sets. The 48 members yield a
model- and scenario-based distribution function that is
based on equal weighting of each GCM and emissions
scenario. The model-based results should not be mis-
taken for a statistical probability distribution (Brekke
et al. 2008) for reasons including the following: 1) no
probabilities are assigned by the IPCC to the emissions
scenarios2; 2) GCMs are not completely independent,

2 It has been argued that, because high growth rates of global
anthropogenic carbon dioxide emissions (3.4% yr21 between 2000
and 2008; Le Quere et al. 2009) led to 2008 estimated emissions
reaching the levels of the highest SRES scenario (‘‘A1FI’’), other
SRES scenarios may be unrealistically low.
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with many sharing portions of their code and a couple
differing principally in resolution only; and 3) theGCMs
and emissions scenarios do not sample all possible out-
comes, which include the possibility of large positive ice-
albedoand carbon-cycle feedbacks, in addition to uncertain
aerosol effects. Caveats notwithstanding, the model-based
approach has the advantage (relative to projections based
on single numbers) of providing stakeholders with a
range of possible outcomes associated with uncertainties
in future greenhouse gas concentrations, other radiatively
important agents, and climate sensitivity (National Re-
search Council 2010b).
Some authors (e.g., Smith et al. 2009; Tebaldi et al.

2005; Greene et al. 2006; Brekke et al. 2008; Giorgi and
Mearns 2002) have explored alternate approaches that
weight GCMs on the basis of criteria that include hind-
casts of regional climate or key physical processes. There
are several reasons why that more complex approach is
eschewed here in favor of equal GCM weighting. First,
because model ‘‘success’’ is often region specific and
variable specific and because stakeholders differ in their
climate variables and geographical ranges of interest,3

production of consistent scenarios that are based onmodel
weighting is a major research effort beyond the scope of
NYC’s initial assessment. Second, although long-term
research could be geared toward developing optimized
multivariate (and/or multiregion) weighting, research
suggests that compensating biases tend to yield compa-
rable model performance (Brekke et al. 2008). Third,

historical accuracy may have been achieved for the
‘‘wrong’’ reasons (Brekke et al. 2008) and GCM hind-
casts did not share identical forcing, especially with re-
spect to aerosols (Rind et al. 2009). Fourth, shifting
climate processes with climate change may favor dif-
ferent models in the future. Fifth, the elimination of
ensemble members reduces the representation of un-
certainty relating to climate sensitivity.

2) TIME SLICES

Because current-generation GCMs used for climate
change applications have freely evolving ocean and at-
mospheric states, they are most appropriate for detec-
tion of long-term climate and climate change signals. The
30-yr time slice applied here is a standard time scale
(World Meteorological Organization 1989) that repre-
sents a middle ground, allowing partial cancellation of
currently unpredictable interannual-to-interdecadal vari-
ability (achieved by including many years) while
maintaining relatively monotonic anthropogenically in-
duced forcing trends (achieved by including few years).
The ‘‘1980s’’ time slice represents baseline conditions
between 1970 and 1999; future time slices for the 2020s,
2050s, and 2080s are similarly defined.

3) CLIMATE CHANGE FACTORS AND THE DELTA

METHOD

Mean temperature change projections are expressed
as differences between each model’s future time-slice
simulation and its baseline simulation; mean precipi-
tation is based on the ratio of a given model’s future to
its baseline values. This approach offsets a large source
of model bias: poor GCM simulation of local baseline

TABLE 1. Acronym, host center, atmosphere and ocean gridbox resolution, and reference for the 16 GCMs used in the analysis.

Model acronym Institution

Atmospheric
resolution
(lat 3 lon)

Oceanic
resolution
(lat 3 lon) References

BCCR-BCM Bjerknes Center for Climate Research (Norway) 1.9 3 1.9 0.5–1.5 3 1.5 Furevik et al. (2003)
CCSM National Center for Atmospheric Research 1.4 3 1.4 0.3–1.0 3 1.0 Collins et al. (2006)
CCCMA-CGCM Canadian Centre for Climate Modeling and Analysis 2.8 3 2.8 1.9 3 1.9 Flato (2010)
CNRM National Weather Research Center, Météo-France 2.8 3 2.8 0.5–2.0 3 2.0 Terray et al. (1998)
CSIRO_Mk3 CSIRO Atmospheric Research (Australia) 1.9 3 1.9 0.8 3 1.9 Gordon et al. (2002)
MPI-ECHAM5 Max Planck Institute for Meteorology 1.9 3 1.9 1.5 3 1.5 Jungclaus et al. (2006)
MIUB-ECHO-G Meteorological Institute of the University of Bonn 3.75 3 3.75 0.5–2.8 3 2.8 Min et al. (2005)
GFDL-CM2.0 Geophysical Fluid Dynamics Laboratory 2.0 3 2.5 0.3–1.0 3 1.0 Delworth et al. (2006)
GFDL-CM2.1 Geophysical Fluid Dynamics Laboratory 2.0 3 2.5 0.3–1.0 3 1.0 Delworth et al. (2006)
GISS NASA Goddard Institute for Space Studies 4.0 3 5.0 4.0 3 5.0 Schmidt et al. (2006)
INMCM Institute for Numerical Mathematics (Russia) 4.0 3 5.0 2.0 3 2.5 Volodin and Diansky (2004)
IPSL Pierre Simon Laplace Institute (France) 2.5 3 3.75 2.0 3 2.0 Marti et al. (2005)
MIROC Frontier Research Center for Global Change (Japan) 2.8 3 2.8 0.5–1.4 3 1.4 K-1 Model Developers (2004)
MRI-CGCM Meteorological Research Institute (Japan) 2.8 3 2.8 0.5–2.0 3 2.5 Yukimoto and Noda (2003)
PCM National Center for Atmospheric Research 2.8 3 2.8 0.5–0.7 3 1.1 Washington et al. (2000)
UKMO-HadCM3 Hadley Center for Climate Prediction, Met Office 2.5 3 3.75 1.25 3 1.25 Johns et al. (2006)

3 NYC’s task force included corporations with national and
international operations.
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conditions (section 3b) arising from a range of factors,
including the large difference in spatial resolution be-
tween GCM grid boxes and station data.
Because monthly averages from GCMs are generally

more reliable than daily output (Grotch andMacCracken
1991), monthly mean GCM changes were projected onto
observed 1971–2000 daily Central Park data for the cal-
culation of extreme events.4 This simple and low-cost
downscaling approach is known as the delta method
(Gleick 1986; Arnell 1996; Wilby et al. 2004). Like more
complex statistical downscaling techniques (e.g., Wigley
et al. 1990), the delta method is based on stationarity
(e.g., Wilby et al. 1998, 2002; Wood et al. 2004) and
largely excludes the possibility of large variance changes
through time, although for the northeasternUnited States
such changes are uncertain.5

More complex statistical approaches, such as those that
empirically link large-scale predictors from a GCM to
local predictands (e.g., Bardossy and Plate 1992) may
yield more nuanced downscaled projections than does
the delta method. These projections are not necessarily
more realistic, however. Historical relationships between
large-scale predictors and more impacts-relevant local
predictandsmaynot be valid in a changing climate (Wilby
et al. 2004). GCM development and evaluation have also
historically been more focused on seasonal and annual
climatological distributions than on the daily and inter-
annual distributions that drive analog approaches. Table 2
provides a set of stakeholder questions to inform the
choice of downscaling technique—a topic that is dis-
cussed further in section 5.

