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Abstract 

Data from 1821 to 2003 of 126 rain gauges, 41 temperature gauges, 8 river discharge 

gauges and 239 wells, located in Southern Italy, have been analyzed to characterize the effect 

of recent climate change on water resources availability, focusing on groundwater resources. 

Regular data are available from 1921 to 2001. Many analysis methods are used: principal 

component analysis, to divide the study area in homogenous portions; trend analysis, 

considering the Mann-Kendall, t-Student and Craddock tests, autocorrelation and 

crosscorrelation analyses; seasonal, annual and moving average variables are considered, 

applying the spatial analysis to each variable with a GIS approach. 

A widespread decreasing trend of annual rainfall is observed over 97% of the whole 

area. The decreasing trend of rainfall worsens or decreases as mean annual rainfall increases; 

the spatial mean of trend ranges from -0.8 mm/year in Apulia to -2.9 mm/year in Calabria. 

The decrease  in  rainfall is notable after 1980: the  recent droughts of 1988-92 and 1999-2001 

appear to be exceptional. On a seasonal basis, the decreasing trend is concentrated in winter; a 

slight positive trend is observed in summer, the arid season in which the increase is useless as 

it is transformed in actual evapotranspiration. The temperature trend is not everywhere 

significant and homogeneous also if the temperature increase seems to prevail, especially 

from about 1980. Net rainfall, calculated as a function of monthly rainfall and temperature, 

shows a huge and generalized negative trend. 
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The trend of groundwater availability is so negative everywhere that the situation can 

be termed dramatic for water users, due not only to the natural drop in recharge but also to the 

increase of discharge by wells to compensate the unavailability of surface water tapped by 

dams, as a direct effect of droughts. 

Key words: Climate, Rainfall trend, Time series, Drought. 

 

Climate change overview and case study 

The significant meteorological factors behind droughts include not only rainfall, 

temperature and evapotranspiration, but also atmospheric circulation patterns (EEA 2001). 

Considering Europe and particularly the Mediterranean area, low pressure generally 

settles over Iceland and high pressure over the Azores involves the Mediterranean area; this 

feature occurs quite normally in the summer, very often from March to October. A change in 

position and/or duration and intensity of anticyclones leads to rainfall/temperature anomalies. 

A common feature of Mediterranean droughts is the persistence of high-pressure systems. In 

the Mediterranean area, drought seems to be teleconnected to La Niña, an anomalously high 

cooling of the equatorial Pacific Ocean; out of 14 La Niña events, occurring between 1865 

and 1990, 13 were associated with droughts in the Mediterranean area (Conte & Colacino 

1994). 

The Mediterranean oscillation, as is the case for the North Atlantic oscillation, is 

defined as the normalised pressure difference between two stations, in the case of the 

Mediterranean oscillation Algiers and Cairo; the considered variable is the 500 hPa surface 

height; Piervitali and Colacino (2002) show the Mediterranean oscillation is anticorrelated to 

rainfall in Italy in the period 1951-1995. 

The spectral analysis of Italian temperature and rainfall series shows short (2 years), 

medium (8 years) and long term (14-26 years) oscillations caused mainly by solar cycles, 
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according to Nanni and Lo Vecchio (1997), and also by the Atlantic ocean-atmosphere 

oscillation, according to Brunetti et al. (2000). 

In the Mediterranean countries, drought is often the result of a sequence of dry years 

(EEA 2001). Considering the Central-Western Mediterranean Basin, Piervitali & Colacino 

(2002) detect a trend towards a drop in rainfall  equal to -3.2 mm/year from 1951 to 1995 

while Piervitali et al. (1997) describe an increase of 1 °C during the period from 1860 to 

1995, higher than known on a global scale. 

If Italy is considered, this pattern is confirmed but a distinction can be drawn between 

Northern and Central-Southern Italy (Brunetti et al. 2004): the Italian climate has become 

warmer and drier, especially in the south, with an increase of both heavy precipitation events 

and long dry spells, as transpired from a study of  more than a century of measurements up to 

2000. Brunetti et al. (2004) show the temperature trend is positive for each season in the south 

and for autumn and winter in the north; in the former case the annual temperature trend is 

equal to 0.7 °C/(100 years) and the winter trend is equal to the maximum, as shown also by 

Nanni & Lo Vecchio (1997) on the basis of a study of data from 1866 to 1975. The southern 

annual rainfall trend is -1 mm/year, about double that of the northern trend and these trends 

seem more or less null only for the winter season.  

Other authors determine the annual rainfall trend equal to -2.2 mm/year in Italy, 

considering data from 1951 to 1996 (Brunetti et al. 2004) and equal to -4 mm/year in the same 

areas of Southern Italy (Brunetti 2002). 

Temperature and precipitation trends seem anticorrelated in Italy, as observed by 

Brunetti et al. (2000), using seasonal temperature and rainfall data 1866 to 1995, and by 

Cambi et al. (2000), using also proxy data of lakes during the last 3000 years;  Cambi et al. 

have evaluated the linear gradient ranging from -130 to -40 mm/°C, using regularly monitored 

data. 
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Some droughts can be man-made via mismanagement of the resources. Physical and 

human driving factors include the storage of catchments and aquifers and socio-economic 

factors controlling water demand. In Southern Europe water consumption climbed from 7.1 

km3/year in 1900 to values 15 times higher in 1995 (15.0 times higher) and further increases 

are expected in the years ahead (16.5 times higher in 2010) (Shiklomanov 1999).  

