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Abstract This paper synthesizes what is known about the

physical and biophysical impacts of climate change and their

consequences for societies and development under different

levels of global warming in Latin America and the Caribbean

(LAC). Projections show increasing mean temperatures by up

to 4.5 �C compared to pre-industrial by the end of this century

across LAC. Associated physical impacts include altered

precipitation regimes, a strong increase in heat extremes,

higher risks of droughts and increasing aridity. Moreover, the

mean intensity of tropical cyclones, as well as the frequency

of the most intense storms, is projected to increase while sea

levels are expected to rise by *0.2–1.1 mm depending on

warming level and region. Tropical glacier volume is found to

decrease substantially, with almost complete deglaciation

under high warming levels. The much larger glaciers in the

southern Andes are less sensitive to warming and shrink on

slower timescales. Runoff is projected to be reduced in

Central America, the southern Amazon basin and southern-

most South America, while river discharge may increase in

the western Amazon basin and in the Andes in the wet season.

However, in many regions, there is uncertainty in the direc-

tion of these changes as a result of uncertain precipitation

projections and differences in hydrological models. Climate

change will also reduce agricultural yields, livestock and

fisheries, although there may be opportunities such as

increasing rice yield in several LAC countries or higher fish

catch potential in the southernmost South American waters.

Species range shifts threaten terrestrial biodiversity, and there

is a substantial risk of Amazon rainforest degradation with

continuing warming. Coral reefs are at increasing risk of

annual bleaching events from 2040 to 2050 onwards irre-

spective of the climate scenario. These physical and bio-

physical climate change impacts challenge human livelihoods

through, e.g., decreasing income from fisheries, agriculture or

tourism. Furthermore, there is evidence that human health,

coastal infrastructures and energy systems are also negatively

affected. This paper concludes that LAC will be severely

affected by climate change, even under lower levels of

warming, due to the potential for impacts to occur simulta-

neously and compound one another.
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Introduction

Despite increasing numbers of climate change impact

studies in Latin America and the Caribbean (LAC, defined

here as the region encompassing the South American

continent, Central America, the Caribbean islands and

Mexico) summarized in the fifth assessment report of the

IPCC (chapters by Magrin et al. 2014; Romero-Lankao

et al. 2014; Nurse et al. 2014), knowledge on how climate

change affects different subregions and sectors is frag-

mented. The objective of this paper is to analyze physical

and biophysical impacts of climate change in LAC, and

their consequences for societies and development, in an

integrated way, thereby updating and extending the anal-

ysis presented in Schellnhuber et al. (2014). This paper

adds to the recent work by the IPCC: Firstly, we consider

the latest science published after the IPCC cutoff deadlines.

Secondly, we consider climate impacts through a devel-

opment lense and therefore devote more depth to sectors,

subregions and systems which seem most relevant from

that risk perspective. Thirdly, we synthesize climate

impacts as a function of different levels of global warming

at the end of the twenty-first century compared to pre-

industrial levels (1.5, 2, 3 and 4 �C, cf. Table ESM.1 and

Schellnhuber et al. 2014: Appendix 4) to show what these

global warming levels mean for LAC. We focus on

warming levels in general and on a 2 and 4 �C world

(basically following the warming pathways of the scenarios

RCP2.6 and RCP8.5, respectively) in particular since these

are important elements of global climate change negotia-

tions, but in such global discourses, regional implications

of a global warming level often remain fuzzy.

We combine original data analyses, model projections

and meta-analyses of published studies with a compre-

hensive literature review (the methodological approach is

presented in Schellnhuber et al. 2014, especially in

Appendices A.1–3). The impacts of climate change in LAC

under different warming levels are synthesized in Fig. 5

and Table ESM.1. The temperature, precipitation, evapo-

transpiration and aridity projections are based on five

CMIP5 GCMs (as selected by Warszawski et al. (2014),

see Schellnhuber et al. 2014: Appendix A.1). We focus

exclusively on climate impacts and do not consider possi-

bilities of adaptation options decreasing these impacts

unless otherwise stated.

Social, economic and demographic profile

of the Latin America and Caribbean region

and vulnerabilities to climate change

The countries in the LAC region differ greatly in their

economic and demographic profile (see Table ESM.2). The

region comprises a population of 588 million (in 2013)

which is expected to rise to 660 million by 2025 (World

Bank 2014a). The region is highly urbanized, and in 2010,

the urban population accounted for 78.8 % of the total and

is expected to increase further (ECLAC 2014). The current

GDP of the region is estimated at US$ 5.467 trillion (in

2012) (World Bank 2014b) with a GNI per capita of US$

9536 in 2013 (World Bank 2014c). In 2012, approximately

25.03 % of the population was living in poverty and

12.02 % in extreme poverty or deprivation (World Bank

2014d). In 2010, the rural poverty rate was twice as high as

that of urban areas; when considering extreme poverty, it

was four times as high (IFAD 2013). Close to 60 % of the

population in extreme poverty lives in rural areas (RIMISP

2011). Moreover, ethnicity, gender and age correlate with

poverty. In seven countries for which data are available, the

poverty rate is 1.2–3.4 times higher for indigenous and

afrodescendent groups than for the rest of the population

and poverty rates are 1.7 times higher among minors under

15 than in adults and 1.15 times greater among women than

men (ECLAC and UNFPA 2009).

Climate change is expected to accentuate preexisting

vulnerabilities in LAC. Several million people live in the

path of hurricanes and in low-elevation coastal zones ren-

dering them vulnerable to sea-level rise, storm surges and

coastal flooding (McGranahan et al. 2007; Trab Nielsen

2010). LAC’s 64,000-km coastline is one of the most

densely populated in the world (Sale et al. 2008), and

several countries have a large share of their urban popu-

lation living in areas elevated less than five meters above

sea level (CIESIN 2011; cf. Table ESM.3). Moreover,

people living in slums built on steep slopes and with poor

drainage systems (Douglas et al. 2008), and certain popu-

lation groups [such as short-term or chronically poor peo-

ple (Ahmed et al. 2009; Hardoy and Pandiella 2009; Hertel

et al. 2010) and women-headed households or children

(Kumar and Quisumbing 2011)] are particularly exposed to

climate change risks. The rural poor in general, and

indigenous groups in particular, are especially vulnerable

to climate change because of their reliance on small-scale,

rain-fed agriculture, natural resources, traditional knowl-

edge systems and culture (Kronik and Verner 2010;

Hoffman and Grigera 2013) and their poor access to

infrastructure and technology (Feldt 2011). Many of these

population groups also have limited political influence,

fewer capabilities and opportunities for participating in

decision and policy making and are less able to leverage

government support to adapt to climate change (Hardoy

and Pandiella 2009; Moser et al. 2010). Climate change

may affect also the credibility of elders and traditional

leaders, as their authority to predict the natural seasonality

is challenged (Kronik and Verner 2010). Finally, a high

proportion of the urban population in LAC lives in a few
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very large cities. National economies, employment patterns

and government capacities are also strongly dependent on

these large cities making them extremely vulnerable to

climate-related disasters (Hardoy and Pandiella 2009). In

the following, we revise the state of the art of the climate

component of the vulnerabilities stated here.

