Climate: Observations, projections and impacts
We have reached a critical year in our response to climate change. The decisions that we made in Cancun put the UNFCCC process back on track, saw us agree to limit temperature rise to 2 °C and set us in the right direction for reaching a climate change deal to achieve this. However, we still have considerable work to do and I believe that key economies and major emitters have a leadership role in ensuring a successful outcome in Durban and beyond.

To help us articulate a meaningful response to climate change, I believe that it is important to have a robust scientific assessment of the likely impacts on individual countries across the globe. This report demonstrates that the risks of a changing climate are wide-ranging and that no country will be left untouched by climate change.

I thank the UK’s Met Office Hadley Centre for their hard work in putting together such a comprehensive piece of work. I also thank the scientists and officials from the countries included in this project for their interest and valuable advice in putting it together. I hope this report will inform this key debate on one of the greatest threats to humanity.

The Rt Hon. Chris Huhne MP, Secretary of State for Energy and Climate Change

There is already strong scientific evidence that the climate has changed and will continue to change in future in response to human activities. Across the world, this is already being felt as changes to the local weather that people experience every day.

Our ability to provide useful information to help everyone understand how their environment has changed, and plan for future, is improving all the time. But there is still a long way to go. These reports – led by the Met Office Hadley Centre in collaboration with many institutes and scientists around the world – aim to provide useful, up to date and impartial information, based on the best climate science now available. This new scientific material will also contribute to the next assessment from the Intergovernmental Panel on Climate Change.

However, we must also remember that while we can provide a lot of useful information, a great many uncertainties remain. That’s why I have put in place a long-term strategy at the Met Office to work ever more closely with scientists across the world. Together, we’ll look for ways to combine more and better observations of the real world with improved computer models of the weather and climate; which, over time, will lead to even more detailed and confident advice being issued.

Julia Slingo, Met Office Chief Scientist
Introduction

Understanding the potential impacts of climate change is essential for informing both adaptation strategies and actions to avoid dangerous levels of climate change. A range of valuable national studies have been carried out and published, and the Intergovernmental Panel on Climate Change (IPCC) has collated and reported impacts at the global and regional scales. But assessing the impacts is scientifically challenging and has, until now, been fragmented. To date, only a limited amount of information about past climate change and its future impacts has been available at national level, while approaches to the science itself have varied between countries.

In April 2011, the Met Office Hadley Centre was asked by the United Kingdom’s Secretary of State for Energy and Climate Change to compile scientifically robust and impartial information on the physical impacts of climate change for more than 20 countries. This was done using a consistent set of scenarios and as a pilot to a more comprehensive study of climate impacts. A report on the observations, projections and impacts of climate change has been prepared for each country. These provide up to date science on how the climate has already changed and the potential consequences of future changes. These reports complement those published by the IPCC as well as the more detailed climate change and impact studies published nationally.

Each report contains:

• A description of key features of national weather and climate, including an analysis of new data on extreme events.

• An assessment of the extent to which increases in greenhouse gases and aerosols in the atmosphere have altered the probability of particular seasonal temperatures compared to pre-industrial times, using a technique called ‘fraction of attributable risk.’

• A prediction of future climate conditions, based on the climate model projections used in the Fourth Assessment Report from the IPCC.

• The potential impacts of climate change, based on results from the UK’s Avoiding Dangerous Climate Change programme (AVOID) and supporting literature. For details visit: http://www.avoid.uk.net

The assessment of impacts at the national level, both for the AVOID programme results and the cited supporting literature, were mostly based on global studies. This was to ensure consistency, whilst recognising that this might not always provide enough focus on impacts of most relevance to a particular country. Although time available for the project was short, generally all the material available to the researchers in the project was used, unless there were good scientific reasons for not doing so. For example, some impacts areas were omitted, such as many of those associated with human health. In this case, these impacts are strongly dependant on local factors and do not easily lend themselves to the globally consistent framework used. No attempt was made to include the effect of future adaptation actions in the assessment of potential impacts. Typically, some, but not all, of the impacts are avoided by limiting global average warming to no more than 2 °C.

The Met Office Hadley Centre gratefully acknowledges the input that organisations and individuals from these countries have contributed to this study. Many nations contributed references to the literature analysis component of the project and helped to review earlier versions of these reports.

We welcome feedback and expect these reports to evolve over time. For the latest version of this report, details of how to reference it, and to provide feedback to the project team, please see the website at www.metoffice.gov.uk/climate-change/policy-relevant/obs-projections-impacts

In the longer term, we would welcome the opportunity to explore with other countries and organisations options for taking forward assessments of national level climate change impacts through international cooperation.
Summary

Climate observations

- There has been widespread warming over Italy since 1960 with greater warming in summer than winter.
- There has been a decrease in the number of cool nights and cool days, and an increase in the number of warm nights and warm days, since 1960.
- There has been a general increase in summer temperatures averaged over the country as a result of human influence on climate, making the occurrence of warm summer temperatures more frequent and cool summer temperatures less frequent.
- There has been a decrease in the total annual precipitation since 1960 for the whole country except the very south.

Climate change projections

- For the A1B emissions scenario increases in temperature of up to around 3.5°C are projected over Italy, with good agreement between models over most of the country.
- Projected rainfall decreases over Italy could be between 10% and 20% in the south of the country, and between 0% and 5% over the north. Italy has good agreement between the ensemble members over the direction of the projected precipitation changes in the south, and moderate agreement in the north.

Climate change impact projections

Crop yields

- Global- and regional-scale studies generally project yield gains for wheat and rice with climate change, in comparison to other crops like maize.
- National and sub-national assessments illustrate the importance of accurately representing terrain and land-suitability in projections. They note that the extent of CO₂ fertilization may determine whether projected gains are realised for wheat and olives in particular.
Food security

- Italy is presently a country with extremely low levels of undernourishment. Global-scale studies included here generally conclude that Italy will not face serious food security issues over the next 40 years, largely as a result of Italy’s high adaptive capacity and its ability to be able to afford to import food to offset potential deficits in food production. Italy may become a net food importer by 2050.

Water stress and drought

- Recent droughts in the Po River Basin (north Italy) in 2003, 2005 and 2006, have highlighted that the north is susceptible to severe droughts.

- There is consensus across global- and regional-scale studies that droughts could increase in frequency and magnitude with climate change for Italy as a whole.

- Several national-scale studies agree that the south of Italy is highly vulnerable to water stress and that the population exposed to water stress could increase with climate change.

- Recent simulations by the AVOID programme project that the median population exposed to an increase in water stress in Italy due to climate change could be around 25% under SRES A1B in 2100. None of the population is projected to experience a decrease in exposure to water stress by 2100.

Pluvial flooding and rainfall

- A comprehensive assessment of climate change projections over Italy (published in 2010), found a decrease in summer precipitation (up to 40% in places) with climate change, and a dipolar change pattern in winter (increase to the north, decrease to the south).

- This represents new knowledge relative to IPCC AR4 coverage.

- However, this study, along with larger-scale assessments, suggests that large uncertainties remain in quantifying the impact of climate change on precipitation, and consequently the risk of pluvial flooding in Italy.

Fluvial flooding

- Because of its geography, Italy is usually not well represented in global modelling studies of future changes in flood hazard leading to large uncertainties in projections.
The few studies which are of relevance to Italy suggest an increase in extreme flood levels across Italy, and a reduction in average annual flows.

- Simulations by the AVOID programme show a tendency towards decreasing flood risk.

Coastal regions

- A number of global-scale impacts modelling studies suggest that Italy may not face severe impacts from sea level rise (SLR) provided adaptation measures such as raising of flood dykes and the application of beach nourishment are implemented.

- For example, one study found that by the 2080s under a high SLR scenario and without adaptation, the average annual number of people flooded in Italy could be around 513,000 - with adaptation measures implemented this is around 2,300.
Table of Contents

Chapter 1 – Climate Observations ... 9
 Rationale ... 10
 Climate overview .. 12
 Analysis of long-term features in the mean temperature 13
 Temperature extremes .. 14
 Recent extreme temperature events ... 15
 Heat wave, summer 2003 .. 15
 Analysis of long-term features in moderate temperature extremes 15
 Attribution of changes in likelihood of occurrence in seasonal mean temperatures 19
 Precipitation extremes .. 21
 Recent extreme precipitation events ... 21
 Floods, October 2000 ... 21
 Analysis of observed precipitation extremes ... 22
 Summary ... 25

Methodology annex ... 26
 Recent, notable extremes ... 26
 Observational record .. 27
 Analysis of seasonal mean temperature .. 27
 Presentation of extremes of temperature and precipitation 40
 Attribution .. 43

References ... 46

Acknowledgements ... 49

Chapter 2 – Climate Change Projections ... 51
 Introduction .. 52
 Climate projections ... 54
 Summary of temperature change in Italy .. 55
 Summary of precipitation change in Italy .. 55

Chapter 3 – Climate Change Impact Projections 57
 Introduction .. 58
 Aims and approach ... 58
 Impact sectors considered and methods ... 58
 Supporting literature .. 59
 AVOID programme results .. 59
 Uncertainty in climate change impact assessment 60
 Summary of findings for each sector .. 65
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop yields</td>
<td>68</td>
</tr>
<tr>
<td>Headline</td>
<td>68</td>
</tr>
<tr>
<td>Supporting literature</td>
<td>68</td>
</tr>
<tr>
<td>Introduction</td>
<td>68</td>
</tr>
<tr>
<td>Assessments that include a global or regional perspective</td>
<td>70</td>
</tr>
<tr>
<td>National-scale or sub-national scale assessments</td>
<td>78</td>
</tr>
<tr>
<td>AVOID programme results</td>
<td>80</td>
</tr>
<tr>
<td>Results</td>
<td>81</td>
</tr>
<tr>
<td>Food security</td>
<td>83</td>
</tr>
<tr>
<td>Headline</td>
<td>83</td>
</tr>
<tr>
<td>Supporting literature</td>
<td>83</td>
</tr>
<tr>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td>Assessments that include a global or regional perspective</td>
<td>83</td>
</tr>
<tr>
<td>National-scale or sub-national scale assessments</td>
<td>89</td>
</tr>
<tr>
<td>Water stress and drought</td>
<td>91</td>
</tr>
<tr>
<td>Headline</td>
<td>91</td>
</tr>
<tr>
<td>Supporting literature</td>
<td>91</td>
</tr>
<tr>
<td>Introduction</td>
<td>91</td>
</tr>
<tr>
<td>Assessments that include a global or regional perspective</td>
<td>92</td>
</tr>
<tr>
<td>National-scale or sub-national scale assessments</td>
<td>99</td>
</tr>
<tr>
<td>AVOID Programme Results</td>
<td>101</td>
</tr>
<tr>
<td>Methodology</td>
<td>101</td>
</tr>
<tr>
<td>Results</td>
<td>102</td>
</tr>
<tr>
<td>Pluvial flooding and rainfall</td>
<td>104</td>
</tr>
<tr>
<td>Headline</td>
<td>104</td>
</tr>
<tr>
<td>Supporting literature</td>
<td>104</td>
</tr>
<tr>
<td>Introduction</td>
<td>104</td>
</tr>
<tr>
<td>Assessments that include a global or regional perspective</td>
<td>104</td>
</tr>
<tr>
<td>National-scale or sub-national scale assessments</td>
<td>105</td>
</tr>
<tr>
<td>Fluvial flooding</td>
<td>107</td>
</tr>
<tr>
<td>Headline</td>
<td>107</td>
</tr>
<tr>
<td>Supporting literature</td>
<td>107</td>
</tr>
<tr>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>Assessments that include a global or regional perspective</td>
<td>108</td>
</tr>
<tr>
<td>National-scale or sub-national scale assessments</td>
<td>109</td>
</tr>
<tr>
<td>AVOID programme results</td>
<td>109</td>
</tr>
<tr>
<td>Methodology</td>
<td>109</td>
</tr>
</tbody>
</table>
Chapter 1 – Climate Observations
Rationale

Present day weather and climate play a fundamental role in the day to day running of society. Seasonal phenomena may be advantageous and depended upon for sectors such as farming or tourism. Other events, especially extreme ones, can sometimes have serious negative impacts posing risks to life and infrastructure, and significant cost to the economy. Understanding the frequency and magnitude of these phenomena, when they pose risks or when they can be advantageous and for which sectors of society, can significantly improve societal resilience. In a changing climate it is highly valuable to understand possible future changes in both potentially hazardous events and those reoccurring seasonal events that are depended upon by sectors such as agriculture and tourism. However, in order to put potential future changes in context, the present day must first be well understood both in terms of common seasonal phenomena and extremes.

The purpose of this chapter is to summarise the weather and climate from 1960 to present day. This begins with a general climate overview including an up to date analysis of changes in surface mean temperature. These changes may be the result of a number of factors including climate change, natural variability and changes in land use. There is then a focus on extremes of temperature and precipitation selected from 2000 onwards, reported in the World Meteorological Organization (WMO) Annual Statements on the Status of the Global Climate and/or the Bulletin of the American Meteorological Society (BAMS) State of the Climate reports. This is followed by a discussion of changes in moderate extremes from 1960 onwards using an updated version of the HadEX extremes database (Alexander et al., 2006) which categorises extremes of temperature and precipitation. These are core climate variables which have received significant effort from the climate research community in terms of data acquisition and processing and for which it is possible to produce long high quality records for monitoring. For seasonal temperature extremes, an attribution analysis then puts the seasons with highlighted extreme events into context of the recent climate versus a hypothetical climate in the absence of anthropogenic emissions (Christidis et al.,...
2011). It is important to note that we carry out our attribution analyses on seasonal mean temperatures over the entire country. Therefore these analyses do not attempt to attribute the changed likelihood of individual extreme events. The relationship between extreme events and the large scale mean temperature is likely to be complex, potentially being influenced by *inter alia* circulation changes, a greater expression of natural internal variability at smaller scales, and local processes and feedbacks. Attribution of individual extreme events is an area of developing science. The work presented here is the foundation of future plans to systematically address the region’s present and projected future weather and climate, and the associated impacts.

The methodology annex provides details of the data shown here and of the scientific analyses underlying the discussions of changes in the mean temperature and in temperature and precipitation extremes. It also explains the methods used to attribute the likelihood of occurrence of seasonal mean temperatures.
Climate overview

In the north of Italy is the southern side of the Alps with mountains rising to over 3000 m. This area has an alpine climate with cold, frosty winters. Just to the south of this is the Po Valley, which is a remarkably flat and low-lying region. Here, the summers are hot and the winters quite cold. At the east of this region is Venice, which has an annual mean temperature of 13°C, only slightly higher than Milan which is further to the west. Both places have a high seasonal variability, with mean temperature ranging from 1°C in January to 23°C in July in Milan.

The rest of mainland Italy is a peninsula, which reduces extremes of temperature away from the north. The peninsula has a mountainous interior, the Apennines, which consequently has a different climate from the coastal areas which have a typical Mediterranean climate. Rome and Naples, in the west coastal area, and Bari on the east coast, all have an annual mean temperature close to 15.5°C, with less seasonal variation and milder winters than the northern regions. In summer, inland parts of southern Italy suffer extremely hot nights, often making sleeping difficult. Winters are cold in the higher areas. Further south on the island of Sicily, Palermo is warmer with an annual mean temperature of 18.5°C.

In the spring and autumn, the Sirocco, a hot wind from North Africa, occasionally brings very high temperatures to all parts of Italy, accompanied by high humidity. The north-east coast is occasionally affected by the cold Bora winds in winter and spring.

In the spring and summer, the alpine region experiences many thunderstorms. Precipitation tends to be greatest in the summer, while in the winter it falls as snow at high altitudes, and sometimes at lower altitudes. The bounding feature of the Alps provides shelter from the north, but can also generate cyclonic development to their south. In the Po Valley region, there is precipitation throughout the year with little seasonal variation. Milan has an average annual precipitation of 940 mm and Venice 800 mm. Summer and autumn rainfall is often in the form of thunderstorms, while fog and snow are frequent occurrences in the winter. Further south on the peninsula, there is a much greater seasonal variation in rainfall, with dry summers and wetter winters. The west coast tends to be wetter than the east coast. Naples has an annual average rainfall amount of 1010 mm which is almost double that of Bari, opposite on the east coast, which has 590 mm. At Cagliari, on the island of Sardinia to the west, the summer is dry and the average annual rainfall is only 430 mm.
Analysis of long-term features in the mean temperature

CRUTEM3 data (Brohan et al., 2006) have been used to provide an analysis of mean temperatures from 1960 to 2010 over Italy using the median of pairwise slopes method to fit the trend (Sen, 1968; Lanzante, 1996). The methods are fully described in the methodology annex. In agreement with increasing global average temperatures (Sánchez-Lugo et al., 2011), over the period 1960 to 2010 there is a spatially consistent warming signal for temperature over Italy, as shown in Figure 2. During the summer (June to August) there is higher confidence in the warming signal for all grid-boxes as the 5th to 95th percentiles of the slopes are of the same sign. Confidence is lower during winter (December to February). Regionally averaged trends (over grid boxes included in the red dashed box in Figure 1) calculated by the median of pairwise slopes show warming signals but with high confidence only for summer. This trend is larger over summer at 0.43 °C per decade (5th to 95th percentile of slopes: 0.33 to 0.55 °C per decade) than winter at 0.13 °C per decade (5th to 95th percentile of slopes: -0.02 to 0.32 °C per decade).

Figure 2. Decadal trends in seasonally averaged temperatures for the Italy and the surrounding regions over the period 1960 to 2010. Monthly mean anomalies from CRUTEM3 (Brohan et al., 2006) are averaged over each 3 month season (June-July-August – JJA and December-January-February – DJF). Trends are fitted using the median of pairwise slopes method (Sen, 1968; Lanzante, 1996). There is high confidence in the trends shown if the 5th to 95th percentiles of the pairwise slopes do not encompass zero because here the trend is considered to be significantly different from a zero trend (no change). This is shown by a black dot in the centre of the grid-box.
Temperature extremes

Both hot and cold temperature extremes can place many demands on society. While seasonal changes in temperature are normal and indeed important for a number of societal sectors (e.g. tourism, farming etc.), extreme heat or cold can have serious negative impacts. Importantly, what is ‘normal’ for one region may be extreme for another region that is less well adapted to such temperatures.

Table 1 shows selected extreme events since 2000 that are reported in WMO Statements on Status of the Global Climate and/or BAMS State of the Climate reports. The heat wave of summer 2003 is highlighted below as an example of an extreme event to have affected Italy.

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Event</th>
<th>Details</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Jun-Jul</td>
<td>Heat wave</td>
<td>A scorching heat wave gripped much of southern Europe, breaking many records and claiming numerous lives as temperatures exceeded 43 °C in locations across Italy.</td>
<td>WMO (2001)</td>
</tr>
<tr>
<td>2003</td>
<td>Jun-Aug</td>
<td>Heat wave</td>
<td>At many locations, temperatures rose above 40 °C. Across France, Italy, The Netherlands, Portugal, Spain and the UK, over 21,000 deaths were related to the heat.</td>
<td>WMO (2004)</td>
</tr>
<tr>
<td>2005</td>
<td>Jul</td>
<td>Heat wave</td>
<td>Western Europe experienced a heat wave</td>
<td>WMO (2006)</td>
</tr>
<tr>
<td>2006</td>
<td>Jul</td>
<td>Heat wave</td>
<td>Monthly average maximum temperatures in the northeast of Italy reached new records in some regions.</td>
<td>WMO (2007) ; BAMS (2007)</td>
</tr>
<tr>
<td>2007</td>
<td>Jun-Jul</td>
<td>Heat wave</td>
<td>South-eastern Europe and Mediterranean area experienced heat waves causing record levels of electricity demand; about 40 deaths and over 130 fires blamed on the heat.</td>
<td>WMO (2008)</td>
</tr>
<tr>
<td>2009</td>
<td>Jul</td>
<td>Heat wave</td>
<td>Italy recorded two heat waves in the second half of July with maximum daily temperatures above 40 °C; some local temperatures soared to 45 °C.</td>
<td>WMO (2010)</td>
</tr>
<tr>
<td>2009</td>
<td>Dec</td>
<td>Cold</td>
<td>Extended cold wave of more than a week in most of Europe. On some days in December, the minimum temperature dropped to −17 °C in northern Italy</td>
<td>WMO (2010)</td>
</tr>
</tbody>
</table>

Table 1. Selected extreme temperature events reported in WMO Statements on Status of the Global Climate and/or BAMS State of the Climate reports since 2000.
Recent extreme temperature events

Heat wave, summer 2003

The 2003 heat wave was likely the warmest on record in central Europe since at least 1540 (Levinson & Waple, 2004). Two distinct periods of exceptional heat occurred during the summer season - the first in June and the second during the first half of August. In Italy, the highest monthly mean was recorded in many cities in August, with record maximum temperatures above 35 °C for several consecutive days (Michelozzi et al., 2005).

The heat waves resulted from strong high pressure over Western Europe. Such “blocking highs” can persist for many days in Europe during summer. In 2003, heated air from the south reinforced the strength and persistence of the heat wave, and nearly all the sun’s radiation was converted to heat because of the soil and vegetation dryness (WMO, 2004). The August heat wave was the more serious of the two, because it coincided with the normal peak in summer temperatures and was accompanied by an almost complete absence of rainfall. At many locations, temperatures rose above 40°C. In France, Italy, The Netherlands, Portugal, Spain and the United Kingdom over 21,000 additional deaths were related to the unrelenting heat (WMO, 2004).