 With regard to Italy, Brunetti et al. (2004) observed the drought worsening from 1980 

onwards, studying data from 1950; in the drought period of 1988-1990 a deficit of 43% Italian 

total rainfall was recorded (EEA 2001). Cambi et al. (2000) observed the effect of droughts 

on two mountain springs uninfluenced by human activity, evaluating the annual trend of 

spring discharge equal to 7% (1942-1991) and to 19 % of mean discharge (1974-1995). 

Future scenarios could be worse: by 2050,  annual rainfall is expected to increase in 

Northern Europe  and decrease elsewhere in Europe; temperature and potential evaporation 

will  rise everywhere, with a huge impact on the driest regions of Southern and Eastern 

Europe (EEA 2001). 

Broadly stated, it seems that simultaneous drops in rainfall and increasing 

evapotranspiration and water demand are occurring in this period in Southern Europe, 

contributing to groundwater resource depletion, decreasing piezometric levels and affecting 

several related environmental issues, such as seawater intrusion, contamination of land and 

water and desertification. 

All studies previously cited are characterised by low gauge density or by considering 

relatively small areas. This study focuses on the whole of Southern Italy, involving the  

Apulia, Basilicata, Calabria and Campania (Figure 1) regions, where the mean annual 

precipitation (MAP) is equal to 901 mm. 

This study is based on rainfall and air temperature (hereinafter simply temperature for 

sake of brevity) monthly data from 126 gauges, river discharge data from gauges and 
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piezometric data of 239 wells. The main purpose is to determine the existence of a trend of 

these variables, the role of drought periods and the description of the contribution of the 

variation of the water cycle on the availability of groundwater. 

 

Climatic data and spatial approach 

Rainfall and temperature monthly time series of the Italian Hydrological Service 

(Servizio Idrografico e Mareografico Nazionale), hereinafter known as SIMN, have been 

considered (SIMN 1916-2000). At the end, 126 rainfall gauges were finally selected among  

817 gauges (SIMN 1976) (Figure 1). The gauges were selected to obtain a sufficient gauge 

density and spatial continuity mainly of rainfall and secondly of temperature, covering the 

maximum monitoring period with the minimum of data gaps; 41 of the selected gauges were 

also temperature gauges. The unpublished data are available thanks to the courtesy of the 

Naples, Bari and Catanzaro SIMN departments. Data before 1915 were collected by Eredia 

(1918). The time series can be considered almost complete only from 1921 to 2001, the so- 

called main study period (hereinafter known as the MSP). Climatic time series utilised by 

previous articles (Polemio & Casarano 2004; Polemio et al. 2004a) have been enlarged, 

reducing gap percentages, and have been improved afterwards, thanks to the homogeneity 

evaluation.  

Residual gaps of time series are filled using multiple regressions based on a selection 

of the best correlated data series of the nearest gauges. The multiple regressions were 

performed on the normalized deviation of the considered value from the annual mean of the 

same time series, considering the best correlated time series (r>0.7) of the  nearest gauges (up 

to 6).  

The spatial analysis of each variable is carried out by interpolation of point values 

(gauges) in a GIS environment, operating with a 1-km spaced grid. The MAP plot, as in any 
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case of variables related to rainfall, has been calculated in the MSP for each cell by weighting 

data from the 12 nearest gauges, with weights proportional to the inverse squared distances 

(Figure 1).  

The climatic homogeneity of the study area has been evaluated on the basis of the 

principal component analysis applied to the deviation of annual rainfall from the average 

normalized by the respective standard deviation; each time series or gauge is considered an 

individual while each year is a character or component.  

Two main homogeneous climatic areas (HCAs) can be recognized, located along the 

Tyrrhenian and the Ionian-Adriatic coasts respectively (Figure 2). The former can be divided 

into two sub-areas, Campania and the Tyrrhenian Basilicata-Calabria. The latter includes the 

Ionian Basilicata-Calabria and all of Apulia. Transitional sub-areas between the Tyrrhenian 

and Ionian-Adriatic influenced areas can be considered the sub-areas of the SW portion of 

Calabria and Inner Basilicata.  

The principal component analysis result is coherent with the spatial rainfall 

distribution in Southern Italy (Figure 1), mainly influenced by humid air circulation and by its 

arriving along the Italian coasts across the Mediterranean sea, moved by winds of the third 

and fourth quadrants and secondly by altitude and by the Apennine range which is located 

along the Tyrrhenian coast in Calabria and Basilicata and inland in Campania. 

The statistical and spatial calculations, as in the case of Table 1, have been performed 

considering both administrative regions (Figure 1), where local governments are entirely in 

charge of water cycle management, and homogeneous climatic areas (Figure 2). The obtained 

results are quite similar: the results are hereinafter described, preferring the administrative 

zonation for the sake of brevity and to magnify the message to water cycle managers. 
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Changes of climate, droughts and net rainfall 

Time and spatial variability of annual rainfall 

The annual rainfall trend is determined as the angular coefficient (AC) of the least 

square line for each rainfall time series in the MSP. The increasing trends or positive values 

of AC are typical only of 12 of the whole 126 series; the maximum observed slope is about 

2.5 mm/year. Decreasing trends are observed for 114 series (90%); the minimum is about -9 

mm/year. If a 5% significance level is considered for correlation coefficients, 60 negative 

trends are found versus only 2 positive trends. 