Regional patterns of climate change

Projected temperature changes

The multi-model mean austral warming for 2071–2099 is

about *1.5 �C in a 2 �C world and *4.5 �C in a 4 �C
world compared to 1951–1980 (Fig. ESM.1) and shows a

rather uniform pattern, with more warming toward the

interior of the continent (Fig. 1 top left panel, Fig. ESM.2).

The normalized warming [i.e., the warming expressed in

terms of the local year-to-year natural variability (cf.

Schellnhuber et al. 2014: Appendix A.1)—top right panel

of Fig. 1, Fig. ESM.2] indicates how the projected warm-

ing compares to the natural fluctuations a particular region

has experienced during the period 1951–1980 (Hansen

et al. 2012; Coumou and Robinson 2013; Mora et al.

2013a). The tropics will see the strongest increase in nor-

malized monthly summer temperatures, since historic year-

to-year fluctuations are relatively small, indicating a new

climatic regime for the tropical parts of LAC (top right

panel of Fig. 1, Fig. ESM.2). Subtropical regions in the

south (northern Argentina) and the north (Mexico) are

expected to see a much less pronounced shift.

Heat extremes

We find a strong increase in the frequency of austral summer

months (DJF) warmer than 3-sigma and 5-sigma by the end

of the century (2071–2099) (Fig. 1 bottom panels and

Fig. ESM.3–4, see Schellnhuber et al. 2014: Appendix A.1

Fig. 1 Temperature changes in

LAC for RCP8.5 (4 �C world)

for the austral summer months

(DJF). Multi-model mean

temperature anomalies in degree

Celsius (top row left) are

averaged over the time period

2071–2099 relative to

1951–1980 and normalized by

the local standard deviation (top

row right). Multi-model mean

of the percentage of austral

summer months (DJF) in the

time period 2071–2099 with

temperatures greater than

3-sigma (bottom row left) and

5-sigma (bottom row right)
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for more detailed explanations of 3- and 5-sigma events). The

tropics, along the coasts, will see the largest increase in such

threshold-exceeding extremes which is confirmed by analyses

using the full CMIP5 dataset (Coumou and Robinson 2013;

Sillmann et al. 2013a, b). The 5-sigma events, which are

absent under present-day climate conditions, will emerge in

these countries even in a 2 �C world and are projected to

occur in roughly 20 % of summer months. At the same time,

3-sigma events, which are extremely rare today, will be

exceeded in roughly half of the summer months during

2071–2099. In a 4 �C world, almost all summer months in the

tropics will be warmer than 3-sigma and, in fact, most will be

warmer than 5-sigma as well (70 %). Compared to the

tropics, the subtropical regions in the north (Mexico) and

south (Uruguay, Argentina and southern Chile) are projected

to see a more moderate increase in the frequency of threshold-

exceeding extremes. In a 2 �C world, 5-sigma events will

remain absent and 3-sigma events will still be rare (less than

10 % of summer months). In a 4 �C world, at least half of all

summer months are expected to be warmer than 3-sigma by

2071–2099 and 5-sigma events will occur typically in about

20 % of summer months over subtropical regions. This does

not mean that absolute warming is less in the subtropical

regions or that risks by heat extremes are lower there, but

solely that there is greater natural variability in these regions.

Precipitation projections

In a 2 �C world, projected changes in annual and seasonal

precipitation for 2071–2099 relative to 1951–1980 are

relatively small (±10 %) and models exhibit substantial

disagreement on the direction of change over most land

regions (Fig. ESM.5). However, regions between 10�S and

30�S may experience dry season (JJA) precipitation

reductions exceeding 20 % and exceeding 50 % in Mato

Grosso, central brazil (Fig. ESM.5). In a 4 �C world, the

models converge in their projections over most regions, but

intermodel uncertainty remains over some areas (Fig. 2).

Well-defined patterns of change in annual precipitation can

be extracted for subregions. Tropical countries on the

Pacific coast (Peru, Ecuador and Colombia) are projected

to see an increase in annual mean precipitation of about

30 %, with changes in seasonal precipitation exceeding

50 %. Also the Rı́o de la Plata basin is projected to expe-

rience a wetting trend. Substantial drying exceeding

10–20 % annual precipitation reductions is projected for

Patagonia, the Caribbean and Mesoamerica as well as

central Brazil. Notably, there are substantial seasonal dif-

ferences with JJA precipitation reductions exceeding

40–50 % for Mesoamerica and the Caribbean. The annual

mean precipitation in central Brazil is projected to drop by

20 % in a 4 �C world by the end of the century due to a

strong and robust decrease in dry season (JJA) precipita-

tion (-50 %). These projected changes in annual and

seasonal temperatures generally agree well with those

provided by the full set of CMIP5 climate models (Collins

et al. 2013) with the notable difference of the central Brazil

drying that is less pronounced in the multi-model average

of the full CMIP5 set.

Extreme precipitation and droughts

Observations since the 1950s indicate a robust increase in

overall precipitation and in intensity of extreme

Fig. 2 Multi-model mean of the percentage change in austral

summer (DJF, left), winter (JJA, middle) and annual (right) precip-

itation for RCP8.5 (4 �C world) for Latin America and the Caribbean

by 2071–2099 relative to 1951–1980. Hatched areas indicate uncer-

tain results, with two or more out of five models disagreeing on the

direction of change. Note that projections are given as percentage

changes compared to the 1951–1980 climatology, and thus, especially

over dry regions, large relative changes do not necessarily reflect

large absolute changes
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precipitation events for South America (Skansi et al. 2013).