The greatest excess in mortality was observed in the north west of Italy (Michelozzi et al., 2005). The Ministero della Salute (ministry of health) reported more than 7,600 deaths among the elderly over 65 years of age, an increase of 19.1% compared to 2002 (MdS, 2004); it was the old (75-84 years) and the very old (85+ years) age groups that were most affected (Michelozzi et al., 2005). The BBC reported that Italian power companies were struggling to meet the surge in demand for electricity brought on by the heat wave due to increased use of air conditioners and fans (BBC, 2003).

Analysis of long-term features in moderate temperature extremes

ECA&D data (Klein Tank et al., 2002) have been used to update the HadEX extremes analysis for Italy from 1960 to 2010 using daily maximum and minimum temperatures. Here we discuss changes in the frequency of cool days and nights and warm days and nights which are moderate extremes. Cool days/nights are defined as being below the 10th percentile of daily maximum/minimum temperature and warm days/nights are defined as
being above the 90th percentile of the daily maximum/minimum temperature. The methods are fully described in the methodology annex.

There is a decrease in the number of cool nights and cool days, and an increase in the number of warm nights and warm days, with high confidence that the trend is different from zero in all the signals for the grid boxes covering Italy (Figure 3). There is little difference between the north and south of the country.

The time series have high confidence in non-zero trends, as is also demonstrated by the maps. The heat wave of 2003 has a clear spike in the number of warm days and nights
Cool Nights (TN10p)

- Monthly: -0.86% per decade (-1.17 to -0.57)
- Total change of 5.21% from 1960 to 2010 (-7.41% to -3.26%)
- Annual: -1.04% per decade (-1.48 to -0.65)

Warm Nights (TN90p)

- Monthly: 2.26% per decade (1.65 to 2.65)
- Total change of 11.35% from 1960 to 2010 (8.78% to 14.10%)
- Annual: 2.27% per decade (1.76 to 2.82)
Figure 3. Change in cool nights (a,b), warm nights (c,d), cool days (e,f) and warm days (g,h) for Italy over the period 1960 to 2010 relative to 1961-1990 from the ECA&D dataset (Klein Tank et al., 2002). a,c,e,g) Grid-box decadal trends. Grid-boxes outlined in solid black contain at least 3 stations and so are likely to be more representative of the wider grid-box. Trends are fitted using the median of pairwise slopes method (Sen, 1968; Lanzante, 1996). Higher confidence in a long-term trend is shown by a black dot if the 5th to 95th percentile slopes are of the same sign. Differences in spatial coverage occur because each index has its own decorrelation length scale (see methodology annex). b,d,f,h) Area averaged annual time series for 5.625° to 16.875° E and 36.25° to 46.25° N as shown by the green box on the map and red box in Figure 1. Thin and thick black lines show the monthly and annual variation respectively. Monthly (orange) and annual (blue) trends are fitted as described above. The decadal trend and its 5th to 95th percentile confidence intervals are stated along with the change over the period for which there are data available. All the trends have higher confidence that they are different from zero as their 5th to 95th percentile slopes are of the same sign. The green vertical lines show the date of the heat wave in 2003.

Monthly: -0.73% per decade (-1.10 to -0.50)
Total change of -3.87% from 1960 to 2011 (-3.52% to -2.50%)
Annual: -0.06% per decade (-1.34 to -0.06)
Total change of -4.77% from 1960 to 2016 (-4.70% to -2.78%)

Monthly: 1.64% per decade (1.52 to 2.36)
Total change of 9.70% from 1960 to 2011 (7.58% to 11.92%)
Annual: 0.96% per decade (1.32 to 0.64)
Total change of 10.30% from 1960 to 2010 (7.09% to 13.28%)
Attribution of changes in likelihood of occurrence in seasonal mean temperatures

Today’s climate covers a range of likely extremes. Recent research has shown that the temperature distribution of seasonal means would likely be different in the absence of anthropogenic emissions (Christidis et al., 2011). Here we discuss the seasonal means, within which the highlighted extreme temperature events occur, in the context of recent climate and the influence of anthropogenic emissions on that climate. The methods are fully described in the methodology annex.

Summer 2003

The distributions of the summer mean regional temperature in recent years in the presence and absence of anthropogenic forcings are shown in Figure 4. Analyses with both models suggest that human influences on the climate have shifted the distribution to higher temperatures. Considering the average over the entire region, the 2003 summer (June-July-August) is exceptionally hot, as it lies at the far end of the warm tail of the temperature distributions for the climate influenced by anthropogenic forcings (red distributions) and is the hottest since 1900 in the CRUTEM3 dataset. In the absence of human influences on the climate (green distributions), the 2003 summer season would have been even more extreme. It should be noted that the attribution results shown here refer to temperature anomalies over the entire region and over an entire season, whereas the actual extreme event had a shorter duration and affected a smaller region.
Figure 4. Distributions of the June-July-August mean temperature anomalies (relative to 1961-1990) averaged over a Southern European region that encompasses Italy (9W-20E, 35-50N – as shown in Figure 1) including (red lines) and excluding (green lines) the influence of anthropogenic forcings. The distributions describe the seasonal mean temperatures expected in recent years (2000-2009) and are based on analyses with the HadGEM1 (solid lines) and MIROC (dotted lines) models. The vertical orange and blue lines correspond to the maximum and minimum anomaly in the CRUTEM3 dataset since 1900 respectively.
Precipitation extremes

Precipitation extremes, either excess or deficit, can be hazardous to human health, societal infrastructure, and livestock and agriculture. While seasonal fluctuations in precipitation are normal and indeed important for a number of societal sectors (e.g. tourism, farming etc.), flooding or drought can have serious negative impacts. These are complex phenomena and often the result of accumulated excesses or deficits or other compounding factors such as spring snow-melt, high tides/storm surges or changes in land use. This section deals purely with precipitation amounts.

Table 2 shows selected extreme events since 2000 that are reported in WMO Statements on Status of the Global Climate and/or BAMS State of the Climate reports. The flooding event in north-east Italy in October 2000 is highlighted as an example of recent precipitation extremes.

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Event</th>
<th>Details</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Oct</td>
<td>Flooding</td>
<td>North-eastern Italy experienced severe floods and mudslides.</td>
<td>WMO (2001)</td>
</tr>
<tr>
<td>2009</td>
<td>Oct</td>
<td>Wet</td>
<td>Worst mudslide in more than a decade, when 229 mm of rain fell in a 3-hour period in Sicily</td>
<td>WMO (2010)</td>
</tr>
</tbody>
</table>

Table 2. Selected extreme precipitation events reported in WMO Statements on Status of the Global Climate and/or BAMS State of the Climate reports since 2000.

Recent extreme precipitation events

Floods, October 2000

Torrential rainfall led to floods and mudflows in the Southern Alps across an area stretching from the Rhone valley in France to the Po valley in Northern Italy. Heavy rainfall began on 14th October in the agriculturally rich Po Valley, and continued for three days. Over 500 mm of rainfall was recorded near Milan in the 3-day period from 15th to 17th October (Lawrimore et al., 2001).

This extreme regional rainfall caused the Po River to rise to record levels, and it broke its banks in some parts of Italy requiring the evacuation of thousands of people (Lawrimore et al., 2001). The flooding and landslides resulted in the deaths of 25 people and affected
43,000 (CRED, 2011). Roads were closed, dozens of bridges were destroyed, and many rail services from Italy to France and Switzerland were suspended (Lawrimore et al., 2001).

Analysis of observed precipitation extremes

ECA&D data (Klein Tank et al., 2002) have been used to update the HadEX extremes analysis for Italy from 1960 to 2010 for daily precipitation totals. Here we discuss changes in the annual total precipitation, and in the frequency of prolonged (greater than 6 days) wet and dry spells. The methods are fully described in the methodology annex.
Figure 5. The change in the annual total rainfall (a,b), the annual number of continuous dry days (c,d) and the annual number of continuous wet days (e,f) over the period 1960-2010. The maps and time series have been created in exactly the same way as Figure 3. The vertical green lines show the dates of the flooding in 2000 (Table 2). Only annual regional averages are shown in b,d,f). All the trends have lower confidence that they are different from zero, as their 5th to 95th percentile slopes are of different signs, and hence are marked with dotted lines.
There has been a decrease in the total annual precipitation over the period for the whole
country except the very south (Figure 5). However no grid box has high confidence that the
trend is different from zero. For the other two indices, there is no clear signal except for the
number of consecutive wet days in the south, which has high confidence. None of the time
series trends has high confidence. There is no clear signal in the total precipitation for the
flooding of 2000, but there is a peak in the number of consecutive wet days.
Summary

The main features seen in observed climate over Italy from this analysis are:

- There has been widespread warming over Italy since 1960 with greater warming in summer than winter.

- There has been a decrease in the number of cool nights and cool days, and an increase in the number of warm nights and warm days, since 1960.

- There has been a general increase in summer temperatures averaged over the country as a result of human influence on climate, making the occurrence of warm summer temperatures more frequent and cool summer temperatures less frequent.

- There has been a decrease in the total annual precipitation since 1960 for the whole country except the very south.
Methodology annex

Recent, notable extremes

In order to identify what is meant by ‘recent’ events the authors have used the period since 1994, when WMO Status of the Global Climate statements were available to the authors. However, where possible, the most notable events during the last 10 years have been chosen as these are most widely reported in the media, remain closest to the forefront of the memory of the country affected, and provide an example likely to be most relevant to today’s society. By ‘notable’ the authors mean any event which has had significant impact either in terms of cost to the economy, loss of life, or displacement and long term impact on the population. In most cases the events of largest impact on the population have been chosen, however this is not always the case.

Tables of recent, notable extreme events have been provided for each country. These have been compiled using data from the World Meteorological Organisation (WMO) Annual Statements on the Status of the Global Climate. This is a yearly report which includes contributions from all the member countries, and therefore represents a global overview of events that have had importance on a national scale. The report does not claim to capture all events of significance, and consistency across the years of records available is variable. However, this database provides a concise yet broad account of extreme events per country. This data is then supplemented with accounts from the monthly National Oceanic and Atmospheric Administration (NOAA) State of the Climate reports which outline global extreme events of meteorological significance.

We give detailed examples of heat, precipitation and storm extremes for each country where these have had significant impact. Where a country is primarily affected by precipitation or heat extremes this is where our focus has remained. An account of the impact on human life, property and the economy has been given, based largely on media reporting of events, and official reports from aid agencies, governments and meteorological organisations. Some data has also been acquired from the Centre for Research on Epidemiological Disasters (CRED) database on global extreme events. Although media reports are unlikely to be completely accurate, they do give an indication as to the perceived impact of an extreme event, and so are useful in highlighting the events which remain in the national psyche.

Our search for data has not been exhaustive given the number of countries and events included. Although there are a wide variety of sources available, for many events, an official
account is not available. Therefore figures given are illustrative of the magnitude of impact only (references are included for further information on sources). It is also apparent that the reporting of extreme events varies widely by region, and we have, where possible, engaged with local scientists to better understand the impact of such events.

The aim of the narrative for each country is to provide a picture of the social and economic vulnerability to the current climate. Examples given may illustrate the impact that any given extreme event may have and the recovery of a country from such an event. This will be important when considering the current trends in climate extremes, and also when examining projected trends in climate over the next century.

Observational record

In this section we outline the data sources which were incorporated into the analysis, the quality control procedure used, and the choices made in the data presentation. As this report is global in scope, including 23 countries, it is important to maintain consistency of methodological approach across the board. For this reason, although detailed datasets of extreme temperatures, precipitation and storm events exist for various countries, it was not possible to obtain and incorporate such a varied mix of data within the timeframe of this project. Attempts were made to obtain regional daily temperature and precipitation data from known contacts within various countries with which to update existing global extremes databases. No analysis of changes in storminess is included as there is no robust historical analysis of global land surface winds or storminess currently available.

Analysis of seasonal mean temperature

Mean temperatures analysed are obtained from the CRUTEM3 global land-based surface-temperature data-product (Brohan et al. 2006), jointly created by the Met Office Hadley Centre and Climatic Research Unit at the University of East Anglia. CRUTEM3 comprises of more than 4000 weather station records from around the world. These have been averaged together to create 5° by 5° gridded fields with no interpolation over grid boxes that do not contain stations. Seasonal averages were calculated for each grid box for the 1960 to 2010 period and linear trends fitted using the median of pairwise slopes (Sen 1968; Lanzante 1996). This method finds the slopes for all possible pairs of points in the data, and takes their median. This is a robust estimator of the slope which is not sensitive to outlying points. High confidence is assigned to any trend value for which the 5th to 95th percentiles of the pairwise slopes are of the same sign as the trend value and thus inconsistent with a zero trend.
Analysis of temperature and precipitation extremes using indices

In order to study extremes of climate a number of indices have been created to highlight different aspects of severe weather. The set of indices used are those from the World Climate Research Programme (WCRP) Climate Variability and Predictability (CLIVAR) Expert Team on Climate Change Detection and Indices (ETCCDI). These 27 indices use daily rainfall and maximum and minimum temperature data to find the annual (and for a subset of the indices, monthly) values for, e.g., the ‘warm’ days where daily maximum temperature exceeds the 90th percentile maximum temperature as defined over a 1961 to 1990 base period. For a full list of the indices we refer to the website of the ETCCDI (http://cccma.seos.uvic.ca/ETCCDI/index.shtml).
<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Shortname</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool night frequency</td>
<td>Daily minimum temperatures lower than the 10th percentile daily minimum temperature using the base reference period 1961-1990</td>
<td>TN10p</td>
<td>---</td>
</tr>
<tr>
<td>Warm night frequency</td>
<td>Daily minimum temperatures higher than the 90th percentile daily minimum temperature using the base reference period 1961-1990</td>
<td>TN90p</td>
<td>---</td>
</tr>
<tr>
<td>Cool day frequency</td>
<td>Daily maximum temperatures lower than the 10th percentile daily maximum temperature using the base reference period 1961-1990</td>
<td>TX10p</td>
<td>---</td>
</tr>
<tr>
<td>Warm day frequency</td>
<td>Daily maximum temperatures higher than the 90th percentile daily maximum temperature using the base reference period 1961-1990</td>
<td>TX90p</td>
<td>---</td>
</tr>
<tr>
<td>Dry spell duration</td>
<td>Maximum duration of continuous days within a year with rainfall <1mm</td>
<td>CDD</td>
<td>Lower data coverage due to the requirement for a 'dry spell' to be at least 6 days long resulting in intermittent temporal coverage</td>
</tr>
<tr>
<td>Wet spell duration</td>
<td>Maximum duration of continuous days with rainfall >1mm for a given year</td>
<td>CWD</td>
<td>Lower data coverage due to the requirement for a 'wet spell' to be at least 6 days long resulting in intermittent temporal coverage</td>
</tr>
<tr>
<td>Total annual precipitation</td>
<td>Total rainfall per year</td>
<td>PRCPTOT</td>
<td>---</td>
</tr>
</tbody>
</table>

Table 3. Description of ETCCDI indices used in this document.
A previous global study of the change in these indices, containing data from 1951-2003 can be found in Alexander et al. 2006, (HadEX; see http://www.metoffice.gov.uk/hadobs/hadex/). In this work we aimed to update this analysis to the present day where possible, using the most recently available data. A subset of the indices is used here because they are most easily related to extreme climate events (Table 1).

Use of HadEX for analysis of extremes

The HadEX dataset comprises all 27 ETCCDI indices calculated from station data and then smoothed and gridded onto a 2.5° x 3.75° grid, chosen to match the output from the Hadley Centre suite of climate models. To update the dataset to the present day, indices are calculated from the individual station data using the RClimDex/FClimDex software; developed and maintained on behalf of the ETCCDI by the Climate Research Branch of the Meteorological Service of Canada. Given the timeframe of this project it was not possible to obtain sufficient station data to create updated HadEX indices to present day for a number of countries: Brazil; Egypt; Indonesia; Japan (precipitation only); South Africa; Saudi Arabia; Peru; Turkey; and Kenya. Indices from the original HadEX data-product are used here to show changes in extremes of temperature and precipitation from 1960 to 2003. In some cases the data end prior to 2003. Table 4 summarises the data used for each country. Below, we give a short summary of the methods used to create the HadEX dataset (for a full description see Alexander et al. 2006).

To account for the uneven spatial coverage when creating the HadEX dataset, the indices for each station were gridded, and a land-sea mask from the HadCM3 model applied. The interpolation method used in the gridding process uses a decorrelation length scale (DLS) to determine which stations can influence the value of a given grid box. This DLS is calculated from the e-folding distance of the individual station correlations. The DLS is calculated separately for five latitude bands, and then linearly interpolated between the bands. There is a noticeable difference in spatial coverage between the indices due to these differences in decorrelation length scales. This means that there will be some grid-box data where in fact there are no stations underlying it. Here we apply black borders to grid-boxes where at least 3 stations are present to denote greater confidence in representation of the wider grid-box area there. The land-sea mask enables the dataset to be used directly for model comparison with output from HadCM3. It does mean, however, that some coastal regions and islands over which one may expect to find a grid-box are in fact empty because they have been treated as sea.
Data sources used for updates to the HadEX analysis of extremes

We use a number of different data sources to provide sufficient coverage to update as many countries as possible to present day. These are summarised in Table 4. In building the new datasets we have tried to use exactly the same methodology as was used to create the original HadEX to retain consistency with a product that was created through substantial international effort and widely used, but there are some differences, which are described in the next section.

Wherever new data have been used, the geographical distributions of the trends were compared to those obtained from HadEX, using the same grid size, time span and fitting method. If the pattern of the trends in the temperature or precipitation indices did not match that from HadEX, we used the HadEX data despite its generally shorter time span. Differences in the patterns of the trends in the indices can arise because the individual stations used to create the gridded results are different from those in HadEX, and the quality control procedures used are also very likely to be different. Countries where we decided to use HadEX data despite the existence of more recent data are Egypt and Turkey.

GHCND:
The Global Historical Climate Network Daily data has near-global coverage. However, to ensure consistency with the HadEX database, the GHCND stations were compared to those stations in HadEX. We selected those stations which are within 1500m of the stations used in the HadEX database and have a high correlation with the HadEX stations. We only took the precipitation data if its \(r > 0.9 \) and the temperature data if one of its \(r \)-values \(> 0.9 \). In addition, we required at least 5 years of data beyond 2000. These daily data were then converted to the indices using the fclimdex software

ECA&D and SACA&D:
The European Climate Assessment and Dataset and the Southeast Asian Climate Assessment and Dataset data are pre-calculated indices comprising the core 27 indices from the ETCCDI as well as some extra ones. We kindly acknowledge the help of Albert Klein Tank, the KNMI\(^1\) and the BMKG\(^2\) for their assistance in obtaining these data.

\(^1\) Koninklijk Nederlands Meteorologisch Instituut – The Royal Netherlands Meteorological Institute
\(^2\) Badan Meteorologi, Klimatologi dan Geofisika – The Indonesian Meteorological, Climatological and Geophysical Agency
Mexico:
The station data from Mexico has been kindly supplied by the SMN\(^3\) and Jorge Vazquez. These daily data were then converted to the required indices using the *Fclimdex* software. There are a total of 5298 Mexican stations in the database. In order to select those which have sufficiently long data records and are likely to be the most reliable ones we performed a cross correlation between all stations. We selected those which had at least 20 years of data post 1960 and have a correlation with at least one other station with an \(r\)-value >0.95. This resulted in 237 stations being selected for further processing and analysis.

Indian Gridded:
The India Meteorological Department provided daily gridded data (precipitation 1951-2007, temperature 1969-2009) on a 1° x 1° grid. These are the only gridded daily data in our analysis. In order to process these in as similar a way as possible the values for each grid were assumed to be analogous to a station located at the centre of the grid. We keep these data separate from the rest of the study, which is particularly important when calculating the decorrelation length scale, which is on the whole larger for these gridded data.