There are 17 time series available before 1921 (3 before 1829) and they are located in 

Campania and Apulia (Polemio & Casarano 2004). If the start of the study period is moved 

back respect to the MSP, in Campania a downwards trend in rainfall is not evident while in  

Apulia a slight but almost continuous downward trend in rainfall is quite evident even in 

the19th century. 

The results of the MSP are consistent with previous studies if average spatial values 

are considered (Brunetti 2002; Cambi et al. 2000; Piervitali & Colacino 2002). The higher 

density of gauges used in this study implies that the trend range is wider and the 

determination of extreme values is more accurate.  

The spatial analysis of AC shows that 96.8% of the study area is affected by a negative 

trend (Figure 3). Considering as cell attributes MAP and AC values (Considering MAP and 

AC values as cell attributes) , the spatial average of AC or the trend values for MAP class 

highlight the fact that that the rainfall trend worsens or decreases as the MAP increases (Table 

2). This figure is extremely worrying in the context of water management because high MAP 

areas are wide Apennine portions of the drainage basins of the artificial lakes which guarantee 

a relevant percentage of water supplies. 
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The reliability of detected rainfall trends has been evaluated by the Mann-Kendall test 

(Mann 1945, Kendall 1976). The Mann-Kendall variable S is: 
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where zi is the annual rainfall i of the considered gauge z and k is the number of data or 

duration of the time series. S is distributed with null mean and variance σ2 function only of k. 

This statistic, normalised to the respective standard deviation, highlights a negative trend  

with regard to  98% of the area, with the Mann-Kendall variable lower than  average for more 

than one standard deviation over 75% of the area, and more than two standard deviations over 

39%. It is clear that there is a relevant and generalised downward rainfall trend in the MSP. 

The Mann-Kendall test has been improved taking into consideration three more 

detailed approaches (Douglas et al. 2000; Hirsch et al. 1982; Polemio et. al. 2004a): pre-

whitened series, trend estimator and spatial correlation calculation. 

Pre-whitened series may be necessary since the Mann-Kendall test formulates the 

hypothesis that the data of a time series are independent and not autocorrelated. If the time 

series is autocorrelated a false trend could be detected. Each time series was then pre-

whitened, obtaining a new series with null autocorrelation typical of a white process, and 

subjected to the Mann-Kendall test again. Widespread negative values of the Mann-Kendall 

variable and downward rainfall trends were substantially confirmed.  

An extension of the Mann-Kendall test also allows an alternative and independent 

estimate of the trend. It is defined, for each rainfall time series, as the median of the slopes 

dij=(zi–zj)/(i–j) of any combination with i and j equal to 1, 2 …k and i ≠ j. This estimator, 

being based on a median, is more “robust” with respect to extreme or anomalous values in the 

time series. The results are substantially similar to these obtained with the standard approach. 
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The spatial correlation of the m rainfall time series allows estimating the number of 

“equivalent” independent rain time series. It is useful to estimate the expected variance of a 

regional average for the Mann-Kendall variable, and then the significance of the trend over a 

wide area. 

If Si is the Mann-Kendall variable value for the ith rain gauge and all the time series 

have the same length, then  the variance is equal for all the Si, and a regional average S  for 

the Mann-Kendall variable can be calculated. If the m time series are not correlated with each 

other, then the variance of S  would simply be σ2/m. Since time series are actually correlated, 

with ρij correlation coefficient between the rain gauges i and j, it is possible to define an 

“equivalent” gauge number meq 

 

 

The variance of the regional average S  will then be σs
2 = σ2/meq. 

The selected rain gauges have been divided into three groups on the basis of HCAs and 

administrative boundaries: the Campania (41 gauges), Apulia (28 gauges) and Calabria-

Basilicata areas (56 gauges). If the original (not prewhitened) series are considered, meq is 

1.95 for the Campania group, 1.85 for the Apulian group and 2.54 for the Calabria-Basilicata 

group. The regional average S  is, respectively, -2.81 σs, -1.17 σs and -3.59 σs. For the 

prewhitened series, meq is 1.84 for Campania, 1.85 for Apulia and 2.47 for Calabria-

Basilicata, and S  is, respectively, -2.26 σs, -1.18 σs and -3.21 σs. It can be assessed that the 

negative trend is only slightly attenuated if the autocorrelation is considered, and thus the 

substantial statistical relevance of trend results is confirmed. 

The existence of relevant rainfall variations in periods shorter than MSP can better 

highlighted with the moving average analysis: the deviation from MSP average of moving 

averages of decreasing duration, 5, 3 and 2-year is considered (Figure 4). 
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The 5-year duration allowed the evaluation of significant deviations from the average 

over long periods. Dry periods were recorded in Apulia for 1942-1950, 1988-1992 and 1997-

2001; the last two periods were almost the driest periods also in Basilicata, Calabria and 

Campania. 

The 5-year average deviation has been continuously negative since 1978 in Basilicata 

and Calabria and since 1983 in Campania, whereas the negative deviation in Apulia has been  

observed from 1980 to 1995. The analysis of 3-year and 2-year moving averages shows the 

drought duration of 2 or 3 years is longest from 1980 as from this year the minimum rainfall  

has been reached and has been exceeded one or more times in each considered region, 

particularly with the latest drought of 1999-2001. In Apulia and Campania,  some dry periods 

of the late ‘20s and the ‘40s were as dry as the latest droughts. 