In a 4 �C world, Kharin et al. (2013) find extreme pre-

cipitation events (annual maximum daily precipitation with

20-year return values) to intensify by about 25 % over

LAC with a large uncertainty range over an ensemble of

CMIP5 models. The return time of a 20-year extreme

precipitation event in 1985–2005 would reduce to about

6 years (Kharin et al. 2013). These increases are not

homogeneous over the full continent. While little-to-not

statistically significant, an increase in frequency is pro-

jected for the Caribbean, Mesoamerica, southern Argentina

and Chile, and hotspots with extreme precipitation

increases of more than 30 % are projected in the Serra do

Espinhaco in Brazil, the Pampas region in Argentina and

the Pacific coastline of Ecuador, Peru and Colombia

(Kharin et al. 2013). The latter may be related to an

increase in frequency of future extreme El Niño events

(Power et al. 2013; Cai et al. 2014). These regions are also

found to show the strongest rise in compound maximum

5-day precipitation (which is relevant for flooding events)

in a 4 �C world (Sillmann et al. 2013b). Increases in

extreme precipitation in southern Brazil and northern

Argentina are in line with results from regional climate

models (Marengo et al. 2009) and might be dominated by

intensification of the South American monsoon system

(Jones and Carvalho 2013).

Dai (2012) finds a statistically significant increase in

drought conditions for Central America and the Caribbean

for the 1950–2010 period, although the significance of this

trend depends on the reference period and the formulation

of the underlying drought index (Trenberth et al. 2014). Fu

et al. (2013) report a significant increase in the length of the

dry season over southern Amazonia since 1979. An

increase and intensification in meteorological droughts is

projected for large parts of South and Central America in a

4 �C world (Sillmann et al. 2013b), although large model

uncertainties remain in particular for Central America

(Orlowsky and Seneviratne 2013). Accounting for the

effects of runoff and evaporation as well as local soil and

vegetation, Dai (2012) found that the Amazon basin, Brazil

except the southern coast, southern Chile, Central America

and northern Mexico are facing severe to extreme drought

conditions relative to the present climate by the end of the

twenty-first century under the RCP4.5. These results are

confirmed by a multi-model analysis in a 4 �C scenario that

additionally reveals a strong increase in drought risk in the

Caribbean, although uncertainties remain substantial

(Prudhomme et al. 2013). Apart from a reduction in pre-

cipitation, warming can also cause more arid conditions as

enhanced surface temperatures trigger more evapotranspi-

ration—thereby drying the soil (see ESM Text.1 and

Fig. ESM.6–7).

Tropical cyclones

Tropical cyclones have important impacts in LAC such as

an average 0.83 % drop in economic output after tropical

cyclone strikes with large variations between countries

(Strobl 2012). Tropical cyclone frequency has increased in

the North Atlantic sharply over the past 20–30 years, but

uncertainty is large over longer time periods (Bindoff et al.

2013). Kossin et al. (2013) showed a strong and statisti-

cally significant increase in lifetime maximum intensity of

tropical cyclones over the North Atlantic of 8 m s-1 per

decade, over 1979–2010, particularly for mid- to high-in-

tensity storms. Such observed changes were shown to be

linked to both anthropogenic climate change and internal

climate variability (Camargo et al. 2012; Villarini and

Vecchi 2013; Wang and Wu 2013). Differential warming

of the tropical Atlantic, with historically observed warming

higher than average for the tropics, tends to enhance

tropical cyclone intensification in the region (Knutson et al.

2013). No significant trends have been observed over the

eastern North Pacific (Kossin et al. 2013), but in general

tropical cyclones have been observed to migrate polewards

(Kossin et al. 2014).

Projections of tropical cyclone frequency and intensity

are difficult, because the interplay of several factors is

unclear (Bindoff et al. 2013). El Niño events tend to

enhance wind shear over the Gulf of Mexico and the

Caribbean Sea and thus suppress Atlantic tropical cyclones

(Arndt et al. 2010; Aiyyer and Thorncroft 2011; Kim et al.

2011). On the other hand, El Niño events have been shown

to increase tropical cyclone activity in the eastern North

Pacific (Kim et al. 2011; Martinez-Sanchez and Cavazos

2014). Observational evidence, however, suggests atmo-

spheric patterns tend to steer tropical cyclones away from

the Mexican coast during El Niño years (and toward the

coast in La Niña years), so that the net effect on the Pacific

coastlines of the Americas remains unclear. In addition to

such dynamic changes, thermodynamic processes alone

can also work to suppress tropical cyclone formation and

intensification (Mallard et al. 2013).

In the long term, simulations from a range of models

show that tropical cyclone frequency will not be affected

much by continued global warming but mean intensity, as

well as the frequency of the most intense tropical

cyclones, is projected to increase (Knutson et al. 2010;

Tory et al. 2013; Stocker et al. 2013). Using CMIP5

models (50 % uncertainty range across 17 GCMs), Vil-

larini and Vecchi (2013) projected that the Power Dissi-

pation Index would increase by 100–150 % in a 2 �C
world over the North Atlantic. A considerably larger

increase and a much wider range of about 125–275 %

were projected for a 4 �C world.
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Bender et al. (2010) used a variety of models to initialize

a very high-resolution operational hurricane prediction

model, noting an increase of 80 % in the frequency of the

strongest category 4 and 5 Atlantic tropical cyclones for

about 3.4 �C warming (a 3 �C world). Knutson et al.

(2013) also found an 80 % increase in the strongest cate-

gory tropical cyclones for the same warming level and

class of models and around a 40 % increase for roughly

1.5–2.5 �C warming (early and late twenty-first century,

RCP4.5). The eastern North Pacific is less well represented

in the scientific literature and studies projected either no

significant trends for this region under future climate

change (Murakami et al. 2011, 2012) or an increase in

frequency of tropical cyclones (particularly large near the

coast of southeast Mexico) (Emanuel 2013). With pro-

jected increased intensity and frequency of the most intense

storms, and increased atmospheric moisture content, an

increase of 10 % in the rainfall intensity averaged over a

200-km radius from the tropical cyclone center for the

Atlantic, and an increase of 20–30 % for the tropical

cyclone’s inner core by the end of the twenty-first century

for roughly 2.5–3.5 �C global warming is estimated

(Knutson et al. 2010, 2013).

Regional sea-level rise

In LAC, global mean sea-level rise dominates the regional

sea-level signal (Fig. 3, Fig ESM.8). Still, regional varia-

tion exists with generally higher projected sea-level rise at

the Atlantic than at the Pacific coast and an increasing ice-

sheet contribution toward lower latitudes. Due to a robust

southeasterly trade wind intensification over the Southern

Pacific and associated cold water upwelling (Timmermann

et al. 2010; Merrifield and Maltrud 2011), sea-level rise

below the global mean is projected for the Southern Pacific

coast (median estimate for Valparaiso: 0.55 m for a 4 �C
world cf. Table ESM.4). In contrast, Recife on the Atlantic

coast of Brazil is projected to experience above-average

sea-level rise (median estimate 0.63 m). The sea-level rise

at the continental Caribbean coast exceeds the projection

for the Caribbean islands (Barranquilla, median estimate

0.65 for a 4 �C world). The difference may be linked to a

weakening of the Caribbean Current that is connected to

the Atlantic meridional overturning circulation (Pardaens

et al. 2011).