\(^3\) Servicio Meteorológico Nacional de México – The Mexican National Meteorological Service
<table>
<thead>
<tr>
<th>Country</th>
<th>Region box (red dashed boxes in Fig. 1 and on each map at beginning of chapter)</th>
<th>Data source (T = temperature, P = precipitation)</th>
<th>Period of data coverage (T = temperature, P = precipitation)</th>
<th>Indices included (see Table 1 for details)</th>
<th>Temporal resolution available</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>73.125 to 54.375 °W, 21.25 to 56.25 °S</td>
<td>Matilde Rusticucci (T,P)</td>
<td>1960-2010 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>annual</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>114.375 to 155.625 °E, 11.25 to 43.75 °S</td>
<td>GHCND (T,P)</td>
<td>1960-2010 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>monthly, seasonal and annual</td>
<td>Land-sea mask has been adapted to include Tasmania and the area around Brisbane</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>88.125 to 91.875 °E, 21.25 to 26.25 °N</td>
<td>Indian Gridded data (T,P)</td>
<td>1960-2007 (P), 1970-2009 (T)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>monthly, seasonal and annual</td>
<td>Interpolated from Indian Gridded data</td>
</tr>
<tr>
<td>Brazil</td>
<td>73.125 to 31.875 °W, 6.25 °N to 33.75 °S</td>
<td>HadEX (T,P)</td>
<td>1960-2000 (P) 2002 (T)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>annual</td>
<td>Spatial coverage is poor</td>
</tr>
<tr>
<td>China</td>
<td>73.125 to 133.125 °E, 21.25 to 53.75 °N</td>
<td>GHCND (T,P)</td>
<td>1960-1997 (P) 1960-2003 (T_{min}) 1960-2010 (T_{max})</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>monthly, seasonal and annual</td>
<td>Precipitation has very poor coverage beyond 1997 except in 2003-04, and no data at all in 2000-02, 2005-11</td>
</tr>
<tr>
<td>Country</td>
<td>Coordinates</td>
<td>Dataset</td>
<td>Period</td>
<td>Parameters</td>
<td>Temporal Resolution</td>
<td>Notes</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Egypt</td>
<td>24.375 to 35.625° E, 21.25 to 31.25° N</td>
<td>HadEX (T,P)</td>
<td>No data</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT</td>
<td>annual</td>
<td>There are no data for Egypt so all grid-box values have been interpolated from stations in Jordan, Israel, Libya and Sudan</td>
</tr>
<tr>
<td>France</td>
<td>5.625° W to 9.375° E, 41.25 to 51.25° N</td>
<td>ECA&D (T,P)</td>
<td>1960-2010 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>monthly, seasonal and annual</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>5.625 to 16.875° E, 46.25 to 56.25° N</td>
<td>ECA&D (T,P)</td>
<td>1960-2010 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>monthly, seasonal and annual</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>69.375 to 99.375° E, 6.25 to 36.25° N</td>
<td>Indian Gridded data (T,P)</td>
<td>1960-2003 (P), 1970-2009 (T)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>monthly, seasonal and annual</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>95.625 to 140.625° E, 6.25° N to 11.25° S</td>
<td>HadEX (T,P)</td>
<td>1968-2003 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT</td>
<td>annual</td>
<td>Spatial coverage is poor</td>
</tr>
<tr>
<td>Italy</td>
<td>5.625 to 16.875° E, 36.25 to 46.25° N</td>
<td>ECA&D (T,P)</td>
<td>1960-2010 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>monthly, seasonal and annual</td>
<td>Land-sea mask has been adapted to improve coverage of Italy</td>
</tr>
<tr>
<td>Country</td>
<td>Latitude/Longitude</td>
<td>Dataset Details</td>
<td>Data Period</td>
<td>Measurements</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>129.375 to 144.375° E, 31.25 to 46.25° N</td>
<td>HadEX (P) GHCND (T)</td>
<td>1960-2003 (P) 1960-2000 (T<sub>min</sub>) 1960-2010 (T<sub>max</sub>)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT,</td>
<td>monthly, seasonal and annual (T), annual (P)</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>31.875 to 43.125° E, 6.25° N to 6.25° S</td>
<td>HadEX (T,P)</td>
<td>1960-1999 (P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT</td>
<td>annual</td>
<td>There are no temperature data for Kenya and so grid-box values have been interpolated from neighbouring Uganda and the United Republic of Tanzania. Regional averages include grid-boxes from outside Kenya that enable continuation to 2003</td>
</tr>
<tr>
<td>Peru</td>
<td>84.735 to 65.625° W, 1.25° N to 18.75° S</td>
<td>HadEX (T,P)</td>
<td>1960-2002 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>annual</td>
<td>Intermittent coverage in TX90p, CDD and CWD</td>
</tr>
<tr>
<td>Country</td>
<td>Location</td>
<td>Data Source</td>
<td>Time Period</td>
<td>Data Variables</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>West Russia 28.125 to 106.875° E, 43.75 to 78.75° N, East Russia 103.125 to 189.375° E, 43.75 to 78.75° N</td>
<td>ECA&D (T,P)</td>
<td>1960-2010 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>monthly, seasonal and annual, Country split for presentation purposes only.</td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>31.875 to 54.375° E, 16.25 to 33.75° N</td>
<td>HadEX (T,P)</td>
<td>1960-2000 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT</td>
<td>annual, Spatial coverage is poor</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>13.125 to 35.625° W, 21.25 to 36.25° S</td>
<td>HadEX (T,P)</td>
<td>1960-2000 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>annual, --</td>
<td></td>
</tr>
<tr>
<td>Republic of Korea</td>
<td>125.625 to 129.375° E, 33.75 to 38.75° N</td>
<td>HadEX (T,P)</td>
<td>1960-2003 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD</td>
<td>annual, There are too few data points for CWD to calculate trends or regional timeseries</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>9.375° W to 1.875° E, 36.25 to 43.75° N</td>
<td>ECA&D (T,P)</td>
<td>1960-2010 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>monthly, seasonal and annual</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Coordinates</td>
<td>Dataset</td>
<td>Period</td>
<td>Data Components</td>
<td>Time Periods</td>
<td>Additional Notes</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>------------------------------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Turkey</td>
<td>24.375 to 46.875 ° E, 36.25 to 43.75 ° N</td>
<td>HadEX (T,P)</td>
<td>1960-2003 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>annual</td>
<td>Intermittent coverage in CWD and CDD with no regional average beyond 2000</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>9.375 ° W to 1.875 ° E, 51.25 to 58.75 ° N</td>
<td>ECA&D (T,P)</td>
<td>1960-2010 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>monthly, seasonal and annual</td>
<td></td>
</tr>
<tr>
<td>United States of America</td>
<td>125.625 to 65.625 ° W, 23.75 to 48.75 ° N</td>
<td>GHCND (T,P)</td>
<td>1960-2010 (T,P)</td>
<td>TN10p, TN90p, TX10p, TX90p, PRCPTOT, CDD, CWD</td>
<td>monthly, seasonal and annual</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Summary of data used for each country.
Quality control and gridding procedure used for updates to the HadEX analysis of extremes

In order to perform some basic quality control checks on the index data, we used a two-step process on the indices. Firstly, internal checks were carried out, to remove cases where the 5 day rainfall value is less than the 1 day rainfall value, the minimum T_min is greater than the minimum T_max and the maximum T_min is greater than the maximum T_max. Although these are physically impossible, they could arise from transcription errors when creating the daily dataset, for example, a misplaced minus sign, an extra digit appearing in the record or a column transposition during digitisation. During these tests we also require that there are at least 20 years of data in the period of record for the index for that station, and that some data is found in each decade between 1961 and 1990, to allow a reasonable estimation of the climatology over that period.

Weather conditions are often similar over many tens of kilometres and the indices calculated in this work are even more coherent. The correlation coefficient between each station-pair combination in all the data obtained is calculated for each index (and month where appropriate), and plotted as a function of the separation. An exponential decay curve is fitted to the data, and the distance at which this curve has fallen by a factor $1/e$ is taken as the decorrelation length scale (DLS). A DLS is calculated for each dataset separately. For the GHCND, a separate DLS is calculated for each hemisphere. We do not force the fitted decay curve to show perfect correlation at zero distance, which is different to the method employed when creating HadEX. For some of the indices in some countries, no clear decay pattern was observed in some data sets or the decay was so slow that no value for the DLS could be determined. In these cases a default value of 200km was used.

We then perform external checks on the index data by comparing the value for each station with that of its neighbours. As the station values are correlated, it is therefore likely that if one station measures a high value for an index for a given month, its neighbours will also be measuring high. We exploit this coherence to find further bad values or stations as follows. Although raw precipitation data shows a high degree of localisation, using indices which have monthly or annual resolution improves the coherence across wider areas and so this neighbour checking technique is a valid method of finding anomalous stations.

We calculate a climatology for each station (and month if appropriate) using the mean value for each index over the period 1961-1990. The values for each station are then anomalised using this climatology by subtracting this mean value from the true values, so that it is clear if the station values are higher or lower than normal. This means that we do not need to take
differences in elevation or topography into account when comparing neighbours, as we are not comparing actual values, but rather deviations from the mean value.

All stations which are within the DLS distance are investigated and their anomalised values noted. We then calculate the weighted median value from these stations to take into account the decay in the correlation with increasing distance. We use the median to reduce the sensitivity to outliers.

If the station value is greater than 7.5 median-absolute-deviations away from the weighted median value (this corresponds to about 5 standard deviations if the distribution is Gaussian, but is a robust measure of the spread of the distribution), then there is low confidence in the veracity of this value and so it is removed from the data.

To present the data, the individual stations are gridded on a $3.75^\circ \times 2.5^\circ$ grid, matching the output from HadCM3. To determine the value of each grid box, the DLS is used to calculate which stations can reasonably contribute to the value. The value of each station is then weighted using the DLS to obtain a final grid box value. At least three stations need to have valid data and be near enough (within 1 DLS of the gridbox centre) to contribute in order for a value to be calculated for the grid point. As for the original HadEX, the HadCM3 land-sea mask is used. However, in three cases the mask has been adjusted as there are data over Tasmania, eastern Australia and Italy that would not be included otherwise (Figure 6).

Figure 6. Land Sea mask used for gridding the station data and regional areas allocated to each country as described in Table 2.
Presentation of extremes of temperature and precipitation

Indices are displayed as regional gridded maps of decadal trends and regional average time-series with decadal trends where appropriate. Trends are fitted using the median of pairwise slopes method (Sen 1968, Lanzante 1996). Trends are considered to be significantly different from a zero trend if the 5th to 95th percentiles of the pairwise slopes do not encompass zero. This is shown by a black dot in the centre of the grid-box or by a solid line on time-series plots. This infers that there is high confidence in the sign (positive or negative) of the sign. Confidence in the trend magnitude can be inferred by the spread of the 5th to 95th percentiles of the pairwise slopes which is given for the regional average decadal trends. Trends are only calculated when there are data present for at least 50% of years in the period of record and for the updated data (not HadEX) there must be at least one year in each decade.

Due to the practice of data-interpolation during the gridding stage (using the DLS) there are values for some grid boxes when no actually station lies within the grid box. There is more confidence in grid boxes for which there are underlying data. For this reason, we identify those grid boxes which contain at least 3 stations by a black contour line on the maps. The DLS differs with region, season and index which leads to large differences in the spatial coverage. The indices, by their nature of being largely threshold driven, can be intermittent over time which also affects spatial and temporal coverage (see Table 5).

Each index (and each month for the indices for which there is monthly data) has a different DLS, and so the coverage between different indices and datasets can be different. The restrictions on having at least 20 years of data present for each input station, at least 50% of years in the period of record and at least one year in each decade for the trending calculation, combined with the DLS, can restrict the coverage to only those regions with a dense station network reporting reliably.

Each country has a rectangular region assigned as shown by the red dashed box on the map in Figure 6 and listed in Table 4, which is used for the creation of the regional average. This is sometimes identical to the attribution region shown in grey on the map in Figure 6. This region is again shown on the maps accompanying the time series of the regional averages as a reminder of the region and grid boxes used in the calculation. Regional averages are created by weighting grid box values by the cosine of their grid box centre latitude. To ensure consistency over time a regional average is only calculated when there are a sufficient number of grid boxes present. The full-period median number of grid-boxes present is calculated. For regions with a median of more than six grid-boxes there must be at
least 80% of the median number of grid boxes present for any one year to calculate a regional average. For regions with six or fewer median grid boxes this is relaxed to 50%. These limitations ensure that a single station or grid box which has a longer period of record than its neighbours cannot skew the timeseries trend. So sometimes there may be grid-boxes present but no regional average time series. The trends for the regional averages are calculated in the same way as for the individual grid boxes, using the median of pairwise slopes method (Sen 1968, Lanzante 1996). Confidence in the trend is also determined if the 5th to 95th percentiles of the pairwise slopes are of the same sign and thus inconsistent with a zero trend. As well as the trend in quantity per decade, we also show the full change in the quantity from 1960 to 2010 that this fitted linear trend implies.
Figure 7. Examples of the plots shown in the data section. Left: From ECA&D data between 1960-2010 for the number of warm nights, and Right: from HadEX data (1960-2003) for the total precipitation. A full explanation of the plots is given in the text below.
The results are presented in the form of a map and a time series for each country and index. The map shows the grid box decadal trend in the index over the period for which there are data. High confidence, as determined above, is shown by a black dot in the grid box centre. To show the variation over time, the values for each year (and month if available) are shown in a time series for a regional average. The values of the indices have been normalised to a base period of 1961-1990 (except the Indian gridded data which use a 1971 to 1990 period), both in HadEX and in the new data acquired for this project. Therefore, for example, the percentage of nights exceeding the 90th percentile for a temperature is 10% for that period.

There are two influences on whether a grid box contains a value or not – the land-sea mask, and the decorrelation length scale. The land-sea mask is shown in Figure 6. There are grid boxes which contain some land but are mostly sea and so are not considered. The decorrelation length scale sets the maximum distance a grid box can be from stations before no value is assigned to it. Grid boxes containing three or more stations are highlighted by a thick border. This indicates regions where the value shown is likely to be more representative of the grid box area mean as opposed to a single station location.

On the maps for the new data there is a box indicating which grid boxes have been extracted to calculate the area average for the time series. This box is the same as shown in Figure 6 at the beginning of each country’s document. These selected grid boxes are combined using area (cosine) weighting to calculate the regional average (both annual [thick lines] and monthly [thin lines] where available). Monthly (orange) and annual (blue) trends are fitted to these time series using the method described above. The decadal trend and total change over the period where there are data are shown with 5th to 95th percentile confidence intervals in parentheses. High confidence, as determined above, is shown by a solid line as opposed to a dotted one. The green vertical lines on the time series show the dates of some of the notable events outlined in each section.

Attribution

Regional distributions of seasonal mean temperatures in the 2000s are computed with and without the effect of anthropogenic influences on the climate. The analysis considers temperatures averaged over the regions shown in Figure 8. These are also identified as grey boxes on the maps in Figure 6. The coordinates of the regions are given in Table 5. The methodology combines information from observations and model simulations using the approach originally introduced in Christidis et al., 2010 and later extended in Christidis et al.,
2011, where more details can be found. The analysis requires spatial scales greater than about 2,500 km and for that reason the selected regions (Fig.8 and Table 5) are often larger than individual countries, or include several smaller countries in a single region (for example UK, Germany and France are grouped in one region).

Observations of land temperature come from the CRUTEM3 gridded dataset (Brohan et al., 2006) and model simulations from two coupled GCMs, namely the Hadley Centre HadGEM1 model (Martin et al., 2006) and version 3.2 of the MIROC model (K-1 Developers, 2004). The use of two GCMs helps investigate the sensitivity of the results to the model used in the analysis. Ensembles of model simulations from two types of experiments are used to partition the temperature response to external forcings between its anthropogenic and natural components. The first experiment (ALL) simulates the combined effect of natural and anthropogenic forcings on the climate system and the second (ANTHRO) includes anthropogenic forcings only. The difference of the two gives an estimate of the effect of the natural forcings (NAT). Estimates of the effect of internal climate variability are derived from long control simulations of the unforced climate. Distributions of the regional summer mean temperature are computed as follows:

a) A global optimal fingerprinting analysis (Allen and Tett, 1999; Allen and Stott, 2003) is first carried out that scales the global simulated patterns (fingerprints) of climate change attributed to different combinations of external forcings to best match them to the observations. The uncertainty in the scaling that originates from internal variability leads to samples of the scaled fingerprints, i.e. several realisations that are plausibly consistent with the observations. The 2000-2009 decade is then extracted from the scaled patterns and two samples of the decadal mean temperature averaged over the reference region are then computed with and without human influences, which provide the Probability Density Functions (PDFs) of the decadal mean temperature attributable to ALL and NAT forcings.

b) Model-derived estimates of noise are added to the distributions to take into account the uncertainty in the simulated fingerprints.

c) In the same way, additional noise from control model simulations is introduced to the distributions to represent the effect of internal variability in the annual values of the seasonal mean temperatures. The result is a pair of estimated distributions of the annual values of the seasonal mean temperature in the region with and without the effect of human activity on the climate. The temperatures throughout the analysis are expressed as anomalies relative to period 1961-1990.
Figure 8. The regions used in the attribution analysis. Regions marked with dashed orange boundaries correspond to non-G20 countries that were also included in the analysis.

Table 5. The coordinates of the regions used in the attribution analysis.
References

46

Acknowledgements

Data for this work were taken from the ECA&D dataset (Klein Tank et al. 2002). We thank Lisa Alexander and Markus Donat (University of New South Wales) for their help and advice. We also thank reviewers from Italy for their valuable input and advice.
Chapter 2 – Climate Change Projections
Introduction

Climate models are used to understand how the climate will evolve over time and typically represent the atmosphere, ocean, land surface, cryosphere, and biogeochemical processes, and solve the equations governing their evolution on a geographical grid covering the globe. Some processes are represented explicitly within climate models, large-scale circulations for instance, while others are represented by simplified parameterisations. The use of these parameterisations is sometimes due to processes taking place on scales smaller than the typical grid size of a climate model (a Global Climate Model (GCM) has a typical horizontal resolution of between 250 and 600km) or sometimes to the current limited understanding of these processes. Different climate modelling institutions use different plausible representations of the climate system, which is why climate projections for a single greenhouse gas emissions scenario differ between modelling institutes. This gives rise to “climate model structural uncertainty”.

In response to a proposed activity of the World Climate Research Programme's (WCRP's; http://www.wcrp-climate.org/) Working Group on Coupled Modelling (WGCM), the Program for Climate Model Diagnosis and Intercomparison (PCMDI; http://www-pcmdi.llnl.gov/) volunteered to collect model output contributed by leading climate modelling centres around the world. Climate model output from simulations of the past, present and future climate was collected by PCMDI mostly during the years 2005 and 2006, and this archived data constitutes phase 3 of the Coupled Model Intercomparison Project (CMIP3). In part, the WGCM organised this activity to enable those outside the major modelling centres to perform research of relevance to climate scientists preparing the IPCC Fourth Assessment Report (AR4). This unprecedented collection of recent model output is commonly known as the “CMIP3 multi-model dataset”. The GCMs included in this dataset are referred to regularly throughout this review, although not exclusively.

The CMIP3 multi-model ensemble has been widely used in studies of regional climate change and associated impacts. Each of the constituent models was subject to extensive testing by the contributing institute, and the ensemble has the advantage of having been constructed from a large pool of alternative model components, therefore sampling alternative structural assumptions in how best to represent the physical climate system. Being assembled on an opportunity basis, however, the CMIP3 ensemble was not designed to represent model uncertainties in a systematic manner, so it does not, in isolation, support
robust estimates of the risk of different levels of future climate change, especially at a regional level.

Since CMIP3, a new (CMIP5) generation of coupled ocean-atmosphere models has been developed, which is only just beginning to be available and is being used for new projections for the IPCC Fifth Assessment Report (AR5).

These newer models typically feature higher spatial resolution than their CMIP3 counterparts, including in some models a more realistic representation of stratosphere-troposphere interactions. The CMIP5 models also benefit from several years of development in their parameterisations of small scale processes, which, together with resolution increases, are expected to result in a general improvement in the accuracy of their simulations of historical climate, and in the credibility of their projections of future changes. The CMIP5 programme also includes a number of comprehensive Earth System Models (ESMs) which explicitly simulate the earth's carbon cycle and key aspects of atmospheric chemistry, and also contain more sophisticated representations of aerosols compared to CMIP3 models.

The CMIP3 results should be interpreted as a useful interim set of plausible outcomes. However, their neglect of uncertainties, for instance in carbon cycle feedbacks, implies that higher levels of warming outside the CMIP3 envelope cannot be ruled out. In future, CMIP5 coupled model and ESM projections can be expected to produce improved advice on future regional changes. In particular, ensembles of ESM projections will be needed to provide a more comprehensive survey of possible future changes and their relative likelihoods of occurrence. This is likely to require analysis of the CMIP5 multi-model ESM projections, augmented by larger ensembles of ESM simulations in which uncertainties in physical and biogeochemical feedback processes can be explored more systematically, for example via ensembles of model runs in which key aspects of the climate model are slightly adjusted. Note that such an exercise might lead to the specification of wider rather than narrower uncertainties compared to CMIP3 results, if the effects of representing a wider range of earth system processes outweigh the effects of refinements in the simulation of physical atmosphere-ocean processes already included in the CMIP3 models.
Climate projections

The Met Office Hadley Centre is currently producing perturbed parameter ensembles of a single model configuration known as HadCM3C, to explore uncertainties in physical and biogeochemical feedback processes. The results of this analysis will become available in the next year and will supplement the CMIP5 multi-model ESM projections, providing a more comprehensive set of data to help progress understanding of future climate change. However, many of the studies covered in the chapter on climate impacts have used CMIP3 model output. For this reason, and because it is still the most widely used set of projections available, the CMIP3 ensemble output for temperature and precipitation, for the A1B emission scenario, for Italy and the surrounding region is shown below.

Figure 1. Percentage change in average annual temperature by 2100 from 1960-1990 baseline climate, averaged over 21 CMIP3 models. The size of each pixel represents the level of agreement between models on the magnitude of the change.
Summary of temperature change in Italy

Figure 1 shows the percentage change in average annual temperature by 2100 from 1960-1990 baseline climate, averaged over 21 CMIP3 models. All of the models in the CMIP3 ensemble project increased temperatures in the future, but the size of each pixel indicates how well the models agree over the magnitude of the increase.

Increases in temperature of up to around 3.5°C are projected over Italy, with good agreement between models over most of the country.

Summary of precipitation change in Italy

Figure 2 shows the percentage change in average annual precipitation by 2100 from 1960-1990 baseline climate, averaged over 21 CMIP3 models. Unlike for temperature, the models sometimes disagree over whether precipitation is increasing or decreasing over a region, so in this case the size of each pixel indicates the percentage of the models in the ensemble that agree on the sign of the change in precipitation.

Projected rainfall decreases over Italy could be between 10% and 20% in the south of the country, and between 0% and 5% over the north. Italy has good agreement between the
ensemble members over the direction of the projected precipitation changes in the south, and moderate agreement in the north.
Chapter 3 – Climate Change Impact Projections
Introduction

Aims and approach

This chapter looks at research on a range of projected climate change impacts, with focus on results for Italy. It includes projections taken from the AVOID programme, for some of the impact sectors.