The decade’s average analysis also highlights a persistent succession of low rainfall 

years and drought periods from about 1980; the results are consistent with those of other 

authors, obtained using different time series and lower data density (Brunetti et al. 2004). It 

can be hypothesized that the observed downward trend in rainfall is strongly influenced by 

low rainfall observed after 1980. On a HCAs basis, the 1981-2001 average is lower than the 

1921-80 average of 10% in Apulia, 14% in Basilicata-Calabria and 16% in Campania. 

The Student’s t-test is used to assess whether each time series of 1921-80 and 1981-

2001 can be considered part of the same population. The 1981-2001 average is lower than that 

of the 1921-80 average for 98% of the time series. The 5% and 1% significance level is, 

respectively, found for 75% and for 53% of the time series: the rainfall of the latest 20 years 

can be considered anomalously low. 

Monthly data have been utilised to characterize the rainfall seasonal trend. The most 

important contribution to the annual negative trend is due to the winter (the months from 

December to February, which is the rainiest season) rainfall trend (Figure 5). The 
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precipitation deficit of the last 20 years is mostly due to a reduced contribution of winter 

rainfall. Spring (March-May) and autumn (September-November) also show negative trends, 

although much less evident. A positive trend appears for summer, the arid season: the effect is 

null in terms of water resources availability. 

 

Temperature and net rainfall trend 

Monthly temperature series are available as of 1924. To fill the residual monthly gaps 

the time series were grouped in HCA. A different approach, based on gap filling and 

homogenization, was necessary for 15 time series of gauges located in Campania due to the 

abundance of very anomalous values, in particular for the last 20 years (the homogeneity 

evaluation is based on the Craddock (1979) test).  

The linear trend analysis shows the temperature trend is not as homogeneous as the 

rainfall trend both in the whole study area and in each HCA (Table 4). A prevailing increasing 

trend is observed in Campania but is weak in Apulia and is substantially absent in the 

remaining area.  

To apply the Mann-Kendall test, prewhitening of the temperature series is necessary 

due to their significant autocorrelation. The Mann-Kendall S distribution is close to Gaussian 

with a slight prevalence of increasing trends in the Campania region; here, an increase of 

temperature starting from about 1980 is observed, as shown in Figure 4.  

However, this is not enough to assess a significant and generalised temperature trend 

over the whole area in MSP, since this behaviour is not so evident elsewhere. These results 

are  thus quite different from those by other authors (Brunetti et al. 2004, Cambi et al. 2000), 

probably due to the strong difference of data set length and spatial density of examined 

gauges. 
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The real or actual evapotranspiration Er was calculated using Turc’s formula (Turc 

1954) with the correction suggested by Castany (1968), using temperature and rainfall 

monthly data. In this way an approximate but simple evaluation of the annual variation of 

actual evapotranspiration can be obtained. 

The average annual net rainfall of a time series (ANR) ranges from 52 to 1565 mm 

for the whole group of 41 available time series in the period 1924-2001. The AC of net 

rainfall (ACNR) is  strongly negative everywhere. The absolute value of ACNR is directly 

correlated to MAP: it increases or gets worse as MAP increases. ACNR ranges from -0.4 to -

4.3 mm/year, grouping the time series by MAP (Table 5). In the whole period, the reduction 

of net rainfall can be roughly assessed as from 27 to 33 of ANR%: this percentage is 

everywhere higher  than that calculated for actual rainfall.  

This dramatic situation is due to different phenomena. First of all, the downward 

rainfall trend is more relevant during winter, when generally net rainfall reaches its the 

maximum levels and actual evapotranspiration minimum levels. The entire winter drop in 

actual rainfall becomes a drop in net rainfall. The summer is arid everywhere and the actual 

evapotranspiration is less then the potential one due to low rainfall. The increase in summer 

rainfall  is completely “burned” by actual evapotranspiration. The recent trend towards a rise 

of annual temperature and the regime variation amplify the effect of rainfall variations. 

 

Groundwater availability and role of climate change 

Main characteristics of selected aquifers 

The effects of recent climate variations on groundwater availability are evaluated 

considering 5 wide hydrogeological structures (HSs for sake of brevity). In each HS the 

shallow or outcropping aquifer is considered; three are porous, two are constituted by 

carbonate rocks, all are coastal aquifers. 
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The Apulian Tableland HS, hereinafter called Tavoliere HS, consists of a shallow and 

large porous aquifer within a conglomerate sandy-silty succession, less than sixty meters 

deep, with a clayey impermeable bottom (Polemio et al. 1999). It is deep enough to allow 

seawater intrusion only in the vicinity of the coast. Groundwater is phreatic inland or far from 

the coast, in the recharge area, whereas it is confined in the remaining part of the aquifer; 

maximum piezometric levels reach 300 m asl. 

Except for the Tavoliere, the Apulian region is characterized by the absence of rivers 

and the unavailability of surface water resources due to its karstic nature. Considerable 

groundwater resources are located in large and deep carbonate coastal aquifers as in the case 

of the Gargano (not considered in this study due to the low data availability), the Murgia and 

the Salentine Peninsula (Salento) HSs. The Murgia and Salento areas show some common 

features (Cotecchia et al. 2005). They consist of large and deep carbonate aquifers, constituted 

mainly of limestone and dolomite rocks. Carbonate rocks are affected by karstic and 

fracturing phenomena, which occur also well below sea level, whereas intruded seawater 

underlies fresh groundwater owing to a difference in density. Confined groundwater is more 

widespread inland; groundwater is phreatic everywhere along a narrow coastline strip. The 

Maximum piezometric head is about 200 m asl in the Murgia area and 5 m asl in the Salento 

(Spizzico & Tadolini 1997). 