Regional impacts

Glacial retreat and snowpack changes

Andean glaciers are shrinking because of increased melt

rates, decreased accumulation, changes in the ice dynamics

and/or a combination of all these factors (Lopez et al. 2010;

Ivins et al. 2011; Jacob et al. 2012; Marzeion et al. 2012;

Giesen and Oerlemans 2013; Schaefer et al. 2013;

Table ESM.1). Across several studies and different meth-

ods, a clear change in glacier evolution can be seen after

the late 1970s, accelerating in the mid-1990s and again in

the early 2000s (Rabatel et al. 2013). This acceleration

Fig. 3 Patterns of regional sea-level rise. Median (left column) and

high (right column) estimates of projected regional sea-level rise for

the RCP8.5 scenario (4 �C world) for the period 2081–2100 relative

to the reference period 1986–2005. Associated global mean rise is

indicated in the panel titles. Representative cities are denoted by black

dots and numbers provided in Table ESM.4
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started slightly delayed in the 1990s for glaciers located at

mid- or high latitudes.

In the subtropical Andes of Chile and western Argen-

tina, there is no significant trend in snowfall over

1951–2004 (Masiokas et al. 2006, 2012). However, the

data display a marked inter-annual variability ranging from

6 to 257 % around the 1966–2004 mean, with a clear

influence from the warm phases of ENSO. Studies on

snowpack in the southern Andes are rare, but changes in

snowpack extent magnify changes in the seasonality of the

water availability by reducing dry season flows and

increasing wet season flows (Vicuña et al. 2013).

Tropical glaciers are projected to lose at least 66 % of

their volume in a 3 �C world and to disappear almost

completely in a 4 �C warmer world (Marzeion et al. 2012;

Giesen and Oerlemans 2013; Radić et al. 2013). The much

larger glaciers in the southern Andes are less sensitive to

global warming and are projected to shrink by at least 21 %

in a 2 �C world up to 72 % in a 4 �C world (see

Table ESM.1). The models used in these studies rely on a

scaling methodology which may overestimate the recession

of the small remnant tropical glaciers. The accelerated

melting will lead to increasing runoff, but when the glacier

reservoirs disappear runoff will also decrease, particularly

in the dry season. Following the trend in the tropical Andes

(Poveda and Pineda 2010), this peak is expected within the

next 50 years (Chevallier et al. 2011) if it has not already

occurred (Baraer et al. 2012). Reliable projections for

snowpack and snow cover changes in the Andes are lacking.

Water resources, water security and floods

LAC has abundant water resources, but their distribution is

temporally and regionally unequal (Magrin et al. 2007). Due

to the unreliable rainfall, groundwater resources and water

from glacier and snowmelt play a crucial role in supplying

local water (Vuille et al. 2008; Chevallier et al. 2011; Hirata

and Conicelli 2012). Moreover, LAC suffers from wide-

spread floods and landslides (Maynard-Ford et al. 2008).

Heavy precipitation events in the context of ENSO or trop-

ical cyclones can lead to disastrous floods, especially in

regions with steep terrain (Mata et al. 2001; Poveda et al.

2001; Mimura et al. 2007; IPCC 2012). Coastal areas in the

Caribbean and Central America suffer from flooding as a

result of storm surges and tropical cyclones (Dilley et al.

2005; Woodruff et al. 2013). In the Andes, glacial lake

outbursts present a permanent hazard for Andean cities

(Chevallier et al. 2011; Carey et al. 2012).

In Central America, there is a high agreement on

decreasing mean annual runoff and discharge, although the

magnitude of the change varies (Milly et al. 2005; Maurer

et al. 2009; Imbach et al. 2012; Arnell and Gosling 2013;

Hidalgo et al. 2013; Nakaegawa et al. 2013; Schewe et al.

2013). The trend seems to be more pronounced for the

northern than for the southern part of Central America

(Imbach et al. 2012; Hidalgo et al. 2013). The Caribbean

lacks long-term measured streamflow data, and runoff

projections are therefore of low confidence (FAO 2003;

Hidalgo et al. 2013). However, freshwater availability may

decrease due to a combination of lower precipitation, high

abstraction rates and sea-level rise leading to an intrusion

of sea water into coastal aquifers (Mimura et al. 2007;

Cashman et al. 2010). Although floods often seem to be

associated with land-use change, more severe flooding

events may also occur with climate change, e.g., related to

tropical cyclones (Cashman et al. 2010; IPCC 2012).

Higher discharge seasonality is projected for the tropical

Andes. Lower dry season discharge has already been

observed during the past two decades (Baraer et al. 2012).

Streamflows during the dry season are projected to

decrease strongly because of ongoing glacier retreat and

snowmelt decrease (Juen et al. 2007; Baraer et al. 2012;

Kinouchi et al. 2013). However, streamflow during the wet

season may increase due to an increase in direct runoff

from non-glaciered areas (Juen et al. 2007; Kinouchi et al.

2013). The region has a high flood and landslide risk which

is projected to increase (Carey 2005; Hirabayashi et al.

2013). For the Central Andes, a trend toward an earlier

snowmelt season and timing of the center of mass of flows

was observed and projected locally (Cortés et al. 2011;

Vicuña et al. 2013; Demaria et al. 2013). Lower dry season

discharges may cause significant water supply problems in

downstream and urban areas (Vuille et al. 2008; Viviroli

et al. 2011; Masiokas et al. 2013), with poorer areas most

affected (Buytaert and De Bièvre 2012), and might

endanger electrical power generation (Seoane and López

2007). Runoff projections for the Amazon are uncertain

due to the high variability of rainfall projections using

different GCMs and uncertainties introduced by hydro-

logical impact models (Buytaert et al. 2009; Exbrayat et al.

2014). Guimberteau et al. (2013) found that, especially in

the south, low flows become more pronounced by the

middle of this century with 2 �C global warming. Nakae-

gawa et al. (2013) found total annual runoff decreases in

the southern half of the Amazon River in a 3 �C world.

However, for the western part of the basin, a likely increase

in streamflow, runoff, flood zone and inundation time was

projected (Guimberteau et al. 2013; Langerwisch et al.

2013; Mora et al. 2013b). The direction of discharge and

groundwater recharge trends in northeast Brazil vary due to

diverging rainfall projections (Krol and Bronstert 2007;

Montenegro and Ragab 2010; Döll and Schmied 2012;

Portmann et al. 2013; Schewe et al. 2013). The Rı́o de la

Plata region experienced a 10–30 % increase in river run-

off during the twentieth century (Garcı́a and Vargas 1998;

Jaime and Menéndez 2002; Menéndez and Berbery 2005;
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Milly et al. 2005). There are no consistent river runoff

projections for the basin because the directions of rainfall

projections vary (Milly et al. 2005; Nóbrega et al. 2011;

Bravo et al. 2013; Nakaegawa et al. 2013). Camilloni et al.