4) SPATIAL EXTENT

The projections are for the land-based GCM grid box
covering NYC. As shown in Fig. 2, the 30-yr averaged
mean climate changes are largely invariant at subregional
scales; the single gridbox approach produces results that
are nearly identical to those of the more complex meth-
ods that require extraction of data from multiple grid
boxes and weighted spatial interpolation. As shown in
section 4d, for the metrics evaluated in this study, the
GCM gridbox results also produce results that are com-
parable to those of finer-resolution statistically and dy-
namically downscaled products. Because baseline climate
(as opposed to projected climate change) does differ

dramatically over small spatial scales (because of factors
such as elevation and surface characteristics), and be-
cause these finescale spatial variations by definition can-
not be captured by coarse-resolutionGCMs,GCMchanges
are trained onto observed Central Park data using the
procedures described in section 2b(3).

5) NUMBER OF SIMULATIONS

For 13 of the 16 GCMs’ climate of the twentieth
century and future A1B experiments, and for the cli-
mates of 7 of the 16 B1 and A2 future experiments,
multiple simulations driven by different initial condi-
tions were available. Analysis of hindcasts and pro-
jections (Table 3) from the available National Center for
Atmospheric Research (NCAR) Community Climate
System Model (CCSM) coupled GCM simulations6 re-
vealed only minor variations in 30-yr averages, sug-
gesting that one simulation permodel is sufficient. Using
an ensemble for each GCM that is based on all of the
available simulations with that GCM is an alternative
approach; the effort and data storage needs may not be
justified, however, given the similarity of the ensemble
and individual simulation results shown in Table 3. Fur-
thermore, ensemble averaging unrealistically shrinks the
temporal standard deviation.7

c. Climate projections: Sea level rise

To address large uncertainties associated with future
melting of ice sheets, two projectionmethods for sea level
risewere developed. Thesemethods are referred to as the
IPCC-based and rapid ice melt scenarios, respectively.

1) IPCC AR4-BASED APPROACH

The IPCC AR4 approach (Meehl et al. 2007b) was
regionalized for NYC, utilizing four factors that con-
tribute to sea level rise: global thermal expansion, local
water surface elevation, local land uplift/subsidence, and
global meltwater.8 Thermal expansion and local water
surface elevation terms are derived from the GCMs
(outputs were provided through the courtesy of WCRP
and Dr. J. Gregory 2007, personal communication).
Local land subsidence is derived from Peltier (2001) and
Peltier’s ‘‘ICE-5G,’’ version 1.2, ice model (from 2007)
(obtained online at http://www.pol.ac.uk/psmsl/peltier/
index.html). The meltwater term was calculated using

4 For coastal flooding and drought, the twentieth century was
used as a baseline because of high interannual/multidecadal vari-
ability and policy relevance of 1-in-100-yr events.

5 An exception may be short-term precipitation variance, which
is expected to increase regionally with the more intense pre-
cipitation events associated with amoister atmosphere (e.g., Emori
and Brown 2005; Cubasch et al. 2001; Meehl et al. 2005).

6 This GCMwas selected because it provided the most twentieth-
and twenty-first-century simulations.

7 This is a general criticism; for the particular case in which the
delta method is used (as here), shrinking of the temporal standard
deviation has no bearing on the results.

8 Only sevenGCMs provided outputs for projections of sea level
rise; seeHorton andRosenzweig (2010) for additional information.
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TABLE 2. Checklist of questions to inform selection of climate hazard assessment and projection methods.

Question Possible implication for choice of method, plus NYC context

1) Are high-quality historical data available
for a long time period?

When few high-quality historical climate data are available, options for
projections are extremely limited. Records of at least several decades
are needed to sample the range of natural variability. As regional
climate models (RCM) continue to improve, use of raw outputs from
RCMs may increasingly be used in such regions, since bias correction
and statistical approaches are not feasible without historical climate
data. This was not an issue in data-rich NYC.

2) Are projections needed for the entire
twenty-first century?

If yes, this may preclude RCMs because of computational expense. This
was an important consideration for NYC, since some sectors such as
telecommunications were focused on the 2020s time slice while others
such as Port Authority of New York and New Jersey manage
infrastructure that is expected to last until 2100.

3) Are multiple emissions scenarios needed—for
example, to emphasize how mitigation can
complement adaptation?

If yes, RCMs may not be the best approach, since computational expense
generally precludes the use of more than one or two scenarios. This
was an important consideration in NYC, since the adaptation effort
was part of a broader sustainability effort (‘‘PlaNYC’’) that embraced
greenhouse gas mitigation.

4) Are a large group of GCMs and initializations
required, so as to sample a broad range of global
climate sensitivities and estimates of within-GCM
variability, respectively?

If yes, RCMs may not be the best approach, since computational expense
generally precludes the use of more than a few GCMs or GCM
initializations per RCM. NYC stakeholders expressed interest in the
full range of GCM sensitivities.

5) What climate variables are needed, and are they
available at the necessary spatial and temporal
resolutions within public climate-model archives?

In NYC, relatively few variables were needed and subdaily information
was not required. Additional variable needs at subdaily resolution
might argue for the use of RCM archives such as NARCCAP as
they continue to be populated, instead of archives such as the first
generation of bias-corrected and spatially disaggregated data (BCSD)
(monthly temperature and precipitation only). Although use of public
climate-model archives minimizes cost and time, even archived outputs
generally require at least some bias and/or scale correction and
postprocessing for stakeholder applicability.

6) What level of resources are available, and in what
time frame is the information needed?

Region- and question-specific tailored downscaling efforts, as opposed
to use of archived downscaled products, may not be possible when
resources and time are limited. NYC had substantial resources
available, but the short time frame (;8 months) precluded developing
new tailored downscaling.

7) Are projections needed for a single in-depth sectoral
application and variable in one municipality, or does
a large multisectoral and panregional group of
stakeholders need a coordinated set of scenarios
covering a series of standard variables?

In tailored statistical downscaling the method is optimized to the
particular location and/or variable. When many variables and a larger
region are included, no single optimization method will generally be
best for all variables and locations, potentially leading to inconsistencies
in either methods or projections across variables and locations. In NYC,
the initial emphasis was on generating a common denominator of
consistent scenarios based on consistent methods (the delta method)
to facilitate coordination across 40 stakeholder entities.