Five rivers cross the Metaponto plain, located along 40 km of Ionian coast. Marine 

terraced deposits, mainly sands, conglomerates and silts, outcrop in the upland sectors of the 

Metaponto plain, while alluvial, transitional, marine and coastal deposits outcrop in the 

coastal plain and along the rivers (Polemio et al. 2003). Two main types of porous aquifers 

can be distinguished in the Metaponto plain. The first one encloses the aquifers of the marine 

terraces and the alluvial river valley deposits. The marine terrace aquifers display medium to 

high hydraulic conductivity; the river valleys regularly break their spatial extent. The aquifers 
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of the river valleys display low to medium hydraulic conductivity and they do not generally 

permit an accumulation of significant groundwater resources. The second type of aquifer 

includes one of the coastal plain deposits and has a medium hydraulic conductivity. This 

aquifer is the most exploited one for practical purposes due to its extension (about 40 km 

wide), thickness, continuity across the plain and also because its outcropping surface is more 

affected by economic growth and increasing water demand.  

The groundwater of the coastal plain aquifer flows in a multilayered aquifer; it is 

mainly phreatic; otherwise it is confined due to an upper, almost impervious and outcropping 

stratum.  

The Sibari plain is located in northeast Calabria and covers the final sector of the Crati 

river. The Sibari plain is bordered by the carbonate relief of the Pollino Massif to the north 

and by the intrusive and metamorphic rocks of the Sila Massif to the south; it is constituted by 

sedimentary lithotypes, varying from sand to marl and clay and including gravel locally.  

The Sibari plain houses multilayered aquifers the recharge of which is partially 

ensured by groundwater flowing from massifs and by leakage of rivers. For this study the 

shallow sandy aquifer alone has been considered (Polemio & Petrucci 2003). 

 

Hydrological data 

Piezometric data (Table 6) and river discharge measurements (5 time series ranging 

from 1930 to 1992 for the Tavoliere and 3 series ranging from 1929 to 1971 for the 

Metaponto plain; SIMN 1916-2000) are considered together with already analyzed rainfall 

and temperature data. The continuous or regular monthly piezometric data are derived by 

gauges managed by SIMN (1916-2000) or by the Irrigation Development Agency (Regione 

Puglia, 1983). Occasional and recent data were directly collected on-site by the IRPI 

hydrogeological staff (Polemio & Dragone 2003, 2004; Polemio et al. 2003, 2004b, 2004c; 
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Polemio & Petrucci 2003) and secondly by other sources (Regione Puglia (2002) for the 

Tavoliere aquifer and Lopez et al. (2003); CASMEZ (1987) for the Sibari aquifer. 

Data from fifty eight wells or piezometric gauges are available for the three Apulian 

HSs -- the Tavoliere, the Murgia and the Salento (Polemio & Dragone 2004). The piezometric 

data sets regarding the Tavoliere are available for a minimum of 17 years and for a maximum 

of 55 years, covering a continuous period between 1929 and 1994 (Polemio et al. 1999). 

Continuous data are available from 1973 to 1978 for the Murgia and the Salento. 

Furthermore, sporadic recent data were collected in Apulia for the periods from 1995-1997 

and from 2001-2003. 

Piezometric time series of monthly data are available in the Metaponto plain for 60 

wells in two periods, from 1927-1940 and from 1951-1984 (Polemio & Dragone 2003). 

Occasional but high density data are available in the whole plain for 1953 and 1990 and in a 

selected study area for each season of 2002 (Polemio et al. 2004a). 

Data from 121 wells in the Sibari plain were considered, for which discontinuous 

piezometric data are available from 1932 to 2002. Data are concentrated in the thirties, the 

fifties and the seventies. The surveying was managed by different institutions in these 

different periods: the location and the identification of wells are not detailed enough to permit 

a linking of the series. The oldest data were regularly collected from 1932 to 1940 in 27 wells; 

this data set has been used as a reference for spatial analyses. In June 2002 a high density 

piezometric survey was carried out. Due to the shortness of regular piezometric time series, 

the analysis for the Sibari plain is limited to the spatial analysis of piezometric surface 

modifications. 

 

Data analysis 
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Piezometric data are explored taking into account typical approaches of time series 

analysis such as autocorrelation, crosscorrelation and trend analysis tools and of spatial 

analysis, using kriging to obtain grid data of piezometric surfaces to compare using simple 

arithmetic operations and volume determinations. 

The piezometric value recorded in any month is strongly dependent upon the values of 

the previous months, the link being significant, diminishing as the time lag increases. The 

duration and the intensity of this dependence, called memory effect, is a function of storativity 

(function of the type of flow, confined or phreatic), saturated thickness, hydraulic 

conductivity and extent of the aquifer. High values of these parameters are typical of aquifers 

of high quality to tap groundwater; in these cases the autocorrelation decreases slowly as the 

lag increases. 