(2013) projected an increase in frequency and duration of

river flooding in a[3 �C world in the Uruguay and Paraná

basins. Hirabayashi et al. (2013) showed a decrease in the

twentieth century 100-year return period for floods for the

Parana in a 4 �C world, but there was little consistency

across the 11 GCMs used. A decrease in mean runoff is

projected for southernmost South America (Milly et al.

2005; Schewe et al. 2013).

Agricultural yields

Climate change impacts on crop yields vary depending on

crop type and location, but most projections show negative

climate change impacts (summarized in Table ESM.1).

Yield declines are projected for wheat, soybeans and maize

in several countries (Fernandes et al. 2012). Coffee farming

might have to migrate to higher altitudes or other cultivation

regions to maintain present yields (Camargo 2010; Laderach

et al. 2011; Zullo et al. 2011). Yield projections for rice and

sugarcane mostly increase (Fernandes et al. 2012; Marin

et al. 2012). In several studies, including CO2 fertilization

increases yields or only leads to small negative yield changes

for C3 plants but not for C4 plants (Costa et al. 2009; ECLAC

2010; Lapola et al. 2011; Rosenzweig et al. 2013).

A meta-analysis of the impacts of climate change on

crop yields for LAC (see Schellnhuber et al. 2014:

Appendix A.3) reveals no significant influence of temper-

ature increase on crop yields across all available studies but

a significant positive relationship between crop yield

change and temperature when CO2 fertilization is consid-

ered (see Fig. 4, Table ESM.5). However, the beneficial

effects of CO2 fertilization are uncertain (e.g., Ainsworth

et al. 2008). If the effects of CO2 fertilization are not

considered, the relationship remains significant but

becomes negative, with increasing temperature leading to

considerable yield declines (see Fig. 4, Table ESM.5).

The impact of ozone on crop yields has been neglected in

many climate impact projections although it could offset the

benefits of CO2 fertilization in C3 plants (and even lead to a

yield reduction in C4 plants) (Jaggard et al. 2010). By 2030,

increasing surface ozone could decrease yields in Latin

America by up to 7.8 % for wheat, 2.9 % for maize and

7.5 % for soybeans depending on the emissions levels of

ozone precursors (Avnery et al. 2011). Moreover, the effects

of plant diseases are uncertain but potentially negative

(Ghini et al. 2011; Luck et al. 2011; Porter et al. 2014). For

example, Coffee leaf rust (Hemileia vastratix) and soybean

rust (Phakopsora pachyrhizi) are expected to move further

south and affect South American countries (Alves et al.

2011). Estay et al. (2009) projected an increase in insect

population densities of grain pests in Chile of 10–14 % in a

3 �C world and 12–22 % in a 4 �C world.

Livestock

The livestock sector in LAC is of high economic impor-

tance, especially in Brazil and Argentina (ECLAC et al.

2012), but climate impact studies are scarce. Climate

change can impact the quantity and quality of livestock

feed, and heat stress directly affects livestock productivity.

Heat stress is known to reduce cattle food intake and milk

production and also to affect reproduction, growth and

mortality rates (Porter et al. 2014). In a 1–2 �C warmer

world, livestock species choice (i.e., the adoption of new

livestock) is projected to mostly decline or marginally

increase across Argentina, Brazil, Chile, Colombia, Ecua-

dor, Uruguay and Venezuela for beef cattle, dairy cattle,

chicken and pigs (Seo et al. 2010). Meanwhile, the adop-

tion of sheep is projected to increase by up to 20 % because

sheep are better adapted to warmer and drier conditions

(Seo et al. 2010). In Paraguay, beef cattle production is

projected to decrease by 16–27 % in scenarios leading to 2

and 3 �C warming (ECLAC 2010).

Biodiversity

South America is a biodiversity hotspot (MEA 2005;

Myers et al. 2000). Habitat destruction and fragmentation

Fig. 4 Meta-analysis of crop yield reductions. Best-fit line for LAC

studies not considering the effects of adaptation measures or those of

CO2 fertilization (blue line) and for studies considering the effects of

CO2 fertilization (but no adaptation, orange) and their 95 %

confidence intervals of regressions consistent with the data based

on 500 bootstrap samples (patches) (color figure online)
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by land-use change as well as the commercial exploitation

of species groups are currently larger threats to biodiversity

than climate change (e.g., Hof et al. 2011), but climate

change is projected to become increasingly important for

species loss (MEA 2005; Vuuren et al. 2006). Future spe-

cies loss is difficult to quantify because most biodiversity

models do not take biotic interactions (e.g., food-web

interactions, species competition) and resource limitations

into account.

The G200 ecoregions (Olson and Dinerstein 2002)

located in LAC may experience severe climate change in

the future (Beaumont et al. 2010; Li et al. 2013). Further,

38.4 and 11.5 % of the surface of the biodiversity hotspot

of Tumbes-Choco-Magdalena and the Mesoamerican bio-

diversity hotspot, respectively, will be experiencing no-

analog climates in a warmer than 2 �C world (Garcı́a-

López and Allué 2013). Heyder et al. (2011) project a

range of small to severe ecosystem changes for the whole

South American continent in a 2 �C and warmer world. In

a 4 �C world, results of one dynamic vegetation model

show severe ecosystem changes for more than 33 % of the

area in 21 out of 26 distinct biogeographic regions in South

America (Gerten et al. 2013). Warszawski et al. (2013)

projected such severe ecosystem changes in a 3 �C world

in South America (notably in Amazon, Guyana moist for-

ests and Brazilian Cerrado) when applying an ensemble of

seven dynamic vegetation models. Bellard et al. (2014)

projected that out of 723 Caribbean islands, 63 and 356

will be entirely submerged under one and six meters of sea-

level rise, respectively. A one-meter sea-level rise is within

the range of sea-level rise projected in a 4 �C world (see

section ‘‘Regional sea-level rise’’).

Little is known about the consequences of future climate

change on specific taxa in the region. There are some

studies on insects (Deutsch et al. 2008), amphibians

(Lawler et al. 2009; Sinervo et al. 2010; Hof et al. 2011;

Loyola et al. 2013; Mesquita et al. 2013; Lemes et al.