8) Are high-frequency climate inputs that are
continuous in time and space required, such
as for input into an impacts model (e.g., a
hydrological model to assess turbidity)?

If an impacts model is to be run with climate outputs, the range of
climate and impact results (rather than just the ‘‘delta’’ mean) will
likely be of interest, which may argue for a downscaling technique
that allows variance to change, such as BCSD. Statistical
downscaling techniques that include weather generators [such as the
Statistical Downscaling Model (SDSM)] may be desirable to create a
long record at the needed resolution that includes a range of extreme
outcomes for planning purposes. The larger the continuous geographic
domain (e.g., a large watershed) is, the greater is the need for caution
regarding weather-generator treatment of spatiotemporal correlation.
Although impacts modeling was not the initial thrust of the NYC
CCATF effort, climate scenarios for impact modeling are being
developed for specific sectors (e.g., NYCDEP 2008).

9) Is the region’s climate characterized by large spatial
heterogeneity?

If not, applying the delta method to a single GCM grid box may be
justifiable for many applications, as it was in NYC.

10) Are modes of variability important and predictable? If not, the use of 30-yr time slices (and the delta method) that emphasize
the signal of greenhouse gases and other radiatively important
agents should be emphasized, as was done for NYC.
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mass-balance temperature-sensitivity coefficients for
the different ice masses on the basis of observed his-
toric relationships among global mean surface air tem-
perature, ice mass, and rates of sea level rise (Meehl
et al. 2007b).9 Regionalization of projections of sea
level rise, on the basis of the four components described
above, has been used in other studies (e.g., Mote et al.
2008).

2) RAPID ICE MELT SCENARIO

Because of large uncertainties in dynamical ice sheet
melting (Hansen et al. 2007; Horton et al. 2008) and
recent observations that ice sheet melting has acceler-
ated within this past decade (e.g., Chen et al. 2009), an
alternative sea level rise scenario was developed. This
upper-bound scenario of sea level rise allowing for rapid
ice melt was developed on the basis of paleo–sea level
analogs, in particular the ;10 000–12 000-yr period of
rapid sea level rise following the end of the last ice age
(Peltier and Fairbanks 2006; Fairbanks 1989). Although
the analog approach has limitations (most notably, the
continental ice supply is much smaller today; Rohling
et al. 2008), past rapid rise is described below because it
may help to inform discussions of upper bounds of fu-
ture sea level rise.
Average sea level rise during this more-than-10 000-yr

period after the last ice age was 9.9–11.9 cm (10 yr)21,
although this rise was punctuated by several shorter epi-
sodes of more rapid sea level rise. In the rapid ice melt

scenario, glaciers and ice sheets are assumed to melt
at that average rate. The meltwater term is applied as
a second-order polynomial, with the average present-
day ice melt rate of 1.1 cm (10 yr)21 for 2000–04 used
as a base. This represents the sum of observed moun-
tain-glacier (Bindoff et al. 2007) and ice-sheet melt
(Shepherd and Wingham 2007) during this period. The
rapid ice melt scenario replaces the IPCC meltwater
term with the modified meltwater term; the other three
sea level terms remain unchanged. This approach does
not consider how rapid ice melt might indirectly in-
fluence sea level in the New York region through future
second-order effects, including gravitational, glacial iso-
static adjustment, and rotational terms (e.g., Mitrovica
et al. 2001, 2009).

d. Climate projections: Extreme events

On the basis of stakeholder feedback, quantitative and
qualitative projections were made using the extreme-
events definitions that stakeholders currently use. For
example, temperature extremes were defined on the
basis of specific thresholds, such as 908F (;328C), that
the NYC Department of Buildings uses to define cooling
requirements, whereas coastal flooding was defined by
frequency of occurrence (Solecki et al. 2010).

1) QUANTITATIVE PROJECTIONS: COASTAL

FLOOD EXAMPLE

The coastal flooding projections are based on changes
inmean sea level, not storms. Projected changes inmean
sea level (using the IPCC AR4-based approach) were
superimposed onto historical data. For coastal flooding,
critical thresholds for decision making are the 1-in-10-yr

FIG. 2. (a) Temperature change (8C) and (b) precipitation change (%) for the 2080s time slice relative to the 1970–99
model baseline, A1B emissions scenario, and 16-GCM ensemble mean.

9 Corrections were not made to account for reductions in glacier
area over time.
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and 1-in-100-yr flood events (Solecki et al. 2010). The
latter metric is a determinant of construction and envi-
ronmental permitting, as well as flood insurance eligi-
bility (Sussman and Major 2010).
The 1-in-10-yr event was defined by using historical

hourly tide data from the Battery tide gauge in lower
Manhattan [http://tidesandcurrents.noaa.gov; for more
information, see Horton and Rosenzweig (2010)]. The
1-in-100-yr flood was analyzed using flood-return-period
curves that are based on data provided by theU.S. Army
Corps of Engineers for the Metro East Coast Regional
Assessment [see Gornitz (2001) for details].
Because interannual variability is particularly large

for rare events such as the 1-in-10-yr flood, a base period
of more than the standard 30 years was used. Similarly,
because each year between 1962 and 1965 was drier in
Central Park than the driest year between 1971 and
2000, the entire twentieth-century precipitation record
was used for the drought analysis. More-rigorous solu-
tions for the rarest events await better predictions of
interannual-to-multidecadal variability, better under-
standing of the relationship between variability at those
time scales and extreme events (e.g., Namias 1966;
Bradbury et al. 2002), and the growing event pool of
realizations with time.

2) QUALITATIVE EXTREME-EVENT PROJECTIONS

The question arose of how best to meet stakeholder
needswhen scientific understanding, data availability, and
model output are incomplete; quantitative projections are
unavailable for some of the important climate hazards
consistently identified by infrastructure stakeholders and/
or are characterized by such large uncertainties as to
render quantitative projections inadvisable. Examples
in theNYC region include ice storms, snowfall, lightning,
intense subdaily precipitation events, tropical storms, and
northeasters. For these events, qualitative information
was provided, describing only the most likely direction
of change and an associated likelihood using the IPCC

Working Group I likelihood categories (Solomon et al.
2007).10 Sources of uncertainty and key historical events
were also described to provide stakeholders with con-
text and the opportunity to assess sectorwide impacts of
historical extremes.