The crosscorrelation for each piezometric series is determined by comparing it two by 

two with data from a hydrogeologically significant series of rainfall, temperature and, where 

available, river discharge, the data of which are utilized step by step with increasing lag from 

1 to 12 months. The crosscorrelation coefficient expresses a measure of effect of the latter 

variable, rainfall, temperature or river discharge, on the variability of the former variable, the 

piezometric height or level.  

The spatial analysis is utilized to complete the trend analysis of piezometric data when 

sporadic but high density data are available. 

The three considered porous aquifers are subject to similar hydrological conditions: 

the range of mean annual rainfall and temperature is, respectively, 440-600 mm and 15.9-16.9 

°C; the Tavoliere area is a bit cooler and drier than the other two . With regard to the 

monitored river discharges, the whole range of mean annual values is 1.0-20.0 m3/s. 

In the Tavoliere aquifer the autocorrelation coefficient always decreases slightly and 

quite linearly. There is a very high autocorrelation in 56% and 22% of wells, decreasing the 
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coefficient respectively from 1 about to 0.8 and to 0.5, increasing the lag up to 12 months. 

The autocorrelation of remaining wells is insignificant after 6 lags.  

The piezometric height is crosscorrelated with river discharge, temperature (in this 

case this is an anticorrelation) and rainfall in decreasing order of maximum absolute value of 

coefficient. The river bottom is generally higher than the piezometric height in the monitored 

locations. 

The maximum of the crosscorrelation coefficient MCC (as absolute value if the 

coefficient is negative, as in the case of temperature) and of maximum significant lag MSL 

(the maximum lag for which there is statistical significance of crosscorrelation) are, 

respectively, 0.5 and 2 months for discharge, 0.4 and 3 months for temperature, and 0.3 and 5 

months for rainfall. MSL seems well correlated to depth to water: MSL appears to be a useful 

parameter to evaluate the time necessary to transfer a surface water impulse to groundwater.  

The fact that even temperature variations are significant, more widespread than 

rainfall, has already been observed in similar hydrogeological conditions (Polemio et al. 

1999). This can be explained by considering the nature of the climate, which is semiarid 

everywhere for the selected aquifers. In this type of climate, the temperature is significant 

because of two separate and cyclically following phenomena. The former is a natural one, i.e., 

real evapotranspiration, which ‘regulates’ the availability of net rainfall for infiltration from 

autumn to spring. The latter is anthropogenic and is mainly linked to groundwater discharge 

from spring to autumn, due to high temperatures and potential evapotranspiration: the farms 

use more groundwater to offset the water deficit. In this way, temperature variation more than 

rainfall explains piezometric variations over the whole hydrologic year. 

The trend of river discharge has been characterized by five gauges: the trend is clearly 

decreasing, especially as of 1980, as in the case of rainfall in the whole Apulian region. It 
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should be recognized that this variable is also influenced by human activity due to depletion 

by dams or by diffuse withdrawals by rivers for farm use, which strongly increased by ’80.  

The piezometric trend everywhere is decreasing (Table 6); the continuous piezometric 

lowering has transformed many confined wells into phreatic wells; after that, the shallow 

groundwater of the Tavoliere is completely depleted in places. In terms of straight line trend, 

the trend everywhere is strongly negative, constituting a severe problem for groundwater 

discharge by wells (Table 6). The trend is confirmed by the spatial analysis of sporadic 2002 

data: the spatial mean of piezometric decrease is 7.93 m over  about 15 years. 

In the Metaponto plain, the autocorrelation coefficient is quite linear from the 

maximum, a bit lower than 1, to the minimum, equal to not less than 0.3, increasing the lag up 

to MSL, equal to 6 months (after that the piezometric values are independent). The memory 

effect is high everywhere, but generally higher where groundwater is confined. 

The MCC is generally less than 0.5 while MSL is 3 months, with some exceptions up 

to 4 months, in the case of rainfall. As in the case of the Tavoliere, the MCC is low and lower 

than the absolute value of temperature MCC which is, in this case, also greater than the river 

discharge MCC. The temperature MCC is generally less than 0.7 while MSL is 2 months, 

with some exceptions of up to 4 months; everywhere, the coefficient is negative. The river 

impulse in terms of piezometric variations is extremely quick and important: MSL is 

generally 1 month and MCC less than about 0.6. 

The trend of the piezometric series has been defined both to on synoptic scale, for the 

whole plain, and on a detailed scale, in the selected study area. With regard to the synoptic 

scale, the trend is described by AC while for the detailed scale it is the result of a comparison 

of the piezometric surfaces of different years. 
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The piezometric minimum occurred generally between 1952 and 1954 (up to 1984), 

when the exploitation of the aquifers was very high, after the end of land reclamation works 

(Polemio & Dragone 2003). 

The time series analysis shows a widespread negative trend for the period from 1927-

1940 with a piezometric drop, on average, equal to 0.05 m/year. In the same period of time, 

the rainfall trend is slightly positive locally. This figure can be explained, as the groundwater 

represented the only irrigation resource during these years. Conversely, a positive trend is 

observed from 1951 to 1984 (75% of the total available time series), even if rainfall and river 

discharge trends are not positive. This figure can be explained considering the fact that many 

dams were built in this period; the dams started to supply more irrigation water than ever 

before. This allowed a reduction of groundwater tapping and also created a sort of artificial 

recharge, due to over irrigation. 