2014), sea turtles (Fish et al. 2005), birds (Anciães and

Peterson 2006; Jetz et al. 2007, Marini et al. 2009; Souza

et al. 2011), marsupials (Loyola et al. 2012), mammals

(Schloss et al. 2012; Torres et al. 2012) and plant species

(Feeley et al. 2012; Simon et al. 2013). Overall, most

studies project range contractions or inability to keep pace

with climate. Across different species, Thomas et al. (2004)

project increasing extinction rates with increasing warming

levels.

Amazon rainforest degradation and tipping point

Old-growth rainforests in the Amazon store approximately

100 billion tons of carbon in their biomass (Malhi et al.

2006; Saatchi et al. 2011) and recycle precipitation through

evapotranspiration, thus contributing to local rainfall

(Zemp et al. 2014). A loss of these forests due to climate

change and deforestation would release an enormous

amount of carbon into the atmosphere and reduce their

evapotranspiration potential leading to strong climate

feedbacks (Betts et al. 2004; Cox et al. 2004; Costa and

Pires 2010) and a potential tipping point (Lenton et al.

2008). A critical tipping point has been identified at around

40 % deforestation, when altered water and energy feed-

backs between remaining tropical forest and climate may

lead to a decrease in precipitation (Sampaio et al. 2007).

Recent evidence from a large-scale and long-term experi-

ment suggests that the feedbacks between climatic extreme

events such as droughts and forest fires increase the like-

lihood of an Amazon dieback (Brando et al. 2014). How-

ever, the most recent modeling studies suggest that the

Amazon dieback is an unlikely, but possible, future for the

Amazon region (Good et al. 2013).

The 2005 and 2010 Amazon droughts lead to increased

tree mortality and reduced tree growth due to water stress

(Lewis et al. 2011) possibly reversing the role of the intact

forest as a carbon sink (Phillips et al. 2009; Lewis et al.

2011). Two multi-year rainfall exclusion experiments in

Caxiuanã and Tapajós National Forest demonstrated that

once deep soil water is depleted, wood production is

reduced by up to 62 %, aboveground net primary produc-

tivity declines by 41 %, and mortality rates for trees almost

double (Nepstad et al. 2007; Brando et al. 2008; Costa and

Pires 2010). Thus, an increase in extreme droughts or a

prolonged dry season (Fu et al. 2013) may have the

potential to cause large-scale forest dieback.

Deforestation and forest degradation are also factors

which crucially influence future changes in vegetation

carbon. Gumpenberger et al. (2010) found relative changes

in carbon stocks of -35 to ?40 % in a protection scenario

without deforestation and -55 to -5 % with 50 % defor-

estation in a 4 �C world. Poulter et al. (2010) found a

24.5 % agreement of projections for a decrease in biomass

in simulations with 9 GCMs in a 4 �C world.

Studies projecting future fires in the Amazon are scarce.

Fires are projected to increase along major roads in the

southern and southwestern part of Amazonia with a 1.8 �C
global warming by 2040–2050 (Silvestrini et al. 2011;

Soares-Filho et al. 2012). High rates of deforestation would

contribute to an increasing fire occurrence of 19 % by

2050, whereas climate change alone would account for a

12 % increase (Silvestrini et al. 2011).

Despite a large number of studies (see Table ESM.1 for

a summary), the identification of the processes and the

quantification of thresholds at which a tipping point is

triggered (e.g., a potential transition from forest to savan-

nah) are still incomplete. Recent analyses have down-

graded the probability from 21 to 0.24 % for a 4 �C
regional warming when coupled carbon-cycle climate
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models are adjusted to better represent the inter-annual

variability of tropical temperatures and related CO2 emis-

sions (Cox et al. 2013). This holds true, however, only

when the CO2 fertilization effect is realized as imple-

mented in current vegetation models (Rammig et al. 2010).

Moreover, large-scale forest degradation as a result of

increasing drought may already impair ecosystem services

and functions without a forest dieback necessarily occur-

ring and will impact forest dwelling/depending

communities.

Fisheries

Anthropogenic changes in temperature, salinity, oxygen

content and pH levels have been observed for oceans over

the past 60 years (Pörtner et al. 2014). In LAC, small-scale

fishers and people dependent on large-scale fishing and

associated industries may be particularly affected by cli-

mate change if they are unable to diversify their liveli-

hoods. Peru and Colombia are among the countries whose

fisheries are most vulnerable to climate change (Allison

et al. 2009; Magrin et al. 2014).

In response to changing oceanic conditions, fish stocks

have been observed in, and are further expected to shift to,

higher latitudes (Perry et al. 2005). A global study that

considers the habitat preference of 1066 commercially

caught species and projects changes to primary produc-

tivity, computes the expected changes in fish species dis-

tribution and regional patterns of maximum catch potential

by 2055 in a scenario leading to warming of approximately

2 �C in 2050 (and 4 �C by 2100) (Cheung et al. 2010).

Their results for LAC indicate a mixed picture: Catch

potential is expected to increase up to 100 % further off-

shore of the southern part of Latin America and to decrease

by 15–50 % along the Caribbean coasts, by 5–50 % in

Caribbean waters and parts of the Atlantic coast of Central

America, by more than 50 % off the Amazonas estuary and

the Rio de la Plata and by up to 30 % along the coasts of

Peru and Chile (with increases toward the south). These

projections are, however, uncertain because expected

declines in ocean pH (ocean acidification), direct human

pressures and local processes, which escape the coarse

resolution of global models, are not taken into account

(Cheung et al. 2010). Incorporating the effects of

decreasing ocean pH and reduced oxygen availability

yields catch potentials that are 20–30 % lower relative to

simulations not considering these factors in the northeast

Atlantic (Cheung et al. 2011). Considering the effects of

species interaction on redistribution and abundance, Fer-

nandes et al. (2013) report latitudinal shifts in the North

Atlantic to be 20 % lower than reported by the bioclimatic

envelope model developed by Cheung et al. (2010). For the

Humboldt Current System, Blanchard et al. (2012)

projected a 35 % decline in phytoplankton and zooplank-

ton density and similar magnitudes of change in the overall

biomass of fish under 2 �C global warming by 2050.

Coral reefs

Coral reefs provide ecosystem services which are locally

important for subsistence fisheries, income from tourism

and protection from coastal storm surges (Hoegh-Guldberg

et al. 2007). Coral bleaching events on a large scale have

been linked to unusually high sea-surface temperatures but

also pollution, overfishing and the related shift in species

composition are important factors (De’ath et al. 2012).

Hurricanes have been found to cool waters, alleviating heat

stress and thereby reducing the risk of bleaching (Eakin

et al. 2010). This effect could temporarily outweigh the

negative effects of direct damage (e.g., through breakage)

(Carrigan and Puotinen 2014 but see Gardner et al. 2005).