3. GCM hindcasts and observations

The results of the GCM hindcasts and observational
analysis described in this section informed the devel-
opment of the projectionmethods described in section 2.
Stakeholders commonly request hindcasts and historical
analysis (e.g., NYCDEP 2008) because they provide trans-
parency to decisionmakerswhomaybenew to usingGCM
projections as a planning tool.

a. Temperature and precipitation trends

As shown in Table 4, both the observed and modeled
twentieth-century warming trends at the annual and
seasonal scale are generally significant at the 99% level.
Although GCM twentieth-century trends are generally
approximately 50% smaller than the observed trends,
it has been estimated that approximately one-third of
NYC’s twentieth-century warming trend may be due to
urban heat island effects (Gaffin et al. 2008) that are
external to GCMs. Over the 1970–99 period of stronger
greenhouse gas forcing, the observed annual trend was
0.218C (10 yr)21 and the ensemble trend was 0.188C
(10 yr)21.

TABLE 3. NCAR CCSMmean climatological values of available simulations and CCSM ensemble for the grid box covering NYC for the
1970–99 hindcast and for the A1B 2080s (2070–99 average) relative to the same-simulation 1970–99 hindcast.

1970–99 mean
temperature (8C)

1970–99 mean
precipitation (cm)

2080s A1B temperature
change (8C)

2080s A1B precipitation
change (%)

CCSM run1 9.38 98.03 3.44 2.81
CCSM run 2 9.27 91.88 3.32 10.15
CCSM run 3 9.67 92.08 3.03 12.44
CCSM run 5 9.42 94.87 3.24 9.75
CCSM run 6 9.64 95.22 2.75 9.56
CCSM run 7 9.64 91.30 2.96 12.03
CCSM run 9 9.68 94.69 3.01 10.36
CCSM ensemble 9.53 94.10 3.11 9.52

10 Given the large impact of these extreme events on in-
frastructure, stakeholders requested information about likelihood
for comparative purposes (e.g., ‘‘Which is more likely to increase in
frequency: Northeasters specifically or intense precipitation events
generally?’’). Assignment of likelihood to generalized categories
for qualitative extremes (on the basis of published literature and
expert judgment, including peer review) was possible because
predictions are general (e.g., direction of change), as opposed to
the quantitative model-based projections.
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Modeled seasonal warming trends in the past three
decades and both annual and seasonal precipitation
trends over the entire century for NYC generally de-
viate strongly from observations, consistent with prior
results for the Northeast (e.g., Hayhoe et al. 2007). Ob-
served and modeled trends in temperature and pre-
cipitation at a particular location are highly dependent
on internal variability and therefore are highly sensitive
to the selection of years. For example, the 1970–99 ob-
servedCentral Park annual precipitation trendof21.77 cm
(10 yr)21 shifts to 0.56 cm (10 yr)21 when the analysis is
extended through 2007. This is especially true for the
damaging extreme events11 (Christensen et al. 2007) that
are often of particular interest to infrastructuremanagers.

In coupled GCM experiments with a freely evolving
climate system, anomalies associated with climate vari-
ability generally will not coincide with observations, lead-
ing to departures between observed and modeled trends
(Randall et al. 2007).
For stakeholders trained in analyzing recent local

observations, it is challenging but important to empha-
size that 1) trends at continental and centennial time scales
are often most appropriate for identifying the greenhouse
gas signal and GCM performance, since (unpredictable)
interannual-to-interdecadal variability is lower at those
scales (Hegerl et al. 2007), and 2) during the twenty-first
century, higher greenhouse gas concentrations are ex-
pected to increase the role of the climate change signal,
relative to climate variability.

b. Temperature and precipitation
climatological values

Comparison of station data with a GCM grid box is
hindered by the spatial-scale discrepancy; NYC’s low
elevation, urban heat island (see, e.g., Rosenzweig et al.
2006), and land–sea contrasts are not captured by GCMs.
As shown in Fig. 3a, the observed average annual tem-
perature over the 1970–99 period for New York City
exceeds the GCM ensemble value by 2.68C and is higher
than those of all but 2 of the 16 GCMs. When the GCMs
are contrasted with the spatially comparable NCEP–
DOE reanalysis grid box, the annual mean temperature
bias is reduced to 1.18C. The departure of the Central
Park station data from the GCM ensemble is largest in
July and is smallest in January, indicating that the an-
nual temperature cycle at this location is damped in the
GCMs (Fig. 3b).
Although Fig. 3c reveals that the GCM ensemble of

average annual precipitation from 1970 to 1999 is 8%
below observations for Central Park, the ensemble av-
erage lies well within the range of precipitation for NYC
as a whole; GCM precipitation exceeds the LaGuardia
Airport station by 9%. Most of the GCMs are able to
capture the relatively even distribution of monthly pre-
cipitation throughout the year (Fig. 3d).
The above analysis reveals that mean climatological

departures from observations over the hindcast period
are large enough to necessitate bias correction, such as
the delta method as part of theGCMprojection approach,
rather than direct use of model output.

c. Temperature and precipitation variance

1) INTERANNUAL

Of the 16 GCMs, 11 overestimate the 1970–99 in-
terannual standard deviation of temperature relative to
the station data and 10 overestimate it relative to the

TABLE 4. Annual and seasonal temperature [8C (10 yr)21] and
precipitation [cm (10 yr)21] trends for the twentieth century and
1970–99. Shown are observed Central Park station data, the 16
GCM ensemble, and four points on the GCM distribution (lowest,
17th percentile, 83rd percentile, and highest). Only 15 GCMs were
available for the twentieth-century hindcast.

Min 17% 83% Max Ensemble Obs

Twentieth-century temperature
Annual 20.03 0.02 0.12 0.17 0.07* 0.15*
DJF 20.04 0.02 0.16 0.19 0.08* 0.20*
MAM 20.05 20.02 0.12 0.25 0.06* 0.18*
JJA 20.02 0.03 0.11 0.15 0.07* 0.12*
SON 0.00 0.03 0.15 0.18 0.09* 0.08

1970–99 temperature
Annual 20.11 0.10 0.28 0.39 0.18* 0.21
DJF 20.47 20.05 0.35 0.51 0.11 0.76
MAM 20.36 20.15 0.41 0.74 0.14 0.10
JJA 20.01 0.13 0.29 0.44 0.20* 0.05
SON 20.06 0.13 0.50 0.70 0.29* 20.03

Twentieth-century precipitation
Annual 21.22 20.22 0.66 0.76 0.16 1.60
DJF 20.23 20.18 0.27 0.78 0.05 0.27
MAM 20.27 20.13 0.28 0.39 0.10 0.90
JJA 20.69 20.39 0.22 0.35 20.07 20.09
SON 20.25 20.08 0.32 0.46 0.10 0.61

1970–99 precipitation
Annual 23.52 0.02 2.05 5.73 0.87 21.77
DJF 23.21 20.19 1.48 2.94 0.48 20.48
MAM 22.33 21.37 1.05 1.98 20.08 1.55
JJA 22.08 21.33 1.19 1.75 20.03 21.51
SON 21.72 20.55 1.89 2.93 0.48 21.72

* Trend is significant at the 99% level.