A new trend variation, a widespread downward trend, started during the ‘80s; this 

trend remains unchanged. During 1988-1991 a heavy drought hit the area. The effect was the 

depletion of artificial lakes and the massive reutilization of groundwater. The piezometric 

effects of drought in 1990 were relevant, particularly as compared to the situation in 1953, 

defined almost as a minimum until 1984. Negative piezometric variations are generally 

prevalent also in the case of the selected study area, where a more detailed analysis was 

carried out during 2002 (Polemio et al. 2003). For this area, the 2002 spatial mean of 

piezometric height is 1.12 m less than that of 1953 while that of 1990 is 0.34 m higher. 

The maps of the piezometric variations in the Sibari plain highlight a decreasing trend 

which started around the ‘fifties, assuming as reference piezometric surface that of the thirties.  

The plain as a whole is characterized by piezometric heights in the ‘50s which was higher 

than in the ‘30s (positive piezometric variation). Major decreases of piezometric height 

(negative variations) appear inland during the seventies while two separate positive variation 
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areas remain, involving main rivers and portions of the coast. Both a lowering of the 

piezometric negative variations, in term of absolute values, and a narrowing of the positive 

variation area are observed in  2002, the positive variation area becoming quite similar to a 

strip along the coast. The spatial mean of piezometric variation of 2002 is the lowest or the 

worst observed; it is equal to a lowering of 4.42 m with respect to the thirties. 

In the case of the considered Apulian carbonate hydrogeological structures, the 

autocorrelation piezometric coefficients consistently show a progressively declining trend, 

starting from one to the statistically significant minimum, everywhere not less than 0.5, 

increasing the lag to 4 months for the Murgia and 5-6 months for the Salento area. The 

consistent memory effect of Apulian groundwater is a characteristic feature which is of great 

importance during droughts or dry spells. The Salento has shown very strong and long-lasting 

memory effects, which is only further proof of the good hydrogeological characteristics of 

these aquifers. 

There is a crosscorrelation between the piezometric and climatic variables of an 

acceptable significance level for a time lag up to 4 months. The effects of rainfall are 

perceptible up to a maximum period of 2-3 months, whereas the best correlation with 

temperature is felt with a time lag of 4 months. The temperature variations are more 

significant than rainfall in some portions of the Murgia and the Salento. 

The calculated piezometric trend, generally speaking, is downward, since there is a 

widespread tendency, albeit in some cases a very slow one, towards a piezometric drop. The 

lowest piezometric decrements have been observed in the Salento area, which has an angular 

coefficient (AC) in the range of -0.060 to -0.012 m/year; worse AC values are typical of the 

Murgia HS (Table 6). In the Murgia, as in each HS, the AC approaches zero the closer one 

gets to the coastal areas, as would be expected. 
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During 2002, a widespread and dramatic drought period ended. On the basis of the 

available data set, the most likely piezometric trend, ending in the second half of 2002, was  

very negative and serious in terms of  the sustainability of the groundwater demand,  over the 

entire area covered by porous aquifers, as in the case of the Tavoliere, the Metaponto plain 

and the Sibari plain (Table 6); this figure is confirmed by sporadic data of 2003 in the case of 

the Murgia and the Salento, notwithstanding the effect of more than a year of abundant 

rainfall. 

 

Conclusions 

A widespread decreasing trend of annual rainfall is observed over 97% of the whole 

area from 1921 to 2001. The spatial average of trend value and MAP highlight the  fact that 

the rainfall trend worsens or decreases as the MAP increases. This phenomenon is extremely 

worrying because high MAP areas are wide Apennine portions of the widest drainage basins 

of the artificial lakes which guarantee a relevant percentage of water supplies. The spatial 

mean of trend ranges from -0.8 mm/year in Apulia to -2.91 mm/year in Calabria. 

The downward trend is mainly the effect of a succession of low rainy years; this 

succession is anomalous from about 1980, in terms of frequency and intensity of annual 

rainfall less than MAP; in this context, the droughts of 1988-92 and 2000-2001, the worst 

since 1921, appear to be more important.  

On a seasonal basis, the downward trend is concentrated in winter: the precipitation 

deficit of the last  20 years is mostly due to a reduced contribution of winter rainfall. 

A Mann-Kendall test does not show a significant prevalence of negative or positive 

temperature trends. Although in some stations the highest temperatures have been recorded in 

the last ten years and a slight increase seems to prevail especially from about 1980 onwards, 
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this is not enough to determine a significant and generalized increasing temperature trend for 

the whole area. 

The annual mean of net rainfall ranges from 52 to 1565 mm. The trend of net rainfall 

is everywhere strongly negative; in the whole study period the reduction of net rainfall can be 

roughly assessed from 27 to 33% of the annual mean. 

The selected aquifers show high hydrogeological characteristics as confirmed by the 

consistent memory effect, which is not shorter than 4 months. This characteristic is of great 

importance during droughts or dry spells. 

The crosscorrelation with piezometric level shows the variability of groundwater 

availability can be explained in terms of rainfall, temperature and, where it exists, river 

discharge variability. The significant lag or duration of this influence generally decrease from 

the first variable, rainfall, to the last, river discharge and respectively from 3-5 to 1-2 months. 

The intensity of this influence, in terms of maximum crosscorrelation coefficient, is generally 

due to temperature, river discharge and rainfall in decreasing order. 