The aim of this work is to take a ‘top down’ approach to assessing global impacts studies, both from the literature and from new research undertaken by the AVOID programme. This project covers 23 countries, with summaries from global studies provided for each of these. This global approach allows some level of comparison between countries, whilst presenting information on a scale most meaningful to inform international policy.

The literature covered in this chapter focuses on research published since the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) and should be read in conjunction with IPCC AR4 WG1 and WG2 reports. For some sectors considered, an absence of research developments since the IPCC AR4, means earlier work is cited as this helps describe the current level of scientific understanding. This report focuses on assessing scientific research about climate change impacts within sectors; it does not present an integrated analysis of climate change adaptation policies.

Some national and sub-national scale literature is reported to a limited extent to provide some regional context.

Impact sectors considered and methods

This report reviews the evidence for the impact of climate change on a number of sectors, for Italy. The following sectors are considered in turn in this report:

- Crop yields
- Food security
- Water stress and drought
- Pluvial flooding and rainfall
- Fluvial flooding
- Tropical cyclones (where applicable)
- Coastal regions
Supporting literature

Literature searches were conducted for each sector with the Thomson Reuters Web of Science (WoS., 2011) and Google Scholar academic search engines respectively. Furthermore, climate change impact experts from each of the 23 countries reviewed were contacted. These experts were selected through a combination of government nomination and from experts known to the Met Office. They were asked to provide literature that they felt would be of relevance to this review. Where appropriate, such evidence has been included. A wide range of evidence was considered, including; research from international peer-reviewed journal papers; reports from governments, non-governmental organisations, and private businesses (e.g. reinsurance companies), and research papers published in national journals.

For each impact sector, results from assessments that include a global- or regional-scale perspective are considered separately from research that has been conducted at the national- or sub-national-scale. The consideration of global- and regional-scale studies facilitates a comparison of impacts across different countries, because such studies apply a consistent methodology for each country. While results from national- and sub-national-scale studies are not easily comparable between countries, they can provide a level of detail that is not always possible with larger-scale studies. However, the national- and sub-national scale literature included in this project does not represent a comprehensive coverage of regional-based research and cannot, and should not, replace individual, detailed impacts studies in countries. The review aims to present an up-to-date assessment of the impact of climate change on each of the sectors considered.

AVOID programme results

Much of the work in this report is drawn from modelling results and analyses coming out of the AVOID programme. The AVOID programme is a research consortium funded by DECC and Defra and led by the UK Met Office and also comprises the Walker Institute at the University of Reading, the Tyndall Centre represented through the University of East Anglia, and the Grantham Institute for Climate Change at Imperial College. The expertise in the AVOID programme includes climate change research and modelling, climate change impacts in natural and human systems, socio-economic sciences, mitigation and technology. The unique expertise of the programme is in bringing these research areas together to produce integrated and policy-relevant results. The experts who work within the programme were also well suited to review the literature assessment part of this report. In this report the
modelling of sea level rise impacts was carried out for the AVOID programme by the University of Southampton.

The AVOID programme uses the same emissions scenarios across the different impact sectors studied. These are a business as usual (IPCC SRES A1B) and an aggressive mitigation (the AVOID A1B-2016-5-L) scenario. Model output for both scenarios was taken from more than 20 GCMs and averaged for use in the impact models. The impact models are sector specific, and frequently employ further analytical techniques such as pattern scaling and downscaling in the crop yield models.

Data and analysis from AVOID programme research is provided for the following impact sectors:

- Crop yields
- Water stress and drought
- Fluvial flooding
- Coastal regions

Uncertainty in climate change impact assessment

There are many uncertainties in future projections of climate change and its impacts. Several of these are well-recognised, but some are not. One category of uncertainty arises because we don’t yet know how mankind will alter the climate in the future. For instance, uncertainties in future greenhouse gas emissions depends on the future socio-economic pathway, which, in turn, depends on factors such as population, economic growth, technology development, energy demand and methods of supply, and land use. The usual approach to dealing with this is to consider a range of possible future scenarios.

Another category of uncertainties relate to our incomplete understanding of the climate system, or an inability to adequately model some aspects of the system. This includes:

- Uncertainties in translating emissions of greenhouse gases into atmospheric concentrations and radiative forcing. Atmospheric CO₂ concentrations are currently rising at approximately 50% of the rate of anthropogenic emissions, with the remaining 50% being offset by a net uptake of CO₂ into the oceans and land biosphere. However, this rate of uptake itself probably depends on climate, and evidence suggests it may weaken under a warming climate, causing more CO₂ to remain in the atmosphere, warming climate further. The extent of this feedback is
highly uncertain, but it not considered in most studies. The phase 3 of the Coupled Model Intercomparison Project (CMIP3), which provided the future climate projections for the IPCC Fourth Assessment Report (AR4), used a single estimate of CO₂ concentration rise for each emissions scenario, so the CMIP3 projections (which were used in most studies presented here, including AVOID) do not account for this uncertainty.

- Uncertainty in climate response to the forcing by greenhouse gases and aerosols. One aspect of this is the response of global mean temperature ("climate sensitivity"), but a more relevant aspect for impacts studies is the response of regional climates, including temperature, precipitation and other meteorological variables. Different climate models can give very different results in some regions, while giving similar results in other regions. Confidence in regional projections requires more than just agreement between models: physical understanding of the relevant atmospheric, ocean and land surface processes is also important, to establish whether the models are likely to be realistic.

- Additional forcings of regional climate. Greenhouse gas changes are not the only anthropogenic driver of climate change; atmospheric aerosols and land cover change are also important, and unlike greenhouse gases, the strength of their influence varies significantly from place to place. The CMIP3 models used in most impacts studies generally account for aerosols but not land cover change.

- Uncertainty in impacts processes. The consequences of a given changes in weather or climatic conditions for biophysical impacts such as river flows, drought, flooding, crop yield or ecosystem distribution and functioning depend on many other processes which are often poorly-understood, especially at large scales. In particular, the extent to which different biophysical impacts interact with each other has been hardly studied, but may be crucial; for example, impacts of climate change on crop yield may depend not only on local climate changes affecting rain-fed crops, but also remote climate changes affecting river flows providing water for irrigation.

- Uncertainties in non-climate effects of some greenhouse gases. As well as being a greenhouse gas, CO₂ exerts physiological influences on plants, affecting photosynthesis and transpiration. Under higher CO₂ concentrations, and with no other limiting factors, photosynthesis can increase, while the requirements of water for transpiration can decrease. However, while this has been extensively studied under experimental conditions, including in some cases in the free atmosphere, the
extent to which the ongoing rise in ambient CO₂ affects crop yields and natural vegetation functioning remains uncertain and controversial. Many impacts projections assume CO₂ physiological effects to be significant, while others assume it to be non-existent. Studies of climate change impacts on crops and ecosystems should therefore be examined with care to establish which assumptions have been made.

In addition to these uncertainties, the climate varies significantly through natural processes from year-to-year and also decade-to-decade, and this variability can be significant in comparison to anthropogenic forcings on shorter timescales (the next few decades) particularly at regional scales. Whilst we can characterise the natural variability it will not be possible to give a precise forecast for a particular year decades into the future.

A further category of uncertainty in projections arises as a result of using different methods to correct for uncertainties and limitations in climate models. Despite being painstakingly developed in order to represent current climate as closely as possible, current climate models are nevertheless subject to systematic errors such as simulating too little or too much rainfall in some regions. In order to reduce the impact of these, ‘bias correction’ techniques are often employed, in which the climate model is a source of information on the change in climate which is then applied to the observed present-day climate state (rather than using the model’s own simulation of the present-day state). However, these bias-corrections typically introduce their own uncertainties and errors, and can lead to inconsistencies between the projected impacts and the driving climate change (such as river flows changing by an amount which is not matched by the original change in precipitation). Currently, this source of uncertainty is rarely considered.

When climate change projections from climate models are applied to climate change impact models (e.g. a global hydrological model), the climate model structural uncertainty carries through to the impact estimates. Additional uncertainties include changes in future emissions and population, as well as parameterisations within the impact models (this is rarely considered). Figure 1 highlights the importance of considering climate model structural uncertainty in climate change impacts assessment. Figure 1 shows that for 2°C prescribed global-mean warming, the magnitude of, and sign of change in average annual runoff from present, simulated by an impacts model, can differ depending upon the GCM that provides the climate change projections that drive the impact model. This example also shows that the choice of impact model, in this case a global hydrological model (GHM) or catchment-scale hydrological model (CHM), can affect the magnitude of impact and sign of change from present (e.g. see IPSL CM4 and MPI ECHAM5 simulations for the Xiangxi). To this end,
throughout this review, the number of climate models applied in each study reviewed, and the other sources of uncertainty (e.g. emissions scenarios) are noted. Very few studies consider the application of multiple impacts models and it is recommended that future studies address this.

Uncertainties in the large scale climate relevant to Italy include the Atlantic Ocean has a Meridional Overturning Circulation (MOC) which transports large amounts of heat northwards in the Atlantic from the Equator. A key part of this is called the thermohaline circulation (THC). Disruption of the MOC could have a major impact on the Northern Hemisphere climate, including that of Italy, with likely detrimental impacts on human and animal systems. The IPCC AR4 concluded that "... it is very likely that the Atlantic Ocean Meridional Overturning Circulation could slow down during the course of the 21st century. A multi-model ensemble shows an average reduction of 25% with a broad range from virtually no change to a reduction of over 50% averaged over 2080 to 2099" (IPCC, 2007b).

Schneider et al. (2007) analysed simulations from several GCMs that were reviewed in the IPCC AR4 and found that projections of MOC change indicate it may weaken by 25-30% by the year 2100. Recent monitoring (Cunningham et al., 2007, Kanzow et al., 2007) has revealed large variability in the strength of the MOC on daily to seasonal timescales. This significant variability casts doubt on a previous report of decreases in MOC transport from several hydrographic sections (Bryden et al., 2005), although it does not explain the observed water mass changes below 3000m. Recent results based on radar altimeter and Argo data also suggest that there has been no slowdown, at least over the altimeter era.
(1993-present) (Willis, 2010). In contrast, two ocean state estimation studies (Balmaseda et al., 2007, Wunsch and Heimbach, 2006) indicated an MOC slow down. It has been suggested, based on model studies, that anthropogenic aerosols have slowed the weakening of the MOC and such weakening could only become significant several decades into the 21st century (Delworth and Dixon, 2006).

Regarding the possibility of MOC shutdown, a recent study presented by Swingedouw et al. (2007) with one climate model found that additional melt from Greenland could lead to complete AMOC shutdown in a CO2 stabilisation experiment. However, a previous study with a different model (Ridley et al., 2005) found no effect from similar levels of meltwater input. Mikolajewicz et al. (2007) coupled an earth system model with atmospheric and ocean GCMs and observed a complete shutdown of the AMOC under a high emission scenario (SRES A2), but not before 2100. Moreover, Mikolajewicz et al. (2007) observed only a temporary weakening of the deep water formation in the North Atlantic by 2100 under a low emission scenario (B1).

Reversibility following AMOC shutdown is a key issue. Hofmann and Rahmstorf (2009) showed that hysteresis still occurs in a new low-diffusivity model. This is contrary to previous theoretical arguments that hysteresis is a product of diffusivity of the low-resolution simplified ocean models which are applied to perform the long-term simulations that are required to investigate this issue.

There is some new work on the impacts of AMOC weakening. Two studies (Kuhlbrodt et al., 2009, Vellinga and Wood, 2008) found SLR of several tens of cm along parts of the North Atlantic coast. They studies found that regional cooling could partially offset the greenhouse gas warming, and various other impacts may be substantial but hard to quantify such as change in tropical precipitation patterns and change in ocean currents leading to declining fish stocks and ecosystems (Schmittner, 2005).

In conclusion, large uncertainty remains in the probability of a complete MOC shutdown (Kriegler et al., 2009, Zickfeld et al., 2007). However, for the high temperature scenario considered by a recent expert elicitation exercise (centred on 4.5°C by 2100, 6.5°C by 2200) (Kriegler et al., 2009), the probability of complete shutdown was assessed to be at least 10% (according to several experts). Comparable results were found by the exercise reported by Zickfeld et al. (2007). To this end, it is thought unlikely that the AMOC could significantly weaken with 2°C global-mean warming.
Summary of findings for each sector

Crop yields

- Quantitative crop yield projections under climate change scenarios for Italy vary across studies due to the application of different models, assumptions and emissions scenarios.

- However, global- and regional-scale studies included here generally project yield gains for wheat and rice in comparison to other crops like maize with climate change.

- National and sub-national assessments illustrate the importance of accurately representing terrain and land-suitability in projections. They note that the extent of CO₂ fertilization may determine whether projected gains for some crops are realised.

- Important knowledge gaps and key uncertainties include the quantification of yield increases due to CO₂ fertilisation, the quantification of yield reductions due to ozone damage and the extent to which crop diseases could affect crop yields with climate change.

Food security

- Italy is presently a country with extremely low levels of undernourishment. Global-scale studies included here generally conclude that Italy will not face serious food security issues over the next 40 years, largely as a result of Italy’s high adaptive capacity and its ability to be able to afford to import food to offset potential deficits in food production. Italy could be a food importing country in 2050.

- One study concluded that the national economy of Italy presents a very low vulnerability to climate change impacts on fisheries by the 2050s.
Water stress and drought

- Recent droughts in the Po River Basin (north Italy) in 2003, 2005 and 2006, have highlighted that the north is susceptible to severe droughts.

- There is consensus across global- and regional-scale studies included here that droughts could increase in frequency and magnitude with climate change for Italy as a whole.

- Several national-scale studies included here agree that the south of Italy is highly vulnerable to water stress and that the population exposed to water stress could increase with climate change.

- Recent simulations by the AVOID programme project that the median population exposed to an increase in water stress in Italy due to climate change is around 25% under SRES A1B in 2100. None of the GCMs simulated any of the population experiencing a decrease in exposure to water stress by 2100.

Pluvial flooding and rainfall

- A comprehensive assessment of climate change projections over Italy (published in 2010), found a decrease in summer precipitation (up to 40% in places) with climate change, and a dipolar change pattern in winter (increase to the north, decrease to the south).

- This represents new knowledge relative to IPCC AR4 coverage.

- However, this study, along with larger-scale assessments, suggests that large uncertainties remain in quantifying the impact of climate change on precipitation, and consequently the risk of pluvial flooding in Italy.
Fluvial flooding

- Because of its geography, Italy is usually not well represented in global modelling studies of future changes in flood hazard. The few studies which are of relevance to Italy suggest an increase in extreme flood levels across Italy, and a reduction in average annual flows.

- Projections of changes in flood hazard with climate change are subject to large uncertainties due to large natural variability and large uncertainties in the simulated climate signal.

- Simulations by the AVOID programme, based on 21 GCMs, support this although a majority of the models show a tendency towards decreasing flood risk.

Tropical cyclones

- Italy is not impacted by tropical cyclones.

Coastal regions

- A number of global-scale impacts modelling studies suggest that Italy may not face severe impacts from sea level rise (SLR).

- This is provided adaptation measures such as raising of flood dykes and the application of beach nourishment are implemented.

- For example, one study found that by the 2080s under a high SLR scenario and without adaptation, the average annual number of people flooded in Italy could be around 513,000 - with adaptation measures implemented this is around 2,300.
Crop yields

Headline

Crop yield projections under climate change scenarios for Italy vary across studies due to the application of different models, assumptions and emissions scenarios. Studies generally point towards an increase in yield for certain crops, such as wheat and rice, which are C3 species, in comparison to other crops like maize, which is a C4 crop. This is because C3 species tend to respond more positively to increased CO2 concentration in the atmosphere with respect to C4 species due to a different mechanism of carboxylation.

Results from the AVOID programme for Italy indicate that the balance is more towards declining suitability than improving suitability in the early part of the 21st Century, and this increases further over time particularly in the A1B scenario.

Supporting literature

Introduction

The impacts of climate change on crop productivity are highly uncertain due to the complexity of the processes involved. Most current studies are limited in their ability to capture the uncertainty in regional climate projections, and often omit potentially important aspects such as extreme events and changes in pests and diseases. Importantly, there is a lack of clarity on how climate change impacts on drought are best quantified from an agricultural perspective, with different metrics giving very different impressions of future risk. The dependence of some regional agriculture on remote rainfall, snowmelt and glaciers adds to the complexity - these factors are rarely taken into account, and most studies focus solely on the impacts of local climate change on rain-fed agriculture. However, irrigated agricultural land produces approximately 40-45 % of the world’s food (Doll and Siebert 2002), and the water for irrigation is often extracted from rivers which can depend on climatic conditions far from the point of extraction. Hence, impacts of climate change on crop productivity often need to take account of remote as well as local climate changes. Indirect impacts via sea-level rise, storms and diseases have also not been quantified. Perhaps most seriously, there is high uncertainty in the extent to which the direct effects of CO2 rise on plant physiology will interact with climate change in affecting productivity. Therefore, at present, the aggregate impacts of climate change on large-scale agricultural productivity cannot be reliably quantified (Gornall et al, 2010). This section summarises findings from a range of post IPCC...
AR4 assessments to inform and contextualise the analysis performed by AVOID programme for this project. The results from the AVOID work are discussed in the next section.

Wheat is the most important staple crop of Italy. A range of other crops typical of its Mediterranean environment are grown, which include olives, grapes, tomatoes (see Table 1) (FAO, 2008).

<table>
<thead>
<tr>
<th>Harvested area (ha)</th>
<th>Quantity (Metric ton)</th>
<th>Value ($1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat 2280000</td>
<td>Wheat 8850000</td>
<td>Grapes 3610000</td>
</tr>
<tr>
<td>Olives 1180000</td>
<td>Grapes 7790000</td>
<td>Olives 1730000</td>
</tr>
<tr>
<td>Maize 991000</td>
<td>Tomatoes 5970000</td>
<td>Tomatoes 1410000</td>
</tr>
<tr>
<td>Grapes 788000</td>
<td>Sugar beet 4390000</td>
<td>Wheat 897000</td>
</tr>
<tr>
<td>Barley 330000</td>
<td>Olives 3470000</td>
<td>Apples 634000</td>
</tr>
<tr>
<td>Rice, paddy 224000</td>
<td>Apples 2210000</td>
<td>Peaches and nectarines 567000</td>
</tr>
<tr>
<td>Oats 147000</td>
<td>Oranges 2160000</td>
<td>Oranges 444000</td>
</tr>
</tbody>
</table>

Table 1. The top 7 crops by harvested area, quantity and value according to the FAO (2008) in Italy. Crops that feature in all lists are shaded green; crops that feature in two top 7 lists are shaded amber. Data is from FAO (2008) and has been rounded down to three significant figures.

A number of global, regional, national and sub-national impact model studies, which include results for some of the main crops in Italy, have been conducted. They applied a variety of methodological approaches, including using different climate model inputs and treatment of other factors that might affect yield, such as impact of increased CO₂ in the atmosphere on plant growth and adaption of agricultural practises to changing climate conditions. These different models, assumptions and emissions scenarios mean that there are a range of crop yield projections for Italy. However, the majority of studies explored in this report show that yields of rice and wheat will increase as the climate changes, whereas yields of maize and legumes will be negatively affected.

Important knowledge gaps, which are applicable to Italy as well as at the global-scale, include; the quantification of yield reductions due to ozone damage (Ainsworth and McGrath, 2010, Iglesias et al., 2009), and the extent crop diseases could affect crop yields with climate change (Luck et al., 2011). Most crop simulation models do not include the direct effect of extreme temperatures on crop development and growth, thus only changes in mean climate conditions are considered to affect crop yields for the studies included here.
Assessments that include a global or regional perspective

Recent past

Crop yield changes could be due to a variety of factors, which might include, but not be confined to, a changing climate. In order to assess the impact of recent climate change (1980-2008) on wheat, maize, rice and soybean, Lobell et al. (2011) looked at how the overall yield trend in these crops changed in response to changes in climate over the period studied. The study was conducted at the global-scale but national estimates for Italy were also calculated. Lobell et al. (2011) divided the climate-induced yield trend by the overall yield trend for 1980–2008, to produce a simple metric of the importance of climate relative to all other factors. The ratio produced indicates the influence of climate on the productivity trend overall. So for example a value of –0.1 represents a 10% reduction in yield gain due to climate change, compared to the increase that could have been achieved without climate change, but with technology and other gains. This can also be expressed as 10 years of climate trend being equivalent to the loss of roughly 1 year of technology gains. For Italy maize, soybean, and wheat yield in particular, were estimated to have been impacted negatively relative to what could have been achieved without the climate trends, whilst rice yield was estimated to have benefited from recent climatic trends (see Table 2).

<table>
<thead>
<tr>
<th>Crop</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>-0.2 to -0.1</td>
</tr>
<tr>
<td>Rice</td>
<td>0.1 to 0.2</td>
</tr>
<tr>
<td>Wheat</td>
<td>-0.4 to -0.3</td>
</tr>
<tr>
<td>Soybean</td>
<td>-0.3 to -0.2</td>
</tr>
</tbody>
</table>

Table 2. The estimated net impact of climate trends for 1980-2008 on crop yields. Climate-induced yield trend divided by overall yield trend. ‘n/a’ infers zero or insignificant crop production or unavailability of data. Data is from Lobell et al. (2011).