11 Among twentieth-century Central Park trends in observed
extremes, only trends in cold extremes have been robust. For the
number of days per year with minimum temperatures below freez-
ing, both the 100-yr trend of22 days (10 yr)21 and the 30-yr trend of
25.2 days (10 yr)21 are significant at the 99% level. GCM hindcasts
of extreme events were not conducted because of the small signal-
to-noise ratio.
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NCEP–DOE reanalysis. The similarities among GCMs,
reanalysis, and station data suggest that spatial-scale
discontinuities may not have a large impact on inter-
annual temperature variance. All 16 GCMs under-
estimate interannual precipitation variability relative
to Central Park observations, and 14 of the 16 GCMs
underestimate variance relative to two other stations
analyzed (Port Jervis and Bridgehampton). The large
difference between the GCMs and station data suggests
that spatial-scale discontinuities, likely associated with
features like convective rainfall that cannot be resolved
by GCMs, may be partially responsible for the relatively
lowmodeled interannual precipitation variance. Observed

interannual temperature variance is greatest in winter—a
pattern not captured by 7 of the 16 GCMs.

2) HIGH FREQUENCY

The daily distribution of observed Central Park tem-
perature (Figs. 4a–c) and precipitation (Fig. 5) was
compared with single gridbox output from 3 of the 16
GCMs used in the larger analysis. The three models were
part of a subset with daily output stored in the WCRP/
CMIP3 repository and were selected because (of the
subset) they featured the highest resolution [coupled
‘‘ECHAM5’’–MaxPlanck Institute forMeteorologyOcean
Model (referred to here as MPI; Jungclaus et al. 2006)

FIG. 3. (a) Mean annual temperature for the NYC region (8C), 1970–99, in each of the 16 GCMs, GCM ensemble, Central Park station
data, and reanalysis (see section 2 for more information). Also shown as hash marks is the interannual standard deviation about the mean
for each of the 19 products. (b) Monthly mean temperature for the NYC region (8C), 1970–99. The two observed products, the GCM
ensemble average, and four points in the GCM distribution (lowest, 17th percentile, 83rd percentile, and highest) are shown. (c) Mean
annual precipitation for the NYC region (cm), 1970–99, in each of the 16 GCMs, GCM ensemble, and Central Park observations. Also
shown as hash marks is the interannual standard deviation about the mean for each of the 18 products. (d)Monthly mean precipitation for
the NYC region (cm), 1970–99. Central Park observations, the GCM ensemble average, and four points in the GCM distribution (lowest,
17th percentile, 83rd percentile, and highest) are shown.
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and Commonwealth Scientific and Industrial Research
Organisation, mark 3.0, model (CSIRO Mk3.0) (re-
ferred to here as CSIRO; Gordon et al. 2002), both at
1.888 latitude3 1.888 longitude] and lowest resolution
[NationalAeronautics and SpaceAdministration (NASA)
Goddard Institute for Space Studies Model E-R (GISS-
ER) (referred to here as GISS; Schmidt et al. 2006), at
48 latitude 3 58 longitude]. Analysis was conducted on
summer [June–August (JJA)] daily maximum tempera-
ture and winter [December–February (DJF)] daily mini-
mum temperature.
Summer maximum temperature distribution for the

region in all three GCMs is narrower than that in the
observations, and the warm tail is more poorly simulated
than is the cold tail. During winter, CSIRO and MPI
underestimate variance relative to the station data while
the GISS GCM has excessive variance.
Figure 5 shows the number of days with precipitation

exceeding 10 mm, which is a level of rainfall that can
trigger combined sewer overflow events at vulnerable
sites in NYC (PlaNYC 2008). Relative to Central Park
data, all three GCMs underestimate the frequency of
daily precipitation above 50 mm—a level of precipita-
tion that can lead to widespread flooding and drainage
problems, including in subways (MTA 2007).
Given that precipitation in GCMs of this class and

spatial resolution is highly parameterized to the gridbox
spatial scale and seasonal/decadal climate time scales,
departures of the distribution from observed daily sta-
tion data can be expected. The low model variance at
daily time scales for temperature and precipitation, and
at interannual time scales for precipitation, reinforces
the need for statistical downscaling approaches such as

FIG. 4. Daily distribution (number of days per year) of (a) all-
year mean, (b) summer (JJA) maximum, and (c) winter (DJF)
minimum temperature anomalies (8C) during 1980–99 for Central
Park observations (solid line) and threeGCMs (CSIRO,GISS, and
MPI).

FIG. 5. Daily distribution (number of days per year) of precipi-
tation (mm) during 1980–99 for Central Park observations (solid
line) and three GCMs (CSIRO, GISS, and MPI). The first bin,
containing less than 10 mm, is not shown.

NOVEMBER 2011 HORTON ET AL . 2257



the delta method that apply monthly meanmodel changes
to observed high-frequency data.

d. Sea level rise

Sea level was also hindcast for the twentieth century,
based on a 1990–99 projection relative to the 1900–04
base period.12 The ensemble average hindcast is a rise of
18 cm, whereas the observed increase at the Battery is
25 cm. The 5-yr average local elevation term in the
models meanders through time, frequently with an am-
plitude of 2–3 cm, with a maximum range over the cen-
tury of approximately 7 cm, suggesting that decadal
variability (primarily in the local elevation term) and
spatial resolution may explain the discrepancy between
models and observations.

4. Future projections

a. Mean temperature and precipitation

1) ANNUAL

Table 5 shows the projected changes in temperature
and precipitation for the 30-yr periods centered around
the 2020s, 2050s, and 2080s relative to the baseline pe-
riod. The values shown are the central range (middle
67%) of the projected model-based changes.
Figure 6 expands upon the information presented in

Table 5 in three ways. First, inclusion of observed data
since 1900 provides context on how the scale of pro-
jected changes associated with forcing from greenhouse
gases and other radiatively important agents compares
to historical variations and trends. Second, tabulating
high and low projections across all 48 simulations provides

a broader range of possible outcomes, which some
stakeholders requested (New York City Climate Change
Adaptation Task Force meetings over 2008–09). Third,
ensemble averaging of results by emissions scenario as
they evolve over time is informative to stakeholders
involved in greenhouse gas mitigation (and adaptation),
because it reveals the large system inertia: not until the
2030s and 2040s do the B1 scenario projections begin to
diverge from A2 and A1B, but thereafter they diverge

TABLE 5.Mean annual changes in temperature and precipitation
for New York City, on the basis of 16 GCMs and three emissions
scenarios. Shown is the central range (middle 67%) of values from
model-based distributions; temperatures ranges are rounded to the
nearest tenth of a degree, and precipitation is rounded to the
nearest 5%.