Due to decreasing availability of calcium carbonate and

increasing sea-surface temperatures, Meissner et al. (2012)

projected that most coral reef locations in the Caribbean

Sea and western Atlantic will be subject to a 60–80 %

probability of annual bleaching events with 2 �C warming

by 2050, with areas at the coast of Guyana, Suriname and

French Guiana being exposed to a 100 % probability. In

contrast, under 1.5 �C warming by 2050, most locations in

the Caribbean Sea have a comparably low risk of 20–40 %

probability of annual bleaching events, with the waters of

Guyana, Suriname, French Guiana and the north Pacific

being at slightly higher risk (up to 60 % probability). By

the year 2100, almost all coral reef locations are expected

to be subject to severe bleaching events occurring on an

annual basis in a 4 �C world. Exceptions are major

upwelling regions, which experience a risk of 50 %. With

warming leading to a 2 or 4 �C world, the median year in

which bleaching events start to occur annually is 2046 or

2040, respectively (Van Hooidonk et al. 2013). Generally,

the reefs in the northern waters of the Caribbean Sea appear

to be less sensitive than those in the south. However, reefs

at the higher latitude fringes of the tropical coral range

(both north and south) are likely to be more heavily

affected by ocean acidification (Caldeira 2013). Different

scenarios leading to 2, 3 and 4 �C worlds showed little

difference in coral cover (Buddemeier et al. 2011): By

2020, live coral reef cover is projected to have halved from

its initial state; by the year 2050, live coral cover is less

than 5 %; in 2100, it is less than 3 %. Assuming coral

adaptation by gaining an additional 1 �C of heat tolerance,

the loss of live coral cover below 5 % is prolonged by

around 30 years. A 90 % loss of coral reef cover would

lead to direct economic losses of $8.712 billion (2008

value) (Vergara et al. 2009). While there are limitations to

the projections of coral reef future, a bleak picture emerges
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from the studies available, which is in accordance with

global studies showing that the global mean temperature at

which 90 % of coral reefs are at risk of extinction is 1.5 �C
above pre-industrial levels (Frieler et al. 2012).

Human health

Among the main human health risks in LAC are vector-

borne diseases such as malaria, dengue fever, leishmaniasis

and fascioliasis, and food- and water-borne diseases such

as cholera and childhood diarrheal disease. Climate change

is expected to play a contributing role in determining the

incidence of dengue fever (Confalonieri et al. 2007),

although it is difficult to separate the impact of climatic

factors from that of urbanization and population mobility

(Barclay 2008). Studies from Mexico (Hurtado-Diaz et al.

2007) and Puerto Rico (Johansson et al. 2009) show a

correlation between increases in rainfall and temperature

and increased incidence of the disease. In Brazil in the

period 2001–2009, a 1 �C increase in monthly minimum

temperature was associated with a 45 % increase in dengue

fever cases the following month and a 10 mm increase in

precipitation with a 6 % increase (Gomes et al. 2012).

Projections by Colon-Gonzalez et al. (2013) point to an

upsurge in dengue incidence in Mexico of 18 % by 2030,

31 % by 2050 and 40 % by 2080 with a warming scenario

leading to a 4 �C world by 2100.

Evidence shows an increasing spread of malaria to higher

elevations in northwest Colombia during the last three dec-

ades due to rising temperatures (Siraj et al. 2014), and it is

possible the disease will spread into other high-altitude areas

such as the cities of Quito and Mexico City (Moreno 2006).

The connection between malaria and climate change is

unclear, however, due to the complexity of the factors

involved (e.g., land use, domestic water storage patterns,

vector control programmes). It is likely that the effect of

climate change on malaria patterns will not be uniform, with

increased incidence in some areas but declines in places

where decreases in precipitation are projected, including

parts of the Amazon and Central America (Haines et al.

2006). Caminade et al. (2014) projected a lengthening of the

malaria transmission season in the highlands of Central

America and southern Brazil by the 2080 s, but a shortening

in the tropical regions of South America.

Climatic variables have been shown to be decisive in

determining the extent of cholera outbreaks (Koelle 2009).

A recent study in Haiti shows that increased rainfall is

followed by increased cholera risk 4–7 days later (Eisen-

berg et al. 2013). The relative risk of diarrheal disease in

South America is expected to increase by 5–13 and

14–36 % for the period 2010–2039 and 2070–2099 with

1.3 and 3.1 �C warming, respectively (Kolstad and

Johansson 2011).

Coastal infrastructure

Hallegatte et al. (2013) found that, by 2050, coastal

flooding could generate approximately $940 million of

mean annual losses in the 22 largest coastal cities in LAC

with a sea-level rise of 20 cm and about $1.2 billion with a

sea-level rise of 40 cm. The damage to coastal infrastruc-

ture associated with tropical cyclones making landfall is

also projected to change (Hallegatte 2007; Mendelsohn

et al. 2011). In a scenario leading to a 4 �C world and

featuring a 0.89- to 1.4-m sea-level rise, tropical cyclones

in the Caribbean alone could generate an extra $22 billion

and $46 billion in storm and infrastructure damages and

tourism losses by 2050 and 2100, respectively, compared to

a scenario leading to a 2 �C world (Bueno et al. 2008).

Cumulative losses induced by increasing tropical cyclone

intensity of 2 and 5 % compared to average values from

1995 to 2006 could increase to about $110 and $114 bil-

lion, respectively, during the period 2020–2025 in the

Caribbean, Central America and Mexico (Curry et al.

2009). The potential increase in tropical cyclone intensity

may increase ships’ port downtime and therefore increase

shipping costs (Esteban et al. 2012; Chhetri et al. 2013).

Impacts on seaports will also have indirect consequences

on local economies as import disruptions generate price

increases for imported goods and export disruptions

decrease revenues and incomes (Becker et al. 2012). Beach

tourism is particularly exposed to several climate change

stressors, including sea-level rise, modified tropical storm

pattern and heightened storm surges (Simpson et al. 2011).

In Jamaica, for example, coastal tourist resorts are two-to-

three times more exposed to climate change-related stres-

sors than inland touristic resorts (Hyman 2013).