Climate change studies

Included in this section are results from recent studies that have applied climate projections from Global Climate Models (GCMs) to crop yield models to assess the global-scale impact of climate change on crop yields, and which include impact estimates at the national-scale for Italy (Avnery et al., 2011, Iglesias and Rosenzweig, 2009, Giannakopoulos et al., 2005, Moriondo et al., 2010, Olesen et al., 2007). The process of CO₂ fertilisation of some crops is usually included in climate impact studies of yields. However, other gases can influence crop growth, and are not always included in impact model projections. An example of this is ozone, (O₃) and so a study which attempts to quantify the potential impact of changes in the atmospheric concentration of this gas is also included Avnery et al., (2011).
In addition to these studies, the AVOID programme analysed the patterns of climate change for 21 GCMs to establish an index of ‘climate suitability’ of agricultural land. Climate suitability is not directly equivalent to crop yields, but is a means of looking at a standard metric across all countries included in this project, and of assessing the level of agreement on variables that affect crop production between all 21 GCMs.

Iglesias and Rosenzweig (2009) repeated an earlier study presented by Parry et al. (2004) by applying climate projections from the HadCM3 GCM (instead of HadCM2, which was applied by Parry et al. (2004)), under seven SRES emissions scenarios and for three future time periods. This study used consistent crop simulation methodology and climate change scenarios globally, and weighted the model site results by their contribution to regional and national, rain-fed and irrigated production. The study also applied a quantitative estimation of physiological CO2 effects on crop yields and considered the effect of adaptation by assessing the potential of the country or region to reach optimal crop yield. The results from the study are presented in Table 3 and Table 4 for Italy. Wheat and rice yield were projected above baseline (1970-2000) levels for each future time horizon. Maize yields in 2020 and 2050 were slightly (<5%) lower than baseline but by 2080 a small gain was projected with the A1FI and A2 scenarios, but not with the B1 and B2 scenarios.
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Year</th>
<th>Wheat</th>
<th>Rice</th>
<th>Maize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020</td>
<td>4.19</td>
<td>2.19</td>
<td>-1.68</td>
</tr>
<tr>
<td>A1FI</td>
<td>2050</td>
<td>9.28</td>
<td>8.28</td>
<td>-1.37</td>
</tr>
<tr>
<td></td>
<td>2080</td>
<td>7.48</td>
<td>6.48</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>5.67</td>
<td>3.67</td>
<td>-1.16</td>
</tr>
<tr>
<td>A2a</td>
<td>2050</td>
<td>9.20</td>
<td>7.20</td>
<td>-1.32</td>
</tr>
<tr>
<td></td>
<td>2080</td>
<td>12.14</td>
<td>12.14</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>3.49</td>
<td>1.49</td>
<td>-0.72</td>
</tr>
<tr>
<td>A2b</td>
<td>2050</td>
<td>8.92</td>
<td>6.92</td>
<td>-1.66</td>
</tr>
<tr>
<td></td>
<td>2080</td>
<td>13.15</td>
<td>12.15</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>3.34</td>
<td>1.34</td>
<td>-1.48</td>
</tr>
<tr>
<td>A2c</td>
<td>2050</td>
<td>9.07</td>
<td>7.07</td>
<td>-1.81</td>
</tr>
<tr>
<td></td>
<td>2080</td>
<td>13.51</td>
<td>12.51</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>1.61</td>
<td>-0.39</td>
<td>-1.71</td>
</tr>
<tr>
<td>B1a</td>
<td>2050</td>
<td>5.28</td>
<td>4.28</td>
<td>-2.83</td>
</tr>
<tr>
<td></td>
<td>2080</td>
<td>6.86</td>
<td>3.86</td>
<td>-3.21</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>3.66</td>
<td>2.31</td>
<td>-2.60</td>
</tr>
<tr>
<td>B2a</td>
<td>2050</td>
<td>5.13</td>
<td>4.13</td>
<td>-3.19</td>
</tr>
<tr>
<td></td>
<td>2080</td>
<td>7.24</td>
<td>6.24</td>
<td>-1.42</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>3.16</td>
<td>1.16</td>
<td>-2.55</td>
</tr>
<tr>
<td>B2b</td>
<td>2050</td>
<td>5.50</td>
<td>4.50</td>
<td>-3.13</td>
</tr>
<tr>
<td></td>
<td>2080</td>
<td>8.85</td>
<td>7.85</td>
<td>-1.35</td>
</tr>
</tbody>
</table>

Table 3. Wheat, rice and maize yield changes (%) relative to baseline scenario (1970-2000) for different emission scenarios and future time periods. Some emissions scenarios were run in an ensemble simulation (e.g. A2a, A2b, A2c). Data is from Iglesias and Rosenzweig (2009).
<table>
<thead>
<tr>
<th></th>
<th>Wheat</th>
<th>Rice</th>
<th>Maize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up</td>
<td>Down</td>
<td>Up</td>
</tr>
<tr>
<td>Baseline to 2020</td>
<td>7</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Baseline to 2050</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Baseline to 2080</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2020 to 2050</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2050 to 2080</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4. The number of emission scenarios that predict yield gains (“Up”) or yield losses (“Down”) for wheat, rice and maize between two points in time in Italy. Data is from Iglesias and Rosenzweig (2009).

Giannakopoulos et al. (2005, 2009) applied climate projections with the HadCM3 GCM under the SRES A2 and B2 emissions scenarios to assess climate change impacts for the Mediterranean basin for the period 2031-2060 under the A2 and B2 emissions scenarios. Climate data were used as input to the CROPSYST (Cropping Systems Simulation Model) (Stockle et al. 2003) crop model to project crop productivity changes (compared to 1961-1990) for a range of different crop types. The crop types were divided into ‘C4’ summer crop, ‘C3’ summer crop, legumes, tuber crops and cereals, where ‘C4’ and ‘C3’ refer to two plant physiology types that affect the way plants take up CO₂ from the atmosphere. ‘C3’ crops are able to benefit from CO₂ enrichment of the atmosphere, whereas ‘C4’ crops are not. This process is simulated by CROPSYST. The process is important because the benefit from CO₂ enrichment can potentially off-set some of the negative impacts of climate change for that crop. For Italy the ‘C4’ summer crop studied was irrigated maize, the ‘C3’ summer crop was rain-fed sunflowers, the legume was rain-fed soybean, the tuber crop was irrigated potato and the cereal was rain-fed wheat. The study indicated that soybean and sunflowers in particular could be negatively affected by climate change under the A2 emission scenario in particular and in the absence of adaptation in Italy (see Figure 2).
Moriondo et al. (2010) simulated relative changes in crop yield for sunflower, soybean, spring wheat and durum wheat for a global mean warming of 2°C warmer than present, with SRES A2 socioeconomics. The study accounted for changes in extreme events such as droughts and for CO₂ fertilisation effect. Moriondo et al. (2010) compared the effectiveness of various adaptation options relative to no adaptation. No quantitative information on impacts is available from the study, but estimates can be made whether, on average, a relative yield loss or a yield gain was projected for a given crop, adaptation method and country (see Table 5). The results indicate that for the 2030-2060 time horizon, on average, climate change is associated with yield gains for sunflower and durum wheat. Irrigation, if specified as under the simulations, could result in yield gains for all crops with climate change.
Table 5. Relative change in yield of four crops in a +2 °C world under SRES A2 socioeconomics for Italy. The relative change is calculated with respect to the same +2°C scenario without adaptation (left column). “+” = relative yield gain, “-” = relative yield loss, “+ -” = high spatial variability and uncertainty over sign of average yield change. After Moriondo et al. (2010).

<table>
<thead>
<tr>
<th>Crop</th>
<th>No adaptation(^1)</th>
<th>Advanced sowing</th>
<th>Delayed sowing</th>
<th>Shorter cycle varieties</th>
<th>Longer cycle varieties</th>
<th>Irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunflower</td>
<td>+ -</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Soybean</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Spring wheat</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Durum wheat</td>
<td>+</td>
<td>-</td>
<td>+ -</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

\(^1\) Yield changes with respect to the present period, not considering adaptation methods.

Olesen et al. (2007) addressed the issue of uncertainty in projecting impacts of climate change on agriculture. They projected rain-fed winter wheat yield across the European domain using nine different RCMs with HadAM3H as the bounding GCM, under SRES A2 emissions. For more than 75% of the cropping area, especially in the eastern regions of Italy, the RCMs disagreed in the direction of response. Yield decreases were simulated along the Tyrrhenian coast (from Livorno to Napoli) with climate change.

Elsewhere, several recent studies have assessed the impact of climate change on a global-scale or regional-scale and include impact estimates for Western Europe or the Mediterranean as a whole (Ciscar et al., 2009, Ferrise et al., 2011, Iglesias et al., 2009, Tatsumi et al., 2011). Whilst these studies provide a useful indicator of crop yields under climate change for the region, it should be noted that the crop yields presented in such cases are not definitive national estimates. This is because the yields are averaged over the entire region, which includes other countries as well as Italy.

Tatsumi et al. (2011) applied an improved version of the GAEZ crop model (iGAEZ) to simulate crop yields on a global scale for wheat, potato, cassava, soybean, rice, sweet potato, maize, green beans. The impact of global warming on crop yields from the 1990s to 2090s was assessed by projecting five GCM outputs under the SRES A1B scenario and comparing the results for crop yields as calculated using the iGAEZ model for the period of 1990-1999. The results for Southern Europe, the regional grouping which included Italy, are displayed in Table 6.
<table>
<thead>
<tr>
<th></th>
<th>Wheat</th>
<th>Potato</th>
<th>Cassava</th>
<th>Soybean</th>
<th>Rice</th>
<th>Sweet</th>
<th>Maize</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change</td>
<td>10.80</td>
<td>7.30</td>
<td>-</td>
<td>-0.24</td>
<td>3.46</td>
<td>-2.00</td>
<td>-2.42</td>
<td>-2.34</td>
</tr>
</tbody>
</table>

Table 6. Average change in yield (%), during 1990s-2090s in Southern Europe. Data is from Tatsumi et al. (2011).

Ferrise et al. (2011) developed a probabilistic framework for evaluating the risk of durum wheat yield shortfall for the Mediterranean Basin. An artificial neural network, trained to emulate the outputs of a process-based crop growth model, was adopted to create yield response surfaces which were then overlaid with probabilistic projections of future temperature and precipitation changes in order to estimate probabilistic projections of future yields. To estimate the climatic risk of durum wheat shortfall in the next century, the future yield projections were compared with a critical threshold, calculated as the 30-year mean yield for the reference period (1961–1990). The climatic risk of durum wheat yield shortfall was then defined as the relative frequency of future yield projections below the threshold. Results were only presented as plotted maps of the spatial distribution of climatic risk of durum wheat shortfall (see Figure 3) but it is evident nonetheless that the projected probability of future yield being below the baseline is higher than 50% for most locations and time slices. Assuming crop yield probability distributions do not deviate much from normality it can be inferred that for most grid cells in Italy (and other Mediterranean countries) durum crop yield declines with climate change.

![Figure 3](image_url)

Figure 3. Spatial distribution of risk of durum wheat yield shortfall by: (a) 2010–2030, (b) 2030–2050, (c) 2050–2070 and (d) 2070–2090. Risk is defined as the relative frequency of future projected yields that are lower than the selected threshold (30-year mean yield for 1961-1990). Figure is from Ferrise et al. (2011).

The PESETA project estimated the impacts of climate change on crop yields for different regions in the EU (Ciscar et al., 2009, Iglesias et al., 2009). Climate scenarios were created
for the 2070-2100 time horizon using a combination of two GCMs and SRES emissions scenarios (A2 and B2). Crop yield simulations (winter wheat, spring wheat, rice, grassland, maize and soybeans) were then conducted using the DSSAT suite of crop models. The results for the “Southern Europe” region, which includes Italy and other countries, are displayed in Table 7. As mentioned previously, it should be noted that the projected yield changes may vary widely within a geographic region. The Southern Europe average is not fully representative for Italy. Nevertheless, the PESETA project includes useful maps that show projected changes in crop yield for each emissions scenario, from which impacts for Italy can be inferred (see Figure 4). These show that the projected crop yield change in Italy under the SRES A2 emissions scenario are more positive than for Southern Europe as a whole.

<table>
<thead>
<tr>
<th>2011-2040</th>
<th>2071-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2 ECHAM4</td>
<td>A2 HadAM3h</td>
</tr>
<tr>
<td>15</td>
<td>-12</td>
</tr>
<tr>
<td>B2 HadAM3h</td>
<td>A2 ECHAM4</td>
</tr>
<tr>
<td>0</td>
<td>-27</td>
</tr>
<tr>
<td>B2 ECHAM4</td>
<td>-4</td>
</tr>
</tbody>
</table>

Table 7. Projected crop yield changes (%), compared to 1961-1990 period for the “Southern Europe” region, which includes Italy. Data is from Ciscar et al. (2009).

Figure 4. Crop yield changes under the HadCM3/HIRHAM A2 and B2 scenarios for the period 2071 - 2100 and for the ECHAM4/RCA3 A2 and B2 scenarios for the period 2011 – 2040, compared to baseline. The figure is from (Iglesias et al., 2009), p.31.

Luck et al. (2011) reviewed the qualitative evidence of the impact of climate change on pathogens that cause disease of four major food crops: wheat, rice, soybean and potato. Limited data showed that the impact could be positive, negative or neutral, depending on the host–pathogen interaction. Quantitative analysis of climate change on pathogens of these
crops is largely lacking (Luck et al., 2011), and there are no known estimates for Italian crops, either from field or laboratory studies or from modelling-based assessments. This represents an important avenue for further research.

In addition to the studies looking at the effect of changes in climate and CO₂ concentrations on crop yield, Avnery et al. (2011) investigated the effects of ozone surface exposure on crop yield losses for soybeans, maize and wheat under the SRES A2 and B1 emissions scenarios. Two metrics of ozone exposure were investigated; seasonal daytime (08:00-19:59) mean O₃ (“M12”) and accumulated O₃ above a threshold of 40 ppbv (“AOT40”). The results for Italy are presented in Table 8.

<table>
<thead>
<tr>
<th></th>
<th>A2 M12</th>
<th>AOT40</th>
<th>B1 M12</th>
<th>AOT40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybeans</td>
<td>30-45</td>
<td>30-45</td>
<td>25-30</td>
<td>20-25</td>
</tr>
<tr>
<td>Maize</td>
<td>15-20</td>
<td>8-10</td>
<td>10-15</td>
<td>4-6</td>
</tr>
<tr>
<td>Wheat</td>
<td>2-4</td>
<td>25-30</td>
<td>0-2</td>
<td>15-20</td>
</tr>
</tbody>
</table>

Table 8. National relative crop yield losses (%) for 2030 under A2 and B1 emission scenarios according to the M12 (seasonal daytime (08:00–19:59) mean) and AOT40 (accumulated O₃ above a threshold of 40 ppbv) metrics of O₃ exposure. Data is from Avnery et al. (2011).

National-scale or sub-national scale assessments

Climate change studies

Included in this section are results from recent studies that have applied crop models, alongside meteorological models and information from global climate models, to produce national or sub-national scale projections of future crop yields in Italy.

Ferrara et al. (2010) linked a newly developed and calibrated micro-meteorological model for hilly terrain and plains in the Apulia region of Italy, to a crop growth simulation model to quantify how durum wheat production in hilly terrain and on plains respectively could be affected by climate change. Under baseline climate (1961-1990), weather yield reduction was significantly related to a function of slope and elevation index, which was associated with increased crop failure in drier elevated areas but not in wet years. For the 2080s, under both the SRES A2 and B2 emissions scenarios, Ferrara et al. (2010) found large declines in crop yields relative to baseline, with minimal differences between emissions scenarios. For hilly terrain, under both emissions scenarios, crop yields declined by 80%. For the plains, the decline was around 71% with both emissions scenarios.

Recent work (Mereu, 2010, Mereu et al., 2011) has applied the DSSAT suite of crop models (the same suite applied in the PESETA project (Ciscar et al., 2009, Iglesias et al., 2009)), to assess the potential impact of climate change and changing ambient carbon dioxide (CO₂)
levels on production and phenology for two of the most important varieties of durum wheat at four experimental sites in Sardinia (Southern Italy). The indirect CO2 effect (related to changed weather conditions) and the direct CO2 effect (CO2 fertilization effect), for three future time horizons were explored separately. In general, the results showed that considering the most pessimistic climate change scenario, the indirect effect of CO2 concentration is negative. The crop yield was projected to decrease by 2-6% for 2025, and by 10-18% for 2075, due in particular to the higher temperatures and more frequent droughts. On the other hand, considering both direct and indirect effects of CO2 concentration, wheat yield was projected to increase by 5-7% for 2025 and by 16-21% for 2075. This means that the positive fertilisation effect of increased CO2 concentration could be sufficient to offset the negative impact of indirect effects (Mereu, 2010). Moreover the DSSAT is able to take into account the effect of higher CO2 concentration on the improved WUE (Water Use Efficiency) of the crop, by reducing the stomatal conductance. The analyses undertaken shows that the shift of the ordinary sowing date could be a reliable and efficient adaptation strategy for wheat cultivation in this Mediterranean area. Indeed, an earlier planting date could produce an additional increase in wheat yield, reducing the negative effect on yield due to changed climate change conditions (Mereu, 2010, Mereu et al., 2011).

Mereu et al. (2008) present a study conducted for Italy that applied the Agro-Ecological Zoning (AEZ) methodology to the baseline climate time horizon of 1961–1990 and to climate change scenarios based on two GCMs (HadCM3 and CSIRO) and the SRES A2 and B2 scenarios. The research assessed land suitability and crop productivity for olive and wheat in Italy under rain-fed conditions. Under climate change, the Italian regional analyses of AEZ results indicated expansions of suitable land area for both crops and a decrease of area with severe constraints by the 2080s. In particular, lands suitable for wheat increased from 36% to 38% (with a decrease of no suitable area from 8% to 2%) in northern Italy, from 13% to 15% in central Italy and from 20% to 23% in the south. For olive, the major increase of suitable area was observed in northern Italy where lands suitable increase from 0.2 % to 24%, (in central Italy from 1% to 17% and in the south from 26% to 37%). Consequently, both SRES scenarios showed an increase of potential crop production in particular for olive (+69% in the central regions and +43% in the southern regions) but also for wheat (+19% in the North, +8% in central Italy and +14% in the south).

An integrated approach with multiple cross-sectoral impact analysis should be considered for a climate risk evaluation of Italian agriculture. In this respect, the Euro-Mediterranean Center for Climate Change (CMCC) is leading a project to integrate multiple factors in the evaluation of climate change impacts on agriculture.
AVOID programme results

To further quantify the impact of climate change on crops, the AVOID programme simulated the effect of climate change on the suitability of land for crop cultivation for all countries reviewed in this literature assessment based upon the patterns of climate change from 21 GCMs (Warren et al., 2010). This ensures a consistent methodological approach across all countries and takes consideration of climate modelling uncertainties.

Methodology

The effect of climate change on the suitability of land for crop cultivation is characterised here by an index which defines the percentage of cropland in a region with 1) a decrease in suitability or 2) an increase in suitability. A threshold change of 5% is applied here to characterise decrease or increase in suitability. The crop suitability index is calculated at a spatial resolution of 0.5°x0.5°, and is based on climate and soil properties (Ramankutty et al., 2002). The baseline crop suitability index, against which the future changes are measured, is representative of conditions circa 2000. The key features of the climate for the crop suitability index are temperature and the availability of water for plants. Changes in these were derived from climate model projections of future changes in temperature and precipitation, with some further calculations then being used to estimate actual and potential evapotranspiration as an indicator of water availability. It should be noted that changes in atmospheric CO₂ concentrations can decrease evapotranspiration by increasing the efficiency of water use by plants (Ramankutty et al., 2002), but that aspect of the index was not included in the analysis here. Increased CO₂ can also increase photosynthesis and improve yield to a small extent, but again these effects are not included. Exclusion of these effects may lead to an overestimate of decreases in suitability.

The index here is calculated only for grid cells which contain cropland circa 2000, as defined in the global crop extent data set described by Ramankutty et al. (2008) which was derived from satellite measurements. It is assumed that crop extent does not change over time. The crop suitability index varies significantly for current croplands across the world (Ramankutty et al., 2002), with the suitability being low in some current cropland areas according to this index. Therefore, while climate change clearly has the potential to decrease suitability for cultivation if temperature and precipitation regimes become less favourable, there is also scope for climate change to increase suitability in some existing cropland areas if conditions become more favourable in areas where the suitability index is not at its maximum value of 1. It should be noted that some areas which are not currently croplands may already be suitable for cultivation or may become suitable as a result of future climate change, and may
become used a croplands in the future either as part of climate change adaptation or changes in land use arising for other reasons. Such areas are not included in this analysis.

Results

Crop suitability was estimated under the pattern of climate change from 21 GCMs with two emissions scenarios; 1) SRES A1B and 2) an aggressive mitigation scenario where emissions follow A1B up to 2016 but then decline at a rate of 5% per year thereafter to a low emissions floor (denoted A1B-2016-5-L). The application of 21 GCMs is an attempt to quantify the uncertainty due to climate modelling, although it is acknowledged that only one crop suitability impacts model is applied. Simulations were performed for the years 2030, 2050, 2080 and 2100. The results for Italy are presented in Figure 5.

By 2030 in both emissions scenarios, all models projected 7% of current Italian cropland areas to undergo an improvement of suitability of cultivation. Over the 21st Century this changes only slightly for both scenarios, with the range of croplands showing improving suitability expanding to approximately 7%-9% by 2100.

For both scenarios, between 21% and 50% of current Italian croplands are projected to undergo declining suitability by 2030. By 2100 this rises to 27%-68% under the mitigation scenario and 45%-86% under A1B.