The piezometric trend is on the decline everywhere, so enormously widespread as to 

determine serious effects in terms of groundwater discharge sustainability. The worse trend in 

each aquifer or structure ranges from 0.06 to 0.41 m/year notwithstanding the limiting effect 

of sea level boundary condition. Detailed spatial studies show an average decrease of 7.93 m 

over the  last 15 years in the Tavoliere, 1.1 m over  fifty years in the Metaponto plain and 4.4 

m over  seventy years in the the Sibari plain. 

During 2002 the latest widespread and dramatic drought ended. On the basis of the 

data set available, the most likely piezometric trend, ending in the second half of 2002, was a 

very serious one, indeed, over the entire area covered by porous aquifers, as in the case of the 

Tavoliere, the Metaponto plain and the Sibari plain; this figure is confirmed by sporadic data 
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of 2003 in the case of the Murgia and the Salento, notwithstanding the effect of more than a 

year of abundant rainfall. 

The whole piezometric downward trend appears to be due to the overlapping effect of 

the direct effect of natural recharge and of the increasing well discharge. The effects of the 

latter phenomenon appear influenced by the progressive availability of surface water 

resources tapped by dams; the increasing role of these water resources to cover the water 

demand does not prevent a return to pump water from aquifers during the recent and not 

ordinary droughts. 
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Region MAPR TR PVR PVR/MAPR
Apulia 644 -0.80 -65 -10.1 %
Basilicata 893 -1.81 -145 -15.9 %
Calabria 1043 -2.87 -230 -22.0 %
Campania 1118 -2.44 -196 -17.5 %

HCA MAPR TR PVR PVR/MAPR
Apulia 650 -0.82 -66 -10.2%
Inner Basilicata 986 -1.66 -133 -13.5%
Tyrrhrnian Calabria 1262 -2.90 -232 -18.4%
Calabria (transition) 1054 -3.12 -250 -23.7%
Ionian B.-C. 865 -2.33 -186 -21.5%
Campania 1118 -2.39 -191 -17.1%
Table 1 – Regions or HCA (Homogenous Climatic Area) and rainfall. For each row the mean is determined 
considering the MSP: Map of a Region (MAPR, mm), Mean Annual Inflow of a Region (MAIR, Mm3), 
precipitation trend (TR, mm/yr), precipitation variation (PVR, mm) due to the trend and to the duration of MSP. 
 
 
MAP class 
(mm) 

<600 600-750 750-900 900-1100 1100-1300 1300-1500 >1500 

SAAC 
(mm/yr) 

-0.64 -1.00 -1.89 -2.38 -2.64 -3.01 -4.74 

Table 2 – Spatial Average of Angular Coefficient (SAAC) of rainfall straight line trend for areas of MAP class. 
 
 
 >0 >σ >2σ <0 <-σ <-2σ 
Original series 21(51,2%) 16(39,0%) 11(26,8%) 20(48,8%) 9(21,9%) 7(17,1%) 
Prewhitened series 24(58,5%) 11(26,8%) 2(4,9%) 17(41,5%) 8(19,5%) 3(7,3%) 
Table 3 - Distribution of the Mann-Kendall variable for the 41 temperature time series. 
 
 
 
HCA ACT<-1 -1<ACT<-0.5 +0.5<ACT<+1 ACT>+1 
Apulia 7% 7% 20% 7% 
Calabria-
Basilicata (all) 

17% 25% 8% 8% 

Campania 7% 0% 13% 27% 
Table 4 – Number of time series as % of the total for each HCA and classes of Angular 
Coefficient of Temperature trend (ACT, °C/100years). 
 
 

MAPC ANR NRT NRV/ANR 
<600 85.5 -0.39 -33.1% 

600-900 227.9 -0.89 -27.1% 
900-1300 464.8 -1.99 -32.2% 

>1300 967.9 -4.30 -32.3% 
Table 5 – Net rainfall trend and MAP classes considering data from 1924 to 2001. MAP 
(MAPC, mm), Average Net Rainfall (ANR, mm), Net Rainfall Trend (NRT, mm/yr), Net 
Rainfall Variation from 1924 to 2001 (NRV) and ANR ratio. 
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Table 6 - Piezometric data availability for each hydrogeological structure (HS) and straight 
line trend (AC, m/year). 1) The number of wells available for occasional years is higher and 
variable; 2) in the periods 1927-1940 and 1951-1984; 3) Determination not available due the 
characteristics of data set. 
 

Data HS  Well 
number 

from to 

Minimum

AC 

Trend more probable at 
2002 or 2003 

Tavoliere 11 1929 2002 -0,408 High decrease 
Murgia 30 1965 2003 -0,240 High decrease 
Salento 17 1965 2003 -0,060 Decrease 
Metaponto 60 (1) 1927 2002 -0,236(2) Decrease 
Sibari 121 1932 2002 (3) Decrease 
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Figure 1 - Studied area, selected rain gauges and Mean Annual Precipitation (MAP) of MSP. 

 
Figure 2 - Homogeneous climatic areas classified with principal component analysis, rain gauges and aquifers. 
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Figure 3 - Trend of annual rainfall as Angular Coefficient (AC) of regression line and pie chart of rainfall trend 
classes and interested area in the MSP. 
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Figure 4 - Regional moving average of 5-year annual temperature and rainfall, expressed as deviations from 
mean values. 
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Figure 5 - Spatial average of seasonal rainfall trends of MSP. 
 