2020s 2050s 2080s

Air temperature 10.88–1.78C 11.78–2.88C 12.28–4.28C
Precipitation 10%–5% 10%–10% 15%–10%

FIG. 6. Combined observed (black line) and projected (a) tem-
perature (8C) and (b) annual precipitation (mm) for New York
City. Projected model changes through time are applied to the
observed historical data. The three thick lines (red, green, and
blue) show the ensemble average for each emissions scenario
across the 16 GCMs. Shading shows the central 67% range across
the 16 GCMs and three emissions scenarios. The bottom and top
lines, respectively, show each year’s minimum and maximum
projections across the suite of simulations. A 10-yr filter has been
applied to the observed data and model output. The dotted area
between 2003 and 2015 represents the period that is not covered
because of the smoothing procedure.

12 In this calculation, the land subsidence term was identical to
that used for the twenty-first-century projections. The same surface
mass-balance coefficients used by the IPCC, based on global av-
erage temperature changes over a 1961–2003 baseline, were used
for the 1900–04 base period, which likely leads to a slight over-
estimate of the meltwater here. The effect is negligible, though,
because the meltwater term is a minor contributor to the overall
twentieth-century sea level rise.
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rapidly. Thus, a delay in greenhouse gas mitigation ac-
tivities greatly increases the risk of severe long-term cli-
mate change consequences, despite apparent similarity in
the near-term outlook.
Although the precise numbers in Table 5 and Fig. 6

should not be emphasized because of high uncertainty
and the smoothing effects of ensemble averaging, the
stakeholder can see that in the New York metropolitan
region 1) mean temperatures are projected to increase
this century in all simulations, at rates exceeding those
experienced in the twentieth century, 2) although pre-
cipitation is projected to increase slightly in most simu-
lations, the multiyear precipitation range experienced in
the past century as a result of climate variability exceeds
the twenty-first-century climate change signal,13 and 3)
climate projection uncertainties grow throughout the
twenty-first century, in step with uncertainties regarding
future emissions and the climate system response.

2) SEASONAL

Warming in the NYC region is of similar magnitude
for all seasons in theGCMs, although seasonal projections
are characterized by larger uncertainties than are annual

projections (Fig. 7a). The fact that interannual temper-
ature variability is smallest in summer suggests that the
summer warming may produce the largest departures
from historical experience. Some impacts and vulnera-
bilities are also amplified by high temperatures. Energy
demand in NYC is highly sensitive to temperature dur-
ing heat waves, especially because of increased reliance
on air conditioning. This increased demand can lead to
elevated risk of power shortages and failures at a time
when vulnerable populations are exposed to high heat
stress and air pollution (Kinney et al. 2001; Hill and
Goldberg 2001; Hogrefe et al. 2004).
GCMs tend to distribute much of the additional pre-

cipitation during the winter months (Fig. 7b), when water
supply tends to be relatively high and demand tends to
be relatively low (NYCDEP 2008). During September
and October, a time of relatively high drought risk, total
precipitation is projected by many models to decrease
slightly.

b. Sea level rise

Addition of the two regional components leads to
higher projections of sea level rise for the region than
does the global average (by ;15 cm for end-of-century
projections; Meehl et al. 2007b; Peltier 2001). This is due
both to land subsidence and to higher sea level rise along
the northeastern U.S. coast, the latter largely being due
to geostrophic constraints associated with projected weak-
ening of the Gulf Stream (Yin et al. 2009) in the results
of many GCMs (Meehl et al. 2007b).
As shown in Table 6, the projections with the rapid ice

melt scenario diverge from the IPCC-based approach as
the century progresses. The 2100 value of up to ;2 m
associated with this scenario (not shown) is generally

FIG. 7. Seasonal (a) temperature change (8C) and (b) precipitation change (%) projections, relative to the 1970–99
model baseline, based on 16 GCMs and three emissions scenarios for the New York City metropolitan region. The
maximum andminimumare shown as thin solid horizontal lines, the central 67%of values are boxed, and themedian
is the thick solid line inside the boxes.

13 The projection lines in Fig. 6 depict the ‘‘predictable’’ anthro-
pogenic forcing component while capturing some of the uncertainty
associated with greenhouse gas concentrations and climate sensi-
tivity at specific points in time. Because decadal variability is un-
predictable in the Northeast, it was not included in the time-specific-
projection portion of the figure. It was, however, emphasized to
stakeholders that, while interannual variability appears to be greatly
reduced in the projection portion of the figure, the observed portion
(black line) reflects the kind of unpredictable variations that have
been experienced in the past and that likely will exist on top of the
mean change signal in the future.
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consistent with other recent results that roughly con-
strain sea level rise globally (e.g., Pfeffer et al. 2008;
Rahmstorf 2007; Horton et al. 2008; Grinsted et al. 2009;
Rignot and Cazenave 2009) and regionally (Yin et al.
2009; Hu et al. 2009) to between ;1 and ;2 m. The
consistency with other studies supports the usefulness of
;2 m as a high end for a risk-averse approach to cen-
tury-scale infrastructure investments, including bridges
and tunnels, rail lines, and water infrastructure.
At the request of agencies that manage some of these

long-term investments, two presentations were given to
technical staff specifically describing the rapid ice melt
method and projections. Although these and other stake-
holders wanted to know the probability of the rapid ice
melt scenario relative to the IPCC-based method, it was
emphasized that such probability statements are not pos-
sible given current scientific understanding.

c. Extreme events

1) STAKEHOLDER PROJECTIONS BASED ON

THE DELTA METHOD

Table 7 shows projected changes in the frequency of
heat waves, cold events, and coastal flooding in the NYC
region. The baseline average number of extreme events
per year is shown, along with the central range (middle
67%) of the projections. Because the distribution of
extreme events around the (shifting) mean could also
change while mean temperature and sea level rise shift,
stakeholders were strongly encouraged to focus only on
the direction and relative magnitudes of the extreme-
event changes in Table 7.
The key finding for most stakeholders is the extent to

which mean shifts alone can produce dramatic changes
in the frequency of extreme events, such as heat events
and coastal storm surges. On the basis of the central
range, the number of days per year over 908F (;328C) is
projected to increase by a factor of approximately 3 by
the 2080s. The IPCC-based sea level rise projections
alone, without any changes in the historical storm cli-
matological mean and surge levels, lead to a more than
threefold increase in the frequency of the baseline 1-in-
10-yr coastal flood event by the 2080s.
In contrast to relatively homogeneous mean climate

changes, it was emphasized to stakeholders that absolute
extreme-event projections like days below freezing and

TABLE 6. Sea level rise projections for New York City, on the
basis of seven GCMs and three emissions scenarios. Shown is the
central range (middle 67%) of values from model-based distribu-
tions rounded to the nearest centimeter. The scenario for rapid ice
melt is based on recent rates of ice melt in the Greenland andWest
Antarctic Ice Sheets and on paleoclimatic studies. See the text for
details.