So, for Italy, the balance is more towards declining suitability than improving suitability in the early part of the 21st Century, and this increases further over time particularly in the A1B scenario.
Figure 5. Box and whisker plots for the impact of climate change on increased crop suitability (top panel) and decreased crop suitability (bottom panel) for Italy, from 21 GCMs under two emissions scenarios (A1B and A1B-2016-5-L), for four time horizons. The plots show the 25th, 50th, and 75th percentiles (represented by the boxes), and the maximum and minimum values (shown by the extent of the whiskers).
Food security

Headline

A number of global studies point towards a generally optimistic and positive outlook for the impact of climate change on food security in Italy. The country’s high adaptive capacity, and its ability to be able to afford to import food to offset potential deficits in production suggest it is likely to remain food secure over this century. However, an increased market of domestic consumption is currently developing in Italy and it could be difficult to change these perceptions and life styles in the future. The national economy of Italy presents a very low vulnerability to climate change impacts on fisheries.

Supporting literature

Introduction

Food security is a concept that encompasses more than just crop production, but is a complex interaction between food availability and socio-economic, policy and health factors that influence access to food, utilisation and stability of food supplies. In 1996 the World Food Summit defined food security as existing ‘when all people, at all times, have physical and economic access to sufficient, safe and nutritious food to meet their dietary needs, and their food preferences are met for an active and healthy life’ (World Food Summit, 1996).

As such this section cannot be a comprehensive analysis of all the factors that are important in determining food security, but does attempt to assess a selection of the available literature on how climate change, combined with projections of global and regional population and policy responses, may influence food security.

Assessments that include a global or regional perspective

Italy is not presently a country of high concern in terms of food security, particularly in a global context. According to the FAO’s Food Security Country Profiles (FAO, 2010) an extremely low proportion (<5%) of Italy’s population are currently undernourished.

A number of global studies point towards a generally optimistic and positive outlook for the impact of climate change on food security in Italy throughout the century, largely as a result
of Italy’s high adaptive capacity and its ability to be able to afford to import food to offset potential deficits in food production.

A study on food security by Wu et al. (2011) simulated crop yields with the GIS-based Environmental Policy Integrated Climate (EPIC) model. This was combined with crop areas simulated by a crop choice decision model to calculate total food production and per capita food availability across the globe, which was used to represent the status of food availability and stability. The study focussed on the SRES A1 scenario and applied climate change simulations for the 2000s (1991–2000) and 2020s (2011–2020). The climate simulations were performed by MIROC (Model for Interdisciplinary Research on Climate) version 3.2., which means the effects of climate model uncertainty were not considered. Downscaled population and GDP data from the International Institute for Applied Systems Analysis (IIASA) were applied in the simulations. The study concluded that Italy might be able to improve its food security situation due to either an increase in per capita food availability or an increase in the capacity to import food between 2000 and 2020. Moreover, the study suggests that Italy is not likely to face severe food insecurity in the next 20 years.

A global analysis of food security under climate change scenarios for the 2050s by Falkenmark et al. (2009) considered the importance of water availability for ensuring global food security. The study presented an analysis of water constraints and opportunities for global food production on current croplands and assessed five main factors:

1) how far improved land and water management might go towards achieving global food security,

2) the water deficits that would remain in regions currently experiencing water scarcity and which are aiming at food self-sufficiency,

3) how the water deficits above may be met by importing food,

4) the cropland expansion required in low income countries without the needed purchasing power for such imports, and

5) the proportion of that expansion pressure which will remain unresolved due to potential lack of accessible land.

Similar to the study presented by Wu et al. (2011), there is no major treatment of modelling uncertainty; simulations were generated by only the LPJml dynamic global vegetation and water balance model Gerten et al. (2004) with population growth and climate change under the SRES A2 emission scenario. Falkenmark et al. (2009) summarised the impacts of future
improvements (or lack thereof) in water productivity for each country across the globe and showed that this generates either a deficit or a surplus of water in relation to food water requirements in each country. These can be met either by trade or by horizontal expansion (by converting other terrestrial ecosystems to crop land). The study estimated that in 2050 around one third of the world’s population will live in each of three regions: those that export food, those that import food, and those that have to expand their croplands at the expense of other ecosystems because they do not have enough purchasing power to import their food. The simulations demonstrated that Italy was a food importing country in 2050.

The International Food Policy Research Institute (IFPRI) has produced a comprehensive report and online tool that describes the possible impact of climate change on two major indicators of food security; 1) the number of children aged 0-5 malnourished, and 2) the average daily kilocalorie availability (Nelson et al., 2010, IFPRI, 2010). The study considered three broad socio-economic scenarios; 1) a ‘pessimistic’ scenario, which is representative of the lowest of the four GDP growth rate scenarios from the Millennium Ecosystem Assessment GDP scenarios and equivalent to the UN high variant of future population change, 2) a ‘baseline’ scenario, which is based on future GDP rates estimated by the World Bank and a population change scenario equivalent to the UN medium variant, and 3) an ‘optimistic’ scenario that is representative of the highest of the four GDP growth rate scenarios from the Millennium Ecosystem Assessment GDP scenarios and equivalent to the UN low variant of future population change. Nelson et al. (2010) also considered climate modelling and emission uncertainty and included a factor to account for CO2 fertilisation in their work. The study applied two GCMs, the CSIRO GCM and the MIROC GCM, and forced each GCM with two SRES emissions scenarios (A1B and B1). They also considered a no climate change emissions scenario, which they called ‘perfect mitigation’ (note that in most other climate change impact studies that this is referred to as the baseline). The perfect mitigation scenario is useful to compare the effect of climate change against what might have happened without, but is not a realistic scenario itself. IFPRI have not published projections for child malnourishment in Italy but information on average daily kilocalorie availability has been made available. Table 9 displays the average daily kilocalorie availability simulated under different climate and socioeconomic scenarios for Italy and Figure 6 displays the effect of climate change, calculated by comparing the ‘perfect mitigation’ scenario with each baseline, optimistic and pessimistic scenario. While climate change by 2050 is attributable for up to a 7% decline in kilocalorie availability, the absolute value of available kilocalories remains high (above 3,000) under all scenarios, which suggests Italy may not face food security issues in 2050. Figure 7 shows how the changes projected for Italy compare with the projections for the rest of the globe (IFPRI, 2010).
<table>
<thead>
<tr>
<th>Scenario</th>
<th>2010</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline CSI A1B</td>
<td>3470</td>
<td>3525</td>
</tr>
<tr>
<td>Baseline CSI B1</td>
<td>3475</td>
<td>3551</td>
</tr>
<tr>
<td>Baseline MIR A1B</td>
<td>3453</td>
<td>3446</td>
</tr>
<tr>
<td>Baseline MIR B1</td>
<td>3463</td>
<td>3501</td>
</tr>
<tr>
<td>Baseline Perfect Mitigation</td>
<td>3507</td>
<td>3706</td>
</tr>
<tr>
<td>Pessimistic CSI A1B</td>
<td>3529</td>
<td>3147</td>
</tr>
<tr>
<td>Pessimistic CSI B1</td>
<td>3534</td>
<td>3168</td>
</tr>
<tr>
<td>Pessimistic MIR A1B</td>
<td>3511</td>
<td>3077</td>
</tr>
<tr>
<td>Pessimistic MIR B1</td>
<td>3518</td>
<td>3110</td>
</tr>
<tr>
<td>Pessimistic Perfect Mitigation</td>
<td>3567</td>
<td>3300</td>
</tr>
<tr>
<td>Optimistic CSI A1B</td>
<td>3466</td>
<td>3664</td>
</tr>
<tr>
<td>Optimistic CSI B1</td>
<td>3471</td>
<td>3685</td>
</tr>
<tr>
<td>Optimistic MIR A1B</td>
<td>3449</td>
<td>3576</td>
</tr>
<tr>
<td>Optimistic MIR B1</td>
<td>3455</td>
<td>3611</td>
</tr>
<tr>
<td>Optimistic Perfect Mitigation</td>
<td>3503</td>
<td>3847</td>
</tr>
</tbody>
</table>

Table 9. Average daily kilocalorie availability simulated under different climate and socioeconomic scenarios, for Italy (IFPRI, 2010).

Figure 6. The impact of climate change on average daily kilocalorie availability (IFPRI, 2010).
Figure 7. Average daily kilocalorie availability simulated by the CSIRO GCM (CSI) under an A1B emissions scenario and the baseline socioeconomic scenario, for 2010 (top panel), 2030 (middle panel) and 2050 (bottom panel). The figure is from IFPRI (IFPRI, 2010). The changes show the combination of both climate change and socio-economic changes.
It is important to note that up until recently, projections of climate change impacts on global food supply have tended to focus solely on production from terrestrial biomes, with the large contribution of animal protein from marine capture fisheries often ignored. However, recent studies have addressed this knowledge gap. In addition to the direct effects of climate change, changes in the acidity of the oceans, due to increases in CO$_2$ levels, could also have an impact of marine ecosystems, which could also affect fish stocks. However, this relationship is complex and not well understood, and studies today have not been able to begin to quantify the impact of ocean acidification on fish stocks.

Allison et al. (2009) present a global analysis that compares the vulnerability of 132 national economies to potential climate change impacts on their capture fisheries. The study considered a country’s vulnerability to be a function of the combined effect of projected climate change, the relative importance of fisheries to national economies and diets, and the national societal capacity to adapt to potential impacts and opportunities. Climate change projections from a single GCM under two emissions scenarios (SRES A1FI and B2) were used in the analysis. Allison et al. (2009) concluded that the national economy of Italy presented a very low vulnerability to climate change impacts on fisheries. In contrast, countries in Central and Western Africa (e.g. Malawi, Guinea, Senegal, and Uganda), Peru and Colombia in north-western South America, and four tropical Asian countries (Bangladesh, Cambodia, Pakistan, and Yemen) were identified as most vulnerable (see Figure 8). It should be noted, however, that results from studies that have applied only a single climate model or climate change scenario should be interpreted with caution. This is because they do not consider other possible climate change scenarios which could result in a different impact outcome, in terms of magnitude and in some cases sign of change.
There could be potential issues with food safety with climate change. For example, Watkiss et al. (2009) considered the impact of climate change on cases of temperature-related salmonella across Europe, although no national estimates were provided. The authors showed that by the 2071–2100 time horizon, under the SRES A2 scenario, the valuation of the average annual number of temperature-related cases of salmonella could increase by 142 to 284 million/year as a result of climate change in Europe. Taking under-reporting into account, these could be as large as 2.8 to 5.7 billion/year (5 % report level) or 14 to 28 billion (1 % report level). By the 2071-2100 time horizon, under the B2 scenario, Watkiss et al. (2009) showed that the valuation of the average annual number of temperature-related cases of salmonella could increase much less than under A2, by 89 to 177 million/year as a result of climate change in Europe. Taking under-reporting into account, these could be as large as 1.7 to 3.5 billion/year (5 % report level) or 8.9 to 17.7 billion (1 % report level).

National-scale or sub-national scale assessments

It should be noted that the general concept that any food losses could be compensated by increased importation (e.g. Falkenmark et al. (2009)) could be more difficult than expected. In recent years, there is a growing trend in Italian consumers’ perception on food importation and sustainability, with respect to climate change. Thus an increased market of domestic
consumption is currently developing and it could be difficult to change these perceptions and life styles in the future (Moresi and Valentini, 2010).

There are increasing concerns in Italy regarding food quality and nutritional status. Climate change impacts could affect not only quantity but also the quality of food. Some studies have demonstrated observed climate change impacts on food quality, particularly wine, which could have important influences on lifestyles and consumers expectation. For instance, Marta et al. (2010) analysed the phenological stages of the Sangiovese grapevine for the production of Nobile di Montepulciano wine in Italy. The authors showed that winter North Atlantic Oscillation (NAO) was negatively correlated with bud-break and flowering dates, while geopotential height at the 500 hPa level (GPH) of February–March, March–May and May–September were negatively correlated with bud-break, flowering and harvest dates, respectively. Similarly, Grifoni et al. (2006) showed that higher-quality Italian wines were obtained in years characterized by a reduction in rainfall and high temperature patterns, and Leone et al. (2010) showed that soil and climate independently affect quantitative and qualitative grape features in Italy, respectively.
Water stress and drought

Headline

For the purposes of this report droughts are considered to be extreme events at the lower bound of climate variability; episodes of prolonged absence or marked deficiency of precipitation. Water stress is considered as the situation where water stores and fluxes (e.g. groundwater and river discharge) are not replenished at a sufficient rate to adequately meet water demand and consumption.

Several recent studies are consistent in showing that the south of Italy is highly vulnerable to water stress and that the population exposed to water stress could increase with climate change. Recent droughts in the Po River Basin (north Italy) in 2003, 2005 and 2006, have highlighted that the north is susceptible to severe droughts. Recent work shows that water availability could increase in Alpine Italy, although experiments with multiple regional climate models (RCMs) indicate high uncertainty in this region due to the complex topography. Research by the AVOID programme demonstrates that simulations with multiple climate models show consensus that water stress could increase in Italy as a whole, throughout the 21st century. There is also consensus across studies that droughts could increase in frequency and magnitude with climate change, for Italy in general.

Supporting literature

Introduction

A number of impact model studies looking at water stress and drought for the present (recent past) and future (climate change scenario) have been conducted. These studies are conducted at global or national scale and include the application of global water 'availability' or 'stress' models driven by one or more climate change scenario from one or more GCM. The approaches variously include other factors and assumptions that might affect water availability, such as the impact of changing demographics and infrastructure investment, etc. These different models (hydrological and climate), assumptions and emissions scenarios mean that there are a range of water stress projections for Italy. This section summarises findings from these studies to inform and contextualise the analysis performed by the AVOID programme for this project. The results from the AVOID work and discussed in the next section.
Important knowledge gaps and key uncertainties which are applicable to Italy as well as at the global-scale, include; the appropriate coupling of surface water and groundwater in hydrological models, including the recharge process, improved soil moisture and evaporation dynamics, inclusion of water quality, inclusion of water management (Wood et al. 2011) and further refinement of the down-scaling methodologies used for the climate driving variables (Harding et al. 2011).

Assessments that include a global or regional perspective

Recent past

Recent research presented by Vörösmarty et al. (2010) describes the calculation of an ‘Adjusted Human Water Security Threat’ (HWS) indicator. The indicator is a function of the cumulative impacts of 23 biophysical and chemical drivers simulated globally across 46,517 grid cells representing 99.2 million km². With a digital terrain model at its base, the calculations in each of the grid boxes of this model take account of the multiple pressures on the environment, and the way these combine with each other, as water flows in river basins. The level of investment in water infrastructure is also considered. This infrastructure measure (the investment benefits factor) is based on actual existing built infrastructure, rather than on the financial value of investments made in the water sector, which is a very unreliable and incomplete dataset. The analysis described by Vörösmarty et al. (2010) represents the current state-of-the-art in applied policy-focussed water resource assessment. In this measure of water security, the method reveals those areas where this is lacking, which is a representation of human water stress. One drawback of this method is that no analysis is provided in places where there is ‘no appreciable flow’, where rivers do not flow, or only do so for such short periods that they cannot be reliably measured. This method also does not address places where water supplies depend wholly on groundwater or desalination, being piped in, or based on wastewater reuse. It is based on what is known from all verified peer reviewed sources about surface water resources as generated by natural ecosystem processes and modified by river and other hydraulic infrastructure (Vörösmarty et al., 2010).

Here, HWS is mapped for Italy using the methodology of Vörösmarty et al. (2010). The model applied operates at 50km resolution, so, larger countries appear to have smoother coverage than smaller countries, but all are mapped and calculated on the same scale, with the same data and model, and thus comparisons between places are legitimate. It is important to note that this analysis is a comparative one, where each place is assessed relative to the rest of the globe. In this way, this presents a realistic comparison of conditions.
across the globe. As a result of this, however, some places may seem to be less stressed than may be originally considered. One example is Australia, which is noted for its droughts and long dry spells, and while there are some densely populated cities in that country where water stress is a real issue, relative to the rest of the world, the measure suggests water stress (as measured by HWS defined by Vörösmarty et al. (2010)), is not a serious problem.

Figure 9 presents the results of this analysis for Italy. With the Alps and the Dolomite mountains, Italy has a good degree of water security in the North, and also in some central areas and a small part of the South. In other parts of the South, there are areas of high and moderately high water stress.

Figure 9. Present Adjusted Human Water Security Threat (HWS) for Italy, calculated following the method described by Vörösmarty et al. (2010).

Smakhtin et al. (2004) present a first attempt to estimate the volume of water required for the maintenance of freshwater-dependent ecosystems at the global scale. This total environmental water requirement (EWR) consists of ecologically relevant low-flow and high-flow components. The authors argue that the relationship between water availability, total use and the EWR may be described by the water stress indicator (WSI). If WSI exceeds 1.0, the basin is classified as "environmentally water scarce". In such a basin, the discharge has already been reduced by total withdrawals to such levels that the amount of water left in the
basin is less than EWR. Smaller index values indicate progressively lower water resources exploitation and lower risk of “environmental water scarcity.” Basins where WSI is greater than 0.6 but less than 1.0 are arbitrarily defined as heavily exploited or “environmentally water stressed” and basins where WSI is greater than 0.3 but less than 0.6 are defined as moderately exploited. In these basins, 0-40% and 40-70% of the utilizable water respectively is still available before water withdrawals come in conflict with the EWR. Environmentally “safe” basins are defined as those where WSI is less than 0.3. The global distribution of WSI for the 1961-1990 time horizon is shown in Figure 10. The results show that for the basins considered, Italy exhibits moderate water stress in the south but less in the north.

![Figure 10](image)

Figure 10. A map of the major river basins across the globe and the water stress indicator (WSI) for the 1961-1990 time horizon. The figure is from Smakhtin et al. (2004).

Climate change studies

Rockstrom et al. (2009) applied the LPJml vegetation and water balance model Gerten et al. (2004) to assess green-blue water (irrigation and infiltrated water) availability and requirements. The authors applied observed climate data from the CRU TS2.1 gridded dataset for a present-day simulation, and climate change projections from the HadCM2 GCM under the SRES A2 scenario to represent the climate change scenario for the year 2050. The study assumed that if water availability was less than 1,300m³/capita/year, then the country was considered to present insufficient water for food self-sufficiency. The simulations presented by Rockstrom et al. (2009) should not be considered as definitive, however, because the study only applied one climate model, which means climate modelling uncertainty was overlooked. The results from the two simulations are presented in Figure 11. Rockstrom et al. (2009) found that globally in 2050 and under the SRES A2 scenario, around
59% of the world’s population could be exposed to “blue water shortage” (i.e. irrigation water shortage), and 36% exposed to “green water shortages” (i.e. infiltrated rain shortage). India, Saudi Arabia, Republic of Korea, and Egypt were all found to be exposed to green-blue water stress by 2050. For Italy, Rockstrom et al. (2009) found that blue-green water availability was well above the 1,300m³/capita/year threshold in present conditions and under climate change. This indicates that at a national level, Italy’s blue-green water resource requirements should be met by 2050.

Figure 11. Simulated blue-green water availability (m³/capita/year) for present climate (top panel) and including both demographic and climate change under the SRES A2 scenario in 2050 (bottom panel). The study assumed that if water availability was less than 1,300m³/capita/year, then the country was considered to present insufficient water for food self-sufficiency. The figure is from Rockstrom et al. (2009).

Doll (2009) presents updated estimates of the impact of climate change on groundwater resources by applying a new version of the WaterGAP hydrological model. The study accounted for the number of people affected by changes in groundwater resources under climate change relative to present (1961-1990). To this end, the study provides an assessment of the vulnerability of humans to decreases in available groundwater resources (GWR). This indicator was termed the “Vulnerability Index” (VI), defined as; VI = -% change
GWR * Sensitivity Index (SI). The SI component was a function of three more specific sensitivity indicators that include an indicator of water scarcity (calculated from the ratio between consumptive water use to low flows), an indicator for the dependence upon groundwater supplies, and an indicator for the adaptive capacity of the human system. Doll (2009) applied climate projections from two GCMs (ECHAM4 and HadCM3) to WaterGAP, for two scenarios (SRES A2 and B2), for the 2050s. Figure 12 presents each of these four simulations respectively. There is variation across scenarios and GCMs but there is consensus that vulnerability is highest in the North African Mediterranean, western regions of South Africa, and north-eastern Brazil. For Italy, the ECHAM4 simulations display a high VI in the south of Italy, while for HadCM3 simulations it is only Sicily that is indicated as potentially being vulnerable to climate change induced reductions to groundwater resources.
Figure 12. Vulnerability index (VI) showing human vulnerability to climate change induced decreases of renewable groundwater resources (GWR) by the 2050s under two emissions scenarios for two GCMs. VI is only defined for areas with a GWR decrease of at least 10% relative to present (1961-1990). Also shown is VI for the Mediterranean region with ECHAM4 under A2 emissions. The figure is from Doll (2009).

Lehner et al. (2006) assessed the impact of climate change on European drought risk. The authors accounted for future human water use and assessed future flood and drought frequencies by applying the WaterGAP hydrological model, driven by climate projections from the HadCM3 and ECHAM4 GCMs, under a 1%/year CO₂ increase emissions scenario. The simulations are presented in Figure 13 and Figure 14. The results reflect the general consensus from other studies that southern and south-eastern Europe could experience
increased drought frequencies, leading to water stress. This in part due to increased water use but the impacts are much more pronounced and wide spread when climate change is factored in (Lehner et al., 2006). Long term projections indicate those drought events expected to occur once every 100 years could become much more frequent, to around every 40 years in the most extreme areas, including much of the Mediterranean. For Italy, both GCMs simulated that the current 100-year drought could be expected to occur more frequently with climate change, and more so with the HadCM3 GCM. Moreover, the results show that the 100-year drought could become more intense with climate change, increasing in intensity by over 25% from present magnitude.