Energy systems

LAC countries have a diverse energy mix (see

Table ESM.6), but with projected changes in water avail-

ability (cf. ‘‘Glacial retreat and snowpack changes’’ and

‘‘Water resources, water security, and floods’’ sections),

thermal electricity plant cooling systems may become less

efficient (Mika 2013; Sieber 2013) and also hydroelectric

power generation will be affected (Hamududu and Kill-

ingtveit 2012). In Peru, it is estimated that a 50 % reduc-

tion in glacier runoff would result in a decrease in annual

power output of approximately 10 %, from 1540 to

1250 GWh (Vergara et al. 2007). Hamududu and Kill-

ingtveit (2012) found that production will increase by

0.30 TWh (or 0.03 %) in the Caribbean compared to 2005

production levels, and by 0.63 TWh (or 0.05 %) in South

America, under 2 �C global warming by the middle of the

twenty-first century. An increase in frequency of low flows

in scenarios leading to a 2 �C and 3 �C world implies a
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proportional decrease in hydropower capacity for the two

main large reservoirs used for hydroelectricity generation

in El Salvador, reducing the economic return from the

existing facility and threatening the return on investments

in future hydroelectric infrastructures (Maurer et al. 2009).

For Brazil, de Lucena et al. (2009) project that average

annual river flows will decrease by 10.8 % with 2.9 �C
global warming, and by 8.6 % with 3.5 �C global warming,

by 2071–2100. For the Rio Grande River basin, the dif-

ference between the lowest (-20 %) and the highest

(?18 %) estimates of average river flow with a global

warming of 2.1 �C depending on the GCM chosen high-

lights the limitations of current models to project the

potential hydropower production (Nóbrega et al. 2011).

Popescu et al. (2014) showed an increase in the maximum

hydropower energy potential for the La Plata basin of

between 1 and 26 % with a global warming of 1.8 �C by

2031–2050.

The results of these studies need to be interpreted with

care. Global studies such as from Hamududu and Kill-

ingtveit (2012) do not take into account seasonality and

impacts of climate change on the timing of river flows,

potential spatial variability and changes occurring over

short distances, potential impacts of floods and droughts or

impacts on river runoff from decreasing snow cover and

snowfall. Such differences may explain, at least partly, the

differences between the significant decrease in hydropower

capacity at the micro-level as projected by Maurer et al.

(2009) and the increase in hydropower generation at the

macro-level projected by Hamududu and Killingtveit

(2012). Similarly, De Lucena et al. (2009) also only

accounted for the average behavior of flows and did not

integrate potential change in seasonality or the effects of

extreme dry or wet events on hydropower generation.

Implications for regional development

This paper shows that the Latin America and Caribbean

region will be severely affected by climate change, even

under lower levels of warming (Fig. 5, Table ESM.1). The

biophysical impacts described here interact with the

Fig. 5 Projected impacts of climate change in key sectors in the

Latin America and Caribbean region. Warming levels are relative to

pre-industrial temperatures. The impacts shown here are a subset of

those summarized in this paper and in Table ESM.1. The arrows

indicate solely the range of warming levels assessed in the underlying

studies, but do not imply any graduation of risk unless noted

explicitly. In addition, observed impacts or impacts occurring at lower

or higher levels of warming that are not covered by the key studies

highlighted here are not presented (e.g., coral bleaching already

occurs earlier than 1.5 �C warming, but the studies presented here

only start at 1.5 �C). Adaptation measures are not assessed here

although they can be crucial to alleviate impacts of climate change.

The layout of the figure is adapted from Parry (2010). The lower-case

superscript letters indicate the relevant references for each impact. If

there is no letter, the results are based on additional analyses for this

report. (a) Sillmann et al. (2013b); (b) Marzeion et al. (2012); Giesen

and Oerlemans (2013); Radic et al. (2013); (c) Meissner et al. (2012);

(d) Cheung et al. (2010); (e) Hidalgo et al. (2013); (f) Döll and

Schmied (2012); (g) several studies without considering CO2

fertilization, see Table ESM.1; (h) several studies, see

Table ESM.1; (i) several studies, see Table ESM.1; (j) ECLAC

(2010); (k) Kolstad and Johansson (2011); (l) Colon-Gonzalez et al.

(2013); (m) Béguin et al. (2011); Caminade et al. (2014); Van

Lieshout et al. (2004)

C. Reyer et al.

123



existing vulnerabilities in the region (‘‘Social, economic

and demographic profile of the Latin America and Car-

ibbean region and vulnerabilities to climate change’’ sec-

tion) and may affect development and human well-being in

LAC in a variety of ways: Changes to the hydrological

cycle endanger the stability of freshwater supplies and

ecosystem services on which many people in LAC depend.

Extreme events will strongly affect the rural and urban

poor who often reside in informal settlements in high-risk

areas (e.g., flood plains and steep slopes). Intense rainfall

events can quickly overwhelm natural drainage channels in

the landscape as well as urban drainage systems that are

unlikely to have been designed for the possible increased

intensity of future rainfall events. At lower levels of

warming, glacial melt in the Andes will reduce freshwater

and hydropower during the dry season for communities and

large Andean cities which are often important economic

centers, while increasing the risks of flooding in the short

term and impacting agriculture and environmental services

downstream. More intense tropical cyclones would interact

adversely with rising sea levels, exacerbating coastal

flooding and storm surge risks, putting entire economies

and livelihoods of island states at risk. The Caribbean is

particularly vulnerable as more than 50 % of its population

lives along the coast and around 70 % live in coastal cities.

Degrading coral reefs will endanger tourism revenues and

undermine biodiversity, fisheries and the protection of

coastal zones. Climate change could also place at risk

small-scale subsistence agriculture and large-scale agri-

cultural production for export.

Finally, our assessment of climate change impacts in

different sectors shows that impacts are likely to occur

simultaneously and possibly interact, thus increasing the

risks for development when, e.g., crop yield is reduced,

transport disrupted and houses of workers and production

infrastructure damaged. Although, climate change chal-

lenges those already vulnerable and disfavored the most,

large businesses could also suffer which in turn has

implications for a large labor force, threatening population

groups currently considered less vulnerable. Studies of

interacting and cascading impacts and how these affect

different population groups and infrastructure types are

needed to gain a clearer picture of the relationship between

climate change and development, as well as to better plan

and implement mitigation and adaptation activities. A key

challenge is to properly link biophysical impacts, often

projected until the end of this century, to development

issues which are highly dynamic and hard to project at

similar timescales as the climate impact projections.
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los Rı̀os Paraná y Uruguay. Instituto Nacional del Agua, Ezeiza

Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate

and land-use change on the global diversity of birds. PLoS Biol

5:e157. doi:10.1371/journal.pbio.0050157

Johansson MA, Dominici F, Glass GE (2009) Local and global effects

of climate on dengue transmission in Puerto Rico. PLoS Negl

Trop Dis 3:e382

Jones C, Carvalho LMV (2013) Climate change in the South

American monsoon system: present climate and CMIP5 projec-

tions. J Clim 26:6660–6678. doi:10.1175/JCLI-D-12-00412.1

Juen I, Kaser G, Georges C (2007) Modelling observed and future

runoff from a glacierized tropical catchment (Cordillera Blanca,
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