2020s 2050s 2080s

IPCC based 15–13 cm 118–30 cm 130–54 cm
Rapid ice melt scenario ;13–25 cm ;48–74 cm ;104–140 cm

TABLE 7. Extreme-event projections. For heat and cold events, shown is the central range (middle 67%) of values from model-based
distributions, on the basis of 16 GCMs and three emissions scenarios. For coastal floods and storms, shown is the central range (middle
67%) of values from model-based distributions, on the basis of seven GCMs and three emissions scenarios. Decimal places are shown for
values of,1 (and for all flood heights). A heat wave is defined as three or more consecutive days with maximum temperature exceeding
908F (;328C).

Extreme event Baseline (1971–2000) 2020s 2050s 2080s

Heat and cold events
No. of days per year with max

temperature .908F (;328C)
14 23–29 29–45 37–64

No. of days per year with max
temperature .1008F (;388C)

0.4 0.6–1 1–4 2–9

No. of heat waves per year 2 3–4 4–6 5–8
Avg duration of heat wave (days) 4 4–5 5 5–7
No. of days per year with min

temperature #328F (08C)
72 53–61 45–54 36–49

Coastal floods and storms*
1-in-10-yr flood to reoccur,

on average, . . .
;once every 10 yr ;once every 8–10 yr ;once every 3–6 yr ;once every 1–3 yr

Flood heights (m) associated with
1-in-10-yr flood

1.9 2.0–2.1 2.1–2.2 2.3–2.5

1-in-100-yr flood to reoccur,
on average, . . .

;once every 100 yr ;once every 65–80 yr ;once every 35–55 yr ;once every 15–35 yr

Flood heights (m) associated with
1-in-100-yr flood

2.6 2.7–2.7 2.8–2.9 2.9–3.2

* Does not include the rapid ice melt scenario.
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days with more than 1 in. (2.54 cm) of precipitation vary
dramatically throughout the metropolitan region, since
they depend, for example, on microclimates associated
with the urban heat island and proximity to the coast. In
a similar way, maps were generated for stakeholders to
show that the surge heights for the open estuary at the
Battery are higher than corresponding heights in more-
protected riverine settings.
It was emphasized to stakeholders that, because of

large interannual variability in extremes, even as the cli-
mate change signal strengthens, years with relatively few
extreme heat events (relative to today’s climatological
mean) will occur. For example, Central Park’s tempera-
tures in 2004 only exceeded 908F twice. The delta method
suggests that not until the middle of this century would
such a relatively cool summer (as 2004) feature more
days above 908F than are typically experienced today.
High year-to-year extreme-event variability may al-

ready give some stakeholders a framework for assessing
sector-specific climate change impacts; even if climate
adaptation strategies for extremes are not already in
place, short-term benefits may be evident to planners.
For example, Central Park in 2010 experienced tem-
peratures of higher than 908F on 32 different days, which
is consistent with projections for a typical year around
midcentury. This suggests that some of the infrastruc-
ture impacts of extreme heat (such as voltage fluctua-
tions along sagging power lines and increased strain on
transportation materials, including rails and asphalt;
Horton andRosenzweig 2010)may have been experienced
in 2010 to an extent that may become typical by mid-
century. Adaptation strategies designed for an extreme
year today (such as a fixed level ofmandatory energy use
reductions and a fixed level of reductions of train speeds)
may be inadequate or unpalatable in the future, however,
because of the increase in frequency, duration, and in-
tensity of extreme heat (as an example) associated with
climate change (e.g., Meehl et al. 2009; Tebaldi et al.
2006; Meehl and Tebaldi 2004).

2) GCM CHANGES IN INTRA-ANNUAL

DISTRIBUTIONS

Because high-frequency events are not simulated well
in GCMs, the results described here were not included
in the NYC adaptation assessment; they are explored
here as an exercise, since there is the possibility of dis-
tributional changes in the future. The daily distribution
of 1) maximum temperatures14 in summer (JJA), and
2) minimum temperatures in winter (DJF) are analyzed

in the threeGCMs described earlier (CSIRO,GISS, and
MPI; section 3d), both for the 1980–99 hindcast and the
2080–99 A1B experiment.
The results indicate that GCM temperature changes

in the region in some cases do reflectmore than a shifting
mean. The intra-annual standard deviation15 of winter
minima decreases in all three GCMs (in two cases by
approximately 10%), whereas summer standard devi-
ation changes are negligible. One tail of a season’s dis-
tribution can bemore affected than the other; as shown in
Fig. 8 for CSIRO, the winter minimum changes are more
pronounced on anomalously cold days than on anoma-
lously warm days. All three GCMs show a larger shift in
the coldest 1% of the distribution than in the warmest
1%. This asymmetry at the 1% tails is most pronounced
in CSIRO, for which the future coldest-1% event occurs
8 times as often in the baseline whereas the baseline
warmest-1% event occurs 3 times as often in the future.

d. Comparison of GCM gridbox–based projections
with other downscaling methods

The GCM gridbox results used for the New York as-
sessment were compared with statistically downscaled
results from bias-corrected and spatially disaggregated
(BCSD) climate projections at 1/88 resolution derived
from theWCRPCMIP3multimodel dataset. The BCSD
projectionswere obtained online (http://gdo-dcp.ucllnl.org/
downscaled_cmip3_projections/; Maurer et al. 2007).
Results were also compared with simulations from four

FIG. 8. Daily distribution (number of days per year) of winter
(DJF) minimum temperature (8C), for the NewYork metropolitan
region in the CSIRO GCM. Solid line: 1980–99 hindcast; dotted
line: 2080–99 A1B scenario.

14 Precipitation was excluded on the basis of the preliminary
analysis of hindcast daily precipitation described in section 3d.

15 As calculated separately for each year and then averaged
across the 20 years to minimize the role of interannual variability.
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pairings of GCMs and regional climate models (RCMs;
Table 8) contributing to the North American Regional
Climate Change Assessment Program (NARCCAP;
Mearns et al. 2009). Comparison of the three methods
is limited to the 2050s time slice under the A2 emis-
sions scenario relative to the 1970–99 baseline, because
NARCCAP projections are not available for other emis-
sions scenarios or time periods. The comparison focuses
on projections rather than validation, since the BCSD
method by definition includes bias correction whereby
the baseline GCM outputs are adjusted to match the
observed mean and variance. Preliminary analysis of
NARCCAP results indicates that these simulations, like
GCM projections, require bias correction.
The ensemble mean changes for the GCM gridbox,