The simulated increase in frequency and magnitudes of droughts for Italy, which are presented by Lehner et al. (2006), are supported by a more recent study presented by Giannakopoulos et al. (2009). The authors found increases in the number of dry days to the order of 2-3 weeks over Italy during the 2031-60 time horizon (compared to 1961-90), and also an increase in the longest dry spell, under a 2°C warming scenario.

Figure 13. Change in recurrence of 100-year droughts, based on comparisons between today’s climate and water use (1961–1990) and simulations for the 2020s and 2070s (ECHAM4 and HadCM3 GCMs), under a 1%/year CO₂ increase emissions scenario. The figure is from Lehner et al. (2006).
Feyen and Dankers (2009) also present a European-scale assessment of the impact of climate change on low flows. The authors show that in the frost-free season, streamflow droughts could become more severe and persistent over much of Italy by the end of this century. However, in the frost season, streamflow drought conditions were found to be of less importance under future climate conditions.

National-scale or sub-national scale assessments

Recent past

While Figure 9 demonstrates that northern Italy presents a relatively lower HWS threat than the south, recent drought events in the north have highlighted that river basins in north Italy are also highly vulnerable. For instance, Zanchettin et al. (2008) notes how since 1917, there have been at least five drought events that culminated in a discharge minimum below 300 m3/s; in 1938, 1949, 2003, 2005 and 2006; the latter event coinciding with the minimum daily discharge ever observed (168 m3/s, on 21 July 2006). It should also be noted that the coarse resolution of Figure 9 masks important sub-regional variability. For instance, in northern Italy, in particular the Po river basin, several water-rich areas such as the neighbourhood of the Lago Maggiore and Lago Como (the second and third largest water reservoirs in Italy) are classified as exposed to HWS threat in Figure 9. Similarly, parts of Piedmont, Lombardy and Emilia Romagna within the Po river basin show the same level of exposure to water stress than the South Italy. In addition, the large Italian islands (Sardinia and Sicily) that are currently considered to be experiencing water scarcity are excluded from
the analysis shown in Figure 9. Nevertheless, the limitations of the approach applied here, have been discussed previously.

Climate change studies

Several recent national-scale studies support findings from global- and regional-scale studies that climate change could be associated with more intense and frequent droughts and an increase in the population exposed to water stress in Italy. Coppola and Giorgi (2010) found that under the A2 emissions scenario, all of Italy is projected to undergo a substantial drying, with precipitation decreasing by about −10% to over −40% in summer. The authors concluded that hotter and drier summers could become more frequent with climate change. D’Agnostino et al. (2010) applied climate change projections from the HadCM2 GCM under a 1%/year CO2 increase emissions scenario to assess the impact of climate change on precipitation in the Candelaro catchment in southern Italy. The authors observed clear reductions in rainfall and increases in temperature. Applying these scenarios to a hydrological model, they observed a reduction by 2050 in groundwater recharge of 21-31% and runoff of 16-23%. Similarly, Senatore et al. (2011) investigated water availability under climate change scenarios for the Crati River basin of southern Italy. The authors applied climate projections from three RCMs for the 1961-1990 and 2070-2099 time horizons under the SRES A2 and A1B emissions scenarios. These two scenarios were associated with increases in temperature of 3.5°C and 3.9°C respectively, and decreases in cumulative annual precipitation of 9% and 21% respectively. The authors concluded that the “water stress period” is expected to increase by an average 15 days per annum, while mean runoff was projected to decrease between 25% and 41%. Reductions in water availability with climate change have also been simulated for the Arno River in central Italy (Burlando and Rosso, 2002).

Although recent droughts have highlighted the vulnerability of the Po River in the north, to drought, research also suggests that water availability might increase in Italian Alpine catchments. For instance, Groppelli et al. (2011) showed that future precipitation around the Oglio river in the Italian Alps could experience large average daily and yearly precipitation with climate change, together with an increase of the number of wet spells, particularly during spring and summer, and with an enhanced variability of precipitation. Moreover, in Italian mountain ranges, the importance of water from the Alps has emerged clearly during the latest dry summers, most notably in year 2003, when it offset some of the large declines in discharge for tributaries of the Po river (Bocchiola and Diolaiuti, 2010). However, Blenkinsop and Fowler (2007) noted large uncertainty across six RCMs, in simulated changes in droughts with duration of between 3-6 months, for the Brenta catchment in
northern Italy. All the RCMs exhibited poor skill in reproducing the annual distribution of mean precipitation in this region. This is because northern Italy has a highly variable precipitation regime due to the complex topography provided by the Alps to the north, the Apennines to the south and the Po Valley in the centre of this region (Molteni et al., 1983). Simulated changes in drought were highly dependent upon RCM (Blenkinsop and Fowler, 2007).

AVOID Programme Results

To further quantify the impact of climate change on water stress and the inherent uncertainties, the AVOID programme calculated water stress indices for all countries reviewed in this literature assessment based upon the patterns of climate change from 21 GCMs (Warren et al., 2010), following the method described by Gosling et al. (2010) and Arnell (2004). This ensures a consistent methodological approach across all countries and takes consideration of climate modelling uncertainties.

Methodology

The indicator of the effect of climate change on exposure to water resources stress has two components. The first is the number of people within a region with an increase in exposure to stress, calculated as the sum of 1) people living in water-stressed watersheds with a significant reduction in runoff due to climate change and 2) people living in watersheds which become water-stressed due to a reduction in runoff. The second is the number of people within a region with a decrease in exposure to stress, calculated as the sum of 1) people living in water-stressed watersheds with a significant increase in runoff due to climate change and 2) people living in watersheds which cease to be water-stressed due to an increase in runoff. It is not appropriate to calculate the net effect of “increase in exposure” and “decrease in exposure”, because the consequences of the two are not equivalent. A water-stressed watershed has an average annual runoff less than 1000 m3/capita/year, a widely used indicator of water scarcity. This indicator may underestimate water stress in watersheds where per capita withdrawals are high, such as in watersheds with large withdrawals for irrigation.

Average annual runoff (30-year mean) is simulated at a spatial resolution of 0.5x0.5° using a global hydrological model, MacPDM (Gosling and Arnell, 2011), and summed to the watershed scale. Climate change has a “significant” effect on average annual runoff when the change from the baseline is greater than the estimated standard deviation of 30-year mean annual runoff: this varies between 5 and 10%, with higher values in drier areas.
The pattern of climate change from 21 GCMs was applied to MacPDM, under two emissions scenarios; 1) SRES A1B and 2) an aggressive mitigation scenario where emissions follow A1B up to 2016 but then decline at a rate of 5% per year thereafter to a low emissions floor (denoted A1B-2016-5-L). Both scenarios assume that population changes through the 21st century following the SRES A1 scenario as implemented in IMAGE 2.3 (van Vuuren et al., 2007). The application of 21 GCMs is an attempt to quantify the uncertainty due to climate modelling, although it is acknowledged that only one impacts model is applied (MacPDM). Simulations were performed for the years 2030, 2050, 2080 and 2100. Following Warren et al. (2010), changes in the population affected by increasing or decreasing water stress represent the additional percentage of population affected due to climate change, not the absolute change in the percentage of the affected population relative to present day.

Results

The results for Italy are presented in Figure 15. They show that no GCMs simulate any of the population experiencing a decrease in exposure to water stress for any time horizon. However, by 2100 under A1B, between 15-50% of the population could be exposed to an increase in water stress. This may be reduced slightly in the climate change mitigation scenario.
Figure 15. Box and whisker plots for the impact of climate change on increased water stress (top panel) and decreased water stress (bottom panel) in Italy, from 21 GCMs under two emissions scenarios (A1B and A1B-2016-5-L), for four time horizons. The plots show the 25th, 50th, and 75th percentiles (represented by the boxes), and the maximum and minimum values (shown by the extent of the whiskers).
Pluvial flooding and rainfall

Headline

A comprehensive assessment of climate change projections over Italy found a decrease in summer precipitation (up to 40% in places) with climate change, and a dipolar change pattern in winter (increase to the north, decrease to the south). However, this study, along with larger-scale assessments, suggests that large uncertainties remain.

Supporting literature

Introduction

Pluvial flooding can be defined as flooding derived directly from heavy rainfall, which results in overland flow if it is either not able to soak into the ground or exceeds the capacity of artificial drainage systems. This is in contrast to fluvial flooding, which involves flow in rivers either exceeding the capacity of the river channel or breaking through the river banks, and so inundating the floodplain. Pluvial flooding can occur far from river channels, and is usually caused by high intensity, short-duration rainfall events, although it can be caused by lower intensity, longer-duration events, or sometimes by snowmelt. Changes in mean annual or seasonal rainfall are unlikely to be good indicators of change in pluvial flooding; changes in extreme rainfall are of much greater significance. However, even increases in daily rainfall extremes will not necessarily result in increases in pluvial flooding, as this is likely to be dependent on the sub-daily distribution of the rainfall as well as local factors such as soil type, antecedent soil moisture, land cover (especially urbanisation), capacity and maintenance of artificial drainage systems etc. It should be noted that both pluvial and fluvial flooding can potentially result from the same rainfall event.

Assessments that include a global or regional perspective

Climate change studies

The IPCC AR4 (2007a) noted that annual precipitation is very likely to decrease in most of the Mediterranean area. The annual number of precipitation days is very likely to decrease in the Mediterranean area and the risk of summer drought is likely to increase (IPCC, 2007a). Extreme short-term precipitation may either increase (due to the increased water vapour
content of a warmer atmosphere) or decrease (due to a decreased number of precipitation days, which if acting alone could also make heavy precipitation less common) (IPCC, 2007a).

More recently, Bates et al. (2008) note that for Europe, using various scenarios based on the ECHAM4 and HadCM3 GCMs, in the 2020s, an increased risk of flash floods over the whole of Europe is possible. In contrast, Beniston et al. (2007) found that heavy winter precipitation decreased in the south of Europe with climate change and also decreased strongly in the summer. These changes, which were weaker for the B2 emissions scenario than for the A2 emissions scenario, were more robust in winter than in summer and reflect changes in mean precipitation. However, model choices had greater effects on the magnitude (RCM) and pattern (GCM) of response than the choice of emissions scenario. Analysing projections under the A2 and B2 scenarios from an ensemble of RCMs, they found that changes in maximum 5-day rainfall (R5d) simulated under the B2 scenario were smaller than those simulated under the A2 scenario in two cases, and similar in the other two cases. Over the Mediterranean land areas, however, R5d decreased as well as mean precipitation in some model experiments. In parts of southern Europe, projected summer changes in maximum 1-day rainfall (R1d) ranged between -60 and +10%. In most cases the declines were smaller for the B2 scenario than the A2 scenario.

Goubanova and Li (2007) used a variable grid atmospheric GCM with a zoom over the Mediterranean region run with the A2 emissions scenario. They found that projections for the 21st Century showed an increase in precipitation extremes and variability over the Mediterranean region in winter, spring and autumn seasons. This is despite an overall decrease in mean precipitation.

National-scale or sub-national scale assessments

Copolla and Giorgi (2010) conducted a comprehensive assessment of climate change projections over Italy. They undertook an assessment of climate projections for the 21st century from global and regional modelling experiments. They considered the A2, A1B, B2 and B1 emissions scenarios. The authors found a decrease in summer precipitation (up to 40% in places), and a dipolar change pattern in winter (increase to the north, decrease to the south); see Figure 16. Copolla and Giorgi (2010) found an increase in very dry and very wet seasons. The magnitude of change depended on the emissions scenario, with the greatest scenario dependence observed in summer. Magnitude of change was generally largest with the A2 scenario, and lowest with the B1 scenario.
Figure 16. GCM precipitation anomaly trend over northern Italy (NI, land only) for DJF, MAM, JJA and SON [panels (a), (b), (c), (d), respectively]. The blue lines are 20-year running mean individual twentieth century model simulations; the cyan line is the twentieth century ensemble average mean. The black line reports observations. The yellow, green and red lines are the 20 year running mean of individual B1, A1B and A2 scenario simulations, respectively; the magenta, thick green and thick red lines are the B1, A1B and A2 ensemble average values, respectively. The figure is from Copolla and Giorgi (2010).
Fluvial flooding

Headline

Because of its geography, Italy is usually not well represented in global modelling studies of future changes in flood hazard. The few studies which are of relevance to Italy suggest an increase in extreme flood levels across Italy, and a reduction in average annual flows. Projections of future changes in flood hazard are, however, subject to large uncertainties due to large natural variability and large uncertainties in the simulated climate signal. Simulations by the AVOID programme, based on 21 GCMs, support this, although a majority of the models show a tendency towards decreasing flood risk. Future assessments should focus on a reduction of the systematic biases that can occur in climate model data, and on quantifying the uncertainties, for example by creating probabilistic scenarios based on larger ensembles of RCM simulations.

Supporting literature

Introduction

This section summarises findings from a number of post IPCC AR4 assessments on river flooding in Italy to inform and contextualise the analysis performed by the AVOID programme for this project. The results from the AVOID work are discussed in the next section.

Fluvial flooding involves flow in rivers either exceeding the capacity of the river channel or breaking through the river banks, and so inundating the floodplain. A complex set of processes is involved in the translation of precipitation into runoff and subsequently river flow (routing of runoff along river channels). Some of the factors involved are; the partitioning of precipitation into rainfall and snowfall, soil type, antecedent soil moisture, infiltration, land cover, evaporation and plant transpiration, topography, groundwater storage. Determining whether a given river flow exceeds the channel capacity, and where any excess flow will go, is also not straightforward, and is complicated by the presence of artificial river embankments and other man-made structures for example. Hydrological models attempt to simplify and conceptualise these factors and processes, to allow the simulation of runoff and/or river flow under different conditions. However, the results from global-scale hydrological modelling need to be interpreted with caution, especially for smaller regions,
due to the necessarily coarse resolution of such modelling and the assumptions and simplifications this entails (e.g. a 0.5° grid corresponds to landscape features spatially averaged to around 50-55km for mid- to low-latitudes). Such results provide a consistent, high-level picture, but will not show any finer resolution detail or variability. Smaller-scale or catchment-scale hydrological modelling can allow for more local factors affecting the hydrology, but will also involve further sources of uncertainty, such as in the downscaling of global climate model data to the necessary scale for the hydrological models. Furthermore, the application of different hydrological models and analysis techniques often makes it difficult to compare results for different catchments.

Assessments that include a global or regional perspective

Climate change studies

Climate change projections over the Italian peninsula for the 21st century generally project an increase in the occurrence of both very dry (drought prone) and very wet (flood prone) seasons (Coppola and Giorgi, 2010). However, because of its geography, Italy is usually not well represented in global modelling studies of future changes in flood hazard.

A European-scale study by Dankers and Feyen (2008), which applied a very high resolution (~12 km) RCM to drive a flood forecasting model showed a very strong increase (locally more than +40%) in the 100-year flood level of the Po river in Northern Italy by the end of the century (2071-2100) under the SRES A2 emissions scenario. This suggests an increase in the magnitude of future extreme floods, but also means that discharge levels that have a low probability of occurrence under historical climate conditions could occur more frequently with climate change. For the Po river, the projected future return period of a 100-year flood was less than 20 years. Less strong increases in extreme flood levels were also found in several other rivers on the Italian peninsula.

In a follow-up study, which applied an ensemble of two RCMs, each run with boundary conditions from two different global models and for two different emission scenarios, Dankers and Feyen (2009) found the projected increase in extreme flood levels in the Po river and several other rivers in central Italy to be robust, occurring in a large majority of the model experiments the conducted. Interestingly there was also little difference between the two emission scenarios, meaning the rise in the 100-year flood level in the Po occurred under both the A2 and B2 scenarios. Some of the changes in simulated flood hazard may partly be attributed to large, decadal-scale variability in the simulated climate, although this effect seemed smaller in the Po than in other major European river basins.
As highlighted by Dankers and Feyen (2009), projections of future changes in flood hazard are subject to large uncertainties due to large natural variability and large uncertainties in the simulated climate signal. Future assessments should focus on a reduction of the systematic biases that can occur in climate model data and on quantifying the uncertainties, for example by creating probabilistic scenarios based on larger ensembles of RCM simulations.

National-scale or sub-national scale assessments

Climate change studies

In a modelling study of the Crati River Basin in Southern Italy, Senatore et al. (2011), applied climate change simulations from three RCMs for two emission scenarios (A2 and A1B) to a hydrological model. They found an overall reduction in river flow by the end of the century (2070-2099), in line with a general drying and warming of the climate. Also the mean flow rate of relatively frequent flood peaks decreased, but the decrease in the frequency of exceptional floods was much lower, with peak flows often higher in the future time horizons.

AVOID programme results

To quantify the impact of climate change on fluvial flooding and the inherent uncertainties, the AVOID programme calculated an indicator of flood risk for all countries reviewed in this literature assessment based upon the patterns of climate change from 21 GCMs (Warren et al., 2010). This ensures a consistent methodological approach across all countries and takes consideration of climate modelling uncertainties.

Methodology

The effect of climate change on fluvial flooding is shown here using an indicator representing the percentage change in average annual flood risk within a country, calculated by assuming a standardised relationship between flood magnitude and loss. The indicator is based on the estimated present-day (1961-1990) and future flood frequency curve, derived from the time series of runoff simulated at a spatial resolution of 0.5°x0.5° using a global hydrological model, MacPDM (Gosling and Arnell, 2011). The flood frequency curve was combined with a generic flood magnitude–damage curve to estimate the average annual flood damage in each grid cell. This was then multiplied by grid cell population and summed across a region, producing in effect a population-weighted average annual damage. Flood damage is thus assumed to be proportional to population in each grid cell, not the value of exposed assets, and the proportion of people exposed to flood is assumed to be constant across each grid cell (Warren et al., 2010).
The national values are calculated across major floodplains, based on the UN PREVIEW Global Risk Data Platform (preview.grid.unep.ch). This database contains gridded estimates, at a spatial resolution of 30 arc-seconds (0.00833°x0.00833°), of the estimated frequency of flooding. From this database the proportion of each 0.5°x0.5° grid cell defined as floodplain was determined, along with the numbers of people living in each 0.5°x0.5° grid cell in flood-prone areas. The floodplain data set does not include “small” floodplains, so underestimates actual exposure to flooding. The pattern of climate change from 21 GCMs was applied to MacPDM, under two emissions scenarios; 1) SRES A1B and 2) an aggressive mitigation scenario where emissions follow A1B up to 2016 but then decline at a rate of 5% per year thereafter to a low emissions floor (denoted A1B-2016-5-L). Both scenarios assume that population changes through the 21st century following the SRES A1 scenario as implemented in IMAGE 2.3 (van Vuuren et al., 2007). The application of 21 GCMs is an attempt to quantify the uncertainty due to climate modelling, although it is acknowledged that only one impacts model is applied (MacPDM). Simulations were performed for the years 2030, 2050, 2080 and 2100. The result represents the change in flood risk due to climate change, not the change in flood risk relative to present day (Warren et al., 2010).

Results

The results for Italy are presented in Figure 17. By the 2030s, the models project a range of changes in mean fluvial flooding risk over Italy in both scenarios, with some models projecting decreases and others increases. However, the balance is more towards lower flood risk, with nearly three quarters of the models projecting a decrease. The largest decrease projected for the 2030s is about −40%, and the largest increase is +20%. The mean across all projections is a decrease in the annual average flood risk of approximately 18%.

By 2100 the model projections become more balanced between increased and decreased flood risk in both scenarios, and the difference in projections from the different models also becomes greater. Both these aspects of the results are more pronounced for the A1B scenario than the mitigation scenario. Under the mitigation scenario, a majority of the models still project a decline in flood risk (down to approximately −50%), but several models project increased flood risk. The mean of all projections is a decrease in flood risk of 18%, while the upper projection is a 22% increase. Under the A1B scenario, more than half the models project a decline in flood risk (down to −75%), but a considerable number projects an increase instead. The largest projected increase is approximately +100%, with the mean of all projections being a decrease in the average annual flood risk of 10%.
So for Italy, the models show a greater tendency towards decreasing flood risk at first, but later in the century the models become more evenly divided between increases and decreases, although a majority still projects a decline. The differences between the model projections are greater later in the Century and particularly for A1B, with a small number of models projecting large increases in Italian flood risk.

Figure 17. Box and whisker plots for the percentage change in average annual flood risk within Italy, from 21 GCMs under two emissions scenarios (A1B and A1B-2016-5-L), for four time horizons. The plots show the 25th, 50th, and 75th percentiles (represented by the boxes), and the maximum and minimum values (shown by the extent of the whiskers).
Tropical cyclones

This country is not impacted by tropical cyclones.
Coastal regions

Headline

A number of global-scale impacts modelling studies suggest that Italy may not face severe future Sea Level Rise (SLR) related impacts, provided adaptation measures such as raising of flood dykes and the application of beach nourishment are implemented. For example, one study found that by the 2080s under a high SLR scenario and without adaptation, the average annual number of people flooded in Italy could be around 513,000 - with adaptation this was around 2,300.

Assessments that include a global or regional perspective

The IPCC AR4 concluded that at the time, understanding was too limited to provide a best estimate or an upper bound for global SLR in the twenty-first century (IPCC, 2007b). However, a range of SLR, excluding accelerated ice loss effects was published, ranging from 0.19m to 0.59m by the 2090s (relative to 1980-2000), for a range of scenarios (SRES A1FI to B1). The IPCC AR4 also provided an illustrative estimate of an additional SLR term of up to 17cm from acceleration of ice sheet outlet glaciers and ice streams, but did not suggest this is the upper value that could occur. Although there are published projections of SLR in excess of IPCC AR4 values (Nicholls et al., 2011), many of these typically use semi-empirical methods that suffer from limited physical validity and further research is required to produce a more robust estimate. Linking sea level rise projections to temperature must also be done with caution because of the different response times of these two climate variables to a given radiative forcing change.

Nicholls and Lowe (2004) previously showed that mitigation alone would not avoid all of the impacts due to rising sea levels, adaptation would likely be needed too. Recent work by van Vuuren et al. (2011) estimated that, for a world where global mean near surface temperatures reach around 2°C by 2100, global mean SLR could be 0.49m above present levels by the end of the century. Their sea level rise estimate for a world with global mean temperatures reaching 4°C by 2100 was 0.71m, suggesting around 40% of the future increase in sea level to the end of the 21st century could be avoided by mitigation. A qualitatively similar conclusion was reached in a study by Pardaens et al. (2011), which examined climate change projections from two GCMs. They found that around a third of global-mean SLR over the 21st century could potentially be avoided by a mitigation scenario under which global-mean surface air temperature is near-stabilised at around 2°C relative to
pre-industrial times. Under their baseline business-as-usual scenario the projected increase in temperature over the 21st century is around 4°C, and the sea level rise range is 0.29-0.51m (by 2090-2099 relative to 1980-1999; 5% to 95% uncertainties arising from treatment of land-based ice melt and following the methodology used by the IPCC AR4). Under the mitigation scenario, global mean SLR in this study is projected to be 0.17-0.34m.

The IPCC 4th assessment (IPCCa) followed Nicholls and Lowe (2004) for estimates of the numbers of people affected by coastal flooding due to sea level rise. Nicholls and Lowe (2004) projected for the north Mediterranean region that an additional 200 thousand people per year could be flooded due to sea level rise by the 2080s relative to the 1990s for the SRES A2 Scenario (note this region also includes other countries, such as Greece and Turkey). However, it is important to note that this calculation assumed that protection standards increased as GDP increased, although there is no additional adaptation for sea level rise. More recently, Nicholls et al. (2011) also examined the potential impacts of sea level rise in a scenario that gave around 4°C of warming by 2100. Readings from Figure 3 from Nicholls et al. (2011) for the north Mediterranean region suggest that less than an approximate 100 thousand additional people per year could be flooded for a 0.5 m SLR (assuming no additional protection). Nicholls et al. (2011) also looked at the consequence of a 2m SLR by 2100, however as we consider this rate of SLR to have a low probability we don’t report these figures here.

The European Commission (2009) assessed the vulnerability of several European countries to SLR. The study showed that less than 5% of Italy’s coastline is comprised of 10km long stretches that are below 5m elevation and that 1,704km is subject to erosion. The study also calculated that 42% of GDP is located within 50km of the coast and that 59% of the country’s population live within this zone. Whilst these results suggest high vulnerability, a number of global-scale impacts modelling studies suggest that Italy may not face severe future SLR-related impacts, provided adaptation measures are in place (European Commission, 2009, Hanson et al., 2010).

Recent results from the PESETA (Projection of Economic impacts of climate change in Sectors of the European Union based on boTtom-up Analysis) project have afforded consistent quantitative projections of the impact of SLR for several European countries (Richards and Nicholls, 2009). These are advantageous because previous European assessments have tended to be more qualitative in nature (Nicholls, 2000). Five of the countries considered by Richards and Nicholls (2009) are relevant to this literature assessment, France, Germany, Italy, Spain and the UK. The results show that while Europe is potentially highly threatened by SLR, adaptation (in the form of the two protection options
considered) can greatly reduce these impacts to levels which appear manageable. The adaptation methods and costs assessed were the raising of flood dykes and the application of beach nourishment. Richards and Nicholls (2009) show that there are almost immediate benefits of adaptation, and the analysis suggests that widespread adaptation to SLR across Europe could be prudent. The assessment considered SLR projections from two GCMs, ECHAM4 and HadCM3. For each of these, SLR estimates for low, medium and high climate sensitivities were applied, and under the A2 and B2 emissions scenarios. To further quantify uncertainty, the upper and lower estimates of global SLR from the IPCC Third Assessment Report (IPCC, 2001) were also applied. The estimates of global SLR considered by Richards and Nicholls (2009) are summarised in Table 10.

<table>
<thead>
<tr>
<th>GCM</th>
<th>ECHAM4</th>
<th>HadCM3</th>
<th>IPCC TAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate sensitivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>29.2</td>
<td>22.6</td>
<td>25.3</td>
</tr>
<tr>
<td>Medium</td>
<td>43.8</td>
<td>36.7</td>
<td>40.8</td>
</tr>
<tr>
<td>High</td>
<td>58.5</td>
<td>50.8</td>
<td>56.4</td>
</tr>
</tbody>
</table>

Table 10. Global SLR (cm) for low, medium and high climate sensitivities at 2100, for the A2 and B2 SRES scenarios, that were applied by Richards and Nicholls (2009).

Given that the IPCC TAR estimates of SLR encompass the full range of uncertainty that Richards and Nicholls (2009) considered, impacts for the IPCC TAR low and high scenarios are presented in Table 11. The results show that by the 2080s under the high SLR scenario and without adaptation, the average annual number of people flooded is around 513,000. This is greatly reduced with adaptation, to around 2,300. Under the low SLR scenario, 3,300 people are flooded annually without adaptation and 1,500 are flooded with adaptation. The results highlight the importance of climate sensitivity in determining the impacts as well as demonstrating clear potential benefits of adaptive measures, which by the 2080s can almost completely remove any incremental climate change effect.
<table>
<thead>
<tr>
<th>Country</th>
<th>Indicator</th>
<th>Baseline (1995)</th>
<th>IPCC A2 2020s Low SLR</th>
<th>IPCC A2 2020s High SLR</th>
<th>IPCC A2 2080s Low SLR</th>
<th>IPCC A2 2080s High SLR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No adaptation</td>
<td>With adaptation</td>
<td>No adaptation</td>
<td>With adaptation</td>
<td>No adaptation</td>
</tr>
<tr>
<td>France</td>
<td>Total damage costs (millions €/year)</td>
<td>253.2</td>
<td>362.7</td>
<td>228.8</td>
<td>434.9</td>
<td>291.7</td>
</tr>
<tr>
<td></td>
<td>Land loss (submergence) (km²/year)</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Migration due to land loss (1000s of people/year)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Net loss of wetland area (km²/year)</td>
<td>12.4</td>
<td>300.7</td>
<td>300.7</td>
<td>688.7</td>
<td>688.7</td>
</tr>
<tr>
<td></td>
<td>People actually flooded (1000s/year)</td>
<td>1.96</td>
<td>2.4</td>
<td>2.0</td>
<td>2.9</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Salinity intrusion costs (millions €/year)</td>
<td>135.85</td>
<td>145.3</td>
<td>145.3</td>
<td>153.5</td>
<td>153.5</td>
</tr>
<tr>
<td>Germany</td>
<td>Total damage costs (millions €/year)</td>
<td>428.1</td>
<td>473.7</td>
<td>398.9</td>
<td>590.3</td>
<td>448.3</td>
</tr>
<tr>
<td></td>
<td>Land loss (submergence) (km²/year)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Migration due to land loss (1000s of people/year)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Net loss of wetland area (km²/year)</td>
<td>0.3</td>
<td>146.4</td>
<td>146.4</td>
<td>418.3</td>
<td>418.3</td>
</tr>
<tr>
<td></td>
<td>People actually flooded (1000s/year)</td>
<td>2.23</td>
<td>2.6</td>
<td>2.3</td>
<td>3.7</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Salinity intrusion costs (millions €/year)</td>
<td>274.78</td>
<td>240.8</td>
<td>240.8</td>
<td>251.2</td>
<td>251.2</td>
</tr>
<tr>
<td></td>
<td>Total damage costs (millions €/year)</td>
<td>Land loss (submergence) (km²/year)</td>
<td>Migration due to land loss (1000s of people/year)</td>
<td>Net loss of wetland area (km²/year)</td>
<td>People actually flooded (1000s/year)</td>
<td>Salinity intrusion costs (millions €/year)</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total damage costs (millions €/year)</td>
<td>8.5</td>
<td>18.5</td>
<td>6.6</td>
<td>271.9</td>
<td>7.1</td>
<td>444.2</td>
</tr>
<tr>
<td>Land loss (submergence) (km²/year)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Migration due to land loss (1000s of people/year)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Net loss of wetland area (km²/year)</td>
<td>9.6</td>
<td>78.2</td>
<td>78.2</td>
<td>155.5</td>
<td>155.5</td>
<td>221.8</td>
</tr>
<tr>
<td>People actually flooded (1000s/year)</td>
<td>1.49</td>
<td>1.9</td>
<td>1.5</td>
<td>3.1</td>
<td>1.6</td>
<td>3.3</td>
</tr>
<tr>
<td>Salinity intrusion costs (millions €/year)</td>
<td>5.84</td>
<td>6.4</td>
<td>6.4</td>
<td>6.7</td>
<td>6.7</td>
<td>9.2</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total damage costs (millions €/year)</td>
<td>15.3</td>
<td>23.6</td>
<td>9.4</td>
<td>55.6</td>
<td>14.5</td>
<td>75.6</td>
</tr>
<tr>
<td>Land loss (submergence) (km²/year)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Migration due to land loss (1000s of people/year)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Net loss of wetland area (km²/year)</td>
<td>0.2</td>
<td>64.4</td>
<td>64.4</td>
<td>174.3</td>
<td>174.3</td>
<td>242.5</td>
</tr>
<tr>
<td>People actually flooded (1000s/year)</td>
<td>0.73</td>
<td>0.9</td>
<td>0.7</td>
<td>1.3</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Salinity intrusion costs (millions €/year)</td>
<td>0.92</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>2020s</td>
<td>2080s</td>
<td>1995</td>
<td>2020s</td>
<td>2080s</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>UK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total damage costs (millions €/year)</td>
<td>189.5</td>
<td>414.2</td>
<td>50.1</td>
<td>743.5</td>
<td>136.4</td>
<td>6.3</td>
</tr>
<tr>
<td>Land loss (submergence) (km²/year)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Migration due land loss (1000s of people/year)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Net loss of wetland area (km²/year)</td>
<td>8.5</td>
<td>175.1</td>
<td>175.1</td>
<td>522.6</td>
<td>789.4</td>
<td>789.4</td>
</tr>
<tr>
<td>People actually flooded (1000s/year)</td>
<td>4.85</td>
<td>5.7</td>
<td>4.4</td>
<td>6.1</td>
<td>4.9</td>
<td>6.8</td>
</tr>
<tr>
<td>Salinity intrusion costs (millions €/year)</td>
<td>2.32</td>
<td>2.5</td>
<td>2.5</td>
<td>2.8</td>
<td>2.8</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Table 11. Estimates of the impact of SLR with the low and high estimates of SLR from the IPCC TAR in the 2020s and 2080s, and assuming no adaptation or adaptation. Baseline impacts (1995) are also presented. Data is from Richards and Nicholls (2009).
Hanson et al. (2010) present a global-scale analysis of the impact of SLR on coasts and include port city estimates for Italy. The study investigated port city population exposure to global SLR, natural and human subsidence/uplift, and more intense storms and higher storm surges, for 136 port cities across the globe. Future city populations were calculated using global population and economic projections, based on the SRES A1 scenario up to 2030. The study accounted for uncertainty on future urbanization rates, but estimates of population exposure were only presented for a rapid urbanisation scenario, which involved the direct extrapolation of population from 2030 to 2080. All scenarios assumed that new inhabitants of cities in the future will have the same relative exposure to flood risk as current inhabitants. The study is similar to a later study presented by Hanson et al. (2011) except here, different climate change scenarios were considered, and published estimates of exposure are available for more countries, including Italy. Future water levels were generated from temperature and thermal expansion data related to greenhouse gas emissions with SRES A1B (un-mitigated climate change) and under a mitigation scenario where emissions peak in 2016 and decrease subsequently at 5% per year to a low emissions floor (2016-5-L). Table 12 shows the aspects of SLR that were considered for various scenarios and Table 13 displays regional population exposure for each scenario in the 2030s, 2050s and 2070s. The results show that port cities in Italy receive a minor coastal impact from SLR and of the countries considered in this literature assessment, presents the lowest impacts for any European country (Table 13). This is partly because only one Italian port city was considered in the analysis. The effect of climate change is observed by comparing the projections in Table 13 with the estimates for exposure in the absence of climate change that is presented in Table 14. At present, 2,000 people in port cities are exposed to SLR in Italy. By the 2070s in the absence of climate change 4,000 are exposed. With climate change in the 2070s, 6,000 people in port cities are exposed under the FAC (Future City All Changes) scenario. Hanson et al. (2010) also demonstrated that aggressive mitigation scenario could not avoid any exposure in Italy, relative to un-mitigated climate change (see Table 14).
<table>
<thead>
<tr>
<th>Scenario Code</th>
<th>Description</th>
<th>Water Levels</th>
<th>Climate</th>
<th>Subsidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>More intense storms</td>
<td>Sea-level change</td>
</tr>
<tr>
<td>FNC</td>
<td>Future city</td>
<td>V</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FRS LC</td>
<td>Future City Sea-Level Change</td>
<td>V</td>
<td>V</td>
<td>X</td>
</tr>
<tr>
<td>FCC</td>
<td>Future City Climate Change</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>FAC</td>
<td>Future City All Changes</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
</tbody>
</table>

Table 12. Summary of the aspects of SLR considered by Hanson et al. (2010). ‘V’ denotes that the aspect was considered in the scenario and ‘x’ that it was not.
<table>
<thead>
<tr>
<th>Country</th>
<th>Ports</th>
<th>Water level projection</th>
<th></th>
<th>Water level projection</th>
<th></th>
<th>Country</th>
<th>Ports</th>
<th>Water level projection</th>
<th></th>
<th>Water level projection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FAC</td>
<td>FCC</td>
<td>FRSLC</td>
<td>FNC</td>
<td></td>
<td></td>
<td>FAC</td>
<td>FCC</td>
<td>FRSLC</td>
</tr>
<tr>
<td>CHINA</td>
<td>15</td>
<td>17,100</td>
<td>15,500</td>
<td>15,400</td>
<td>14,600</td>
<td>CHINA</td>
<td>15</td>
<td>23,000</td>
<td>19,700</td>
<td>18,700</td>
</tr>
<tr>
<td>INDIA</td>
<td>6</td>
<td>11,600</td>
<td>10,800</td>
<td>10,300</td>
<td>9,970</td>
<td>INDIA</td>
<td>6</td>
<td>16,400</td>
<td>14,600</td>
<td>13,600</td>
</tr>
<tr>
<td>US</td>
<td>17</td>
<td>8,990</td>
<td>8,960</td>
<td>8,830</td>
<td>8,460</td>
<td>US</td>
<td>17</td>
<td>11,300</td>
<td>11,200</td>
<td>10,800</td>
</tr>
<tr>
<td>JAPAN</td>
<td>8</td>
<td>5,260</td>
<td>4,610</td>
<td>4,430</td>
<td>4,390</td>
<td>JAPAN</td>
<td>8</td>
<td>6,440</td>
<td>5,280</td>
<td>5,000</td>
</tr>
<tr>
<td>INDONESIA</td>
<td>4</td>
<td>1,420</td>
<td>1,200</td>
<td>1,200</td>
<td>1,170</td>
<td>INDONESIA</td>
<td>4</td>
<td>2,110</td>
<td>1,610</td>
<td>1,610</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>10</td>
<td>833</td>
<td>833</td>
<td>833</td>
<td>802</td>
<td>BRAZIL</td>
<td>10</td>
<td>929</td>
<td>929</td>
<td>929</td>
</tr>
<tr>
<td>UK</td>
<td>2</td>
<td>497</td>
<td>497</td>
<td>478</td>
<td>459</td>
<td>UK</td>
<td>2</td>
<td>609</td>
<td>609</td>
<td>564</td>
</tr>
<tr>
<td>CANADA</td>
<td>2</td>
<td>459</td>
<td>433</td>
<td>422</td>
<td>405</td>
<td>CANADA</td>
<td>2</td>
<td>549</td>
<td>512</td>
<td>486</td>
</tr>
<tr>
<td>REP. OF KOREA</td>
<td>3</td>
<td>344</td>
<td>344</td>
<td>331</td>
<td>441</td>
<td>REP. OF KOREA</td>
<td>3</td>
<td>361</td>
<td>361</td>
<td>341</td>
</tr>
<tr>
<td>GERMANY</td>
<td>1</td>
<td>257</td>
<td>257</td>
<td>253</td>
<td>248</td>
<td>GERMANY</td>
<td>1</td>
<td>287</td>
<td>287</td>
<td>273</td>
</tr>
<tr>
<td>RUSSIA</td>
<td>1</td>
<td>177</td>
<td>177</td>
<td>177</td>
<td>177</td>
<td>RUSSIA</td>
<td>1</td>
<td>202</td>
<td>202</td>
<td>173</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5</td>
<td>162</td>
<td>162</td>
<td>157</td>
<td>157</td>
<td>AUSTRALIA</td>
<td>5</td>
<td>197</td>
<td>197</td>
<td>191</td>
</tr>
<tr>
<td>SOUTH AFRICA</td>
<td>2</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>29</td>
<td>SAUDI ARABIA</td>
<td>1</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>SAUDI ARABIA</td>
<td>1</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>22</td>
<td>SOUTH AFRICA</td>
<td>2</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>FRANCE</td>
<td>1</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>FRANCE</td>
<td>1</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>ITALY</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>ITALY</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>MEXICO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MEXICO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 13. National estimates of port city population exposure (1,000s) for each water level projection (ranked according to exposure with the FAC (Future City All Changes) scenario) under a rapid urbanisation projection for the 2030s, 2050s and 2070s. Estimates for present day exposure and in the absence of climate change (for 2070 only) for comparison are presented in Table 14. Data is from Hanson et al. (2010) and has been rounded down to three significant figures.
<table>
<thead>
<tr>
<th>Country</th>
<th>Ports</th>
<th>Population exposure</th>
<th>2070. Rapid urbanisation, FAC water level scenario</th>
<th>Exposure avoided</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Current</td>
<td>No climate change</td>
<td>A1B un-mitigated</td>
</tr>
<tr>
<td>CHINA</td>
<td>15</td>
<td>8,740</td>
<td>18,600</td>
<td>27,700</td>
</tr>
<tr>
<td>UNITED STATES</td>
<td>17</td>
<td>6,680</td>
<td>10,700</td>
<td>12,800</td>
</tr>
<tr>
<td>RUSSIA</td>
<td>1</td>
<td>189</td>
<td>169</td>
<td>226</td>
</tr>
<tr>
<td>JAPAN</td>
<td>6</td>
<td>3,680</td>
<td>5,070</td>
<td>7,800</td>
</tr>
<tr>
<td>SOUTH AFRICA</td>
<td>2</td>
<td>24</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>INDIA</td>
<td>6</td>
<td>5,540</td>
<td>13,900</td>
<td>20,600</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>10</td>
<td>555</td>
<td>864</td>
<td>940</td>
</tr>
<tr>
<td>MEXICO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CANADA</td>
<td>2</td>
<td>308</td>
<td>489</td>
<td>614</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5</td>
<td>99</td>
<td>175</td>
<td>196</td>
</tr>
<tr>
<td>INDONESIA</td>
<td>4</td>
<td>602</td>
<td>1,530</td>
<td>2,680</td>
</tr>
<tr>
<td>REP. OF KOREA</td>
<td>3</td>
<td>294</td>
<td>303</td>
<td>377</td>
</tr>
<tr>
<td>UK</td>
<td>2</td>
<td>414</td>
<td>569</td>
<td>716</td>
</tr>
<tr>
<td>FRANCE</td>
<td>1</td>
<td>13</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>ITALY</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>GERMANY</td>
<td>1</td>
<td>261</td>
<td>280</td>
<td>309</td>
</tr>
<tr>
<td>SAUDI ARABIA</td>
<td>1</td>
<td>15</td>
<td>29</td>
<td>38</td>
</tr>
</tbody>
</table>

Table 14. Exposed port city population (1,000s) in present (current), and in the 2070s in the absence of climate change (no climate change), with unmitigated climate change (A1B un-mitigated), and mitigated climate change (mitigated 2016-5-L), under the rapid urbanisation and FAC (Future City All Changes) water level scenarios. The final column shows the potential avoided exposure, as a result of mitigation. Data is from Hanson et al. (2010) and has been rounded down to three significant figures.
To further quantify the impact of SLR and some of the inherent uncertainties, the DIVA model was used to calculate the number of people flooded per year for global mean sea level increases (Brown et al., 2011). The DIVA model (DINAS-COAST, 2006) is an integrated model of coastal systems that combines scenarios of water level changes with socio-economic information, such as increases in population. The study uses two climate scenarios; 1) the SRES A1B scenario and 2) a mitigation scenario, RCP2.6. In both cases an SRES A1B population scenario was used. The results are shown in Table 15. While globally there is evidence that the impacts results are not significantly affected by driving DIVA with global mean sea level rise, there are regions where may make a difference. Once such region is the Mediterranean.

<table>
<thead>
<tr>
<th></th>
<th>A1B</th>
<th>RCP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Additional people