BCSD, and RCM approaches differ from each other by
no more than 0.38C for temperature and 3% for pre-
cipitation. The intermodel temperature range is slightly
larger for the GCM gridbox approach than for BCSD,
and the opposite is the case for precipitation. The four
RCMsimulations perhaps not surprisingly feature a smaller
intermodel range than do the 16 ensemble members for
the GCM gridbox and BCSD approaches.
The number of days above 908F was evaluated as

a measure of extreme events. The delta method applied
to the GCM grid box and BCSD16 produce virtually
identical results (increases of approximately 185% and
180%, respectively, in the number of days above 908F).
When actual daily values from RCMs are used, the in-
crease is approximately 170%. When the delta method
from the RCMs is applied to the observations, the in-
crease is approximately 195%.
For mean changes and the daily extreme metric as-

sessed here, BCSD and the four RCMs offer compara-
ble results to the single-gridbox GCM approach in the
New York metropolitan region. Future research will
assess how statistical and dynamic downscaling perform
inmore specialized contexts tailored to unique stakeholder

needs that are beyond the scope of the NYC initial as-
sessment. For example, reservoirmanagers concernedwith
water turbidity might desire information about sequences
of dayswith intense precipitation during particular times of
the year. Future research will also explore the pros and
cons of projections that incorporate highly uncertain
modeled changes in interannual variance through time.17

5. Conclusions and recommendations for
future work

A framework for climate hazard assessment geared
toward adaptation planning and decision support is de-
scribed. This GCM single-gridbox, delta method–based
approach, designed for cities and regions that are smaller
than typical GCM gridbox sizes that face resource and
time constraints, achieves comparable results in the
New York metropolitan region to other statistically and
dynamically downscaled products. When applied to high-
frequency historical data, long-term mean monthly cli-
mate changes (which GCMs are expected to simulate
more realistically for point locations than they will other
features such as actual long-term mean climate or high-
frequency statistics) yield dramatic changes in the fre-
quency of stakeholder-relevant climate hazards such as
coastal flooding and heat events. The precise projections
should not be emphasized given the uncertainties, but
they are of sufficient magnitude relative to the historical
hazard profile to justify development and initial prioriti-
zation of adaptation strategies. This process is now well
under way in the New York metropolitan region.
When climate-model results for the New York met-

ropolitan region are used only for the calculation of
monthly climate change factors based on the differences
and ratios between 30-yr future time slices and a 30-yr
baseline period, three generalized findings follow. First,

TABLE 8. Pairings of global and regional climate models used from NARCCAP.

GCM driver RCM Combination RCM reference

Geophysical Fluid Dynamics
Laboratory

Regional Climate Model, version 3 (RCM3) RCM3 1 GFDL Pal et al. (2007)

Third-Generation Coupled General
Circulation Model (CGCM3)

RCM3 RCM3 1 CGCM3 Pal et al. (2007)

CGCM3 Canadian Regional Climate Model (CRCM) CRCM 1 CGCM3 Caya and Laprise (1999)
Hadley Centre Coupled Model,

version 3 (HadCM3)
Hadley Regional Model 3/Providing Regional
Climates for Impacts Studies (HRM3)

HRM3 1 HadCM3 Jones et al. (2004)

16 At the time of analysis, BCSD was only available at monthly
resolution.

17 Preliminary analysis reveals that over the New York met-
ropolitan region grid box a slight majority of the GCMs show
increasing interannual variance of monthly temperature T and pre-
cipitation P whereas a large majority of the BCSD and NARCCAP
RCM projections do.
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using multiple ensemble members from the same GCM
provides little additional information, since the 30-yr
average intramodel ranges are smaller than the com-
parable intermodel range. Second, the spatial pattern
of climate change factors in many regions (including
New York City) is sufficiently homogeneous—relative
to the intermodel range—to justify use of climate change
factors from a single overlying GCM grid box. Third,
for these metrics, newer statistically (BCSD) and dynam-
ically (four NARCCAP RCMs) downscaled products
provide results that are comparable to those of the
GCM single-gridbox output used by the NPCC.
The checklist in Table 2 provides a series of questions

to help to inform the selection of the most appropriate
climate hazard assessment and projection methods. For
example, the delta method is more justified when 1)
robust, long-term historical statistics are available and
2) evidence of how modes of interannual and inter-
decadal variability and their local teleconnections will
change with climate change is inconclusive. Both of
these criteria are met in the NYC metropolitan region.
In contrast, more complex applications (than the delta
method) of statistically and dynamically downscaled
products especially may be more appropriate when
spatially continuous projections are needed over larger
regions with complex topography. For example, where
a large mountain range is associated with a strong pre-
cipitation gradient at sub-GCM-gridbox scales, percent-
age changes in precipitation might also be expected to
be more spatially heterogeneous than in the New York
metropolitan region.
Extreme-event projections, so frequently sought by

stakeholders for impact analysis, will likely improve as
statistical and dynamical downscaling evolve. RCMs
especially hold promise for assessing how ‘‘slow’’ vari-
ations associated with climate change and variability will
affect the future distribution of ‘‘fast’’ extremes like sub-
daily rainfall events. Nevertheless, translating RCM sim-
ulations into stakeholder-relevant projections requires
many of the same adjustments and caveats described here
for GCMs (such as bias correction). Statistical down-
scaling techniques also hold promise as well for the
simulation of extremes (nonstationarity notwithstand-
ing), to the extent that predictor variables are simulated
well by GCMs and are linkable to policy-relevant local
climate variables. Projections of extremes will also bene-
fit from improved estimates of historical extremes (such
as the 1-in-100-yr drought and coastal flood) as long-term
proxy records of tree rings and sediment (as examples)
are increasingly utilized.
There is also a need for improved simulation of cli-

mate variability at interannual-to-decadal scales, be-
cause this is the time horizon for investment decisions

and infrastructure lifetime in many sectors, including
telecommunications (Rosenzweig and Solecki 2010). The
limits to such predictability are beginning to be explored
in Coupled Model Intercomparison Project (CMIP5) ex-
periments initialized with observed ocean data, but this
is a long-term research issue.
An absence of local climate projections need not pre-

clude consideration of adaptation. For many locales, cli-
mate changes in other regions may rival the importance
of local changes by influencing migration, trade, and eco-
system and human health, for example. Furthermore,
some hazards such as drought are often regional phe-
nomena, with multistate policy implications (such as
water-sharing agreements). Last, since climate vulnera-
bility depends on many nonclimatic factors (such as
poverty), some adaptation strategies (such as poverty-
reduction measures) can be commenced in advance of
climate projections.
Monitoring of climate indicators should be encour-

aged because it reduces uncertainties and leads to refined
projections. On a local scale, sustained high-temporal-
resolution observation networks can provide needed mi-
croclimatic information, including spatial and temporal
variation in extreme events such as convective rainfall
and storm-surge propagation. At the global scale, mon-
itoring of polar ice sheets and global sea level will
improve understanding of sea level rise. Periodic as-
sessments of evolving climate, impacts and adaptation
science will support flexible/recursive adaptation strat-
egies that minimize the impact of climate hazards while
maximizing societal benefits.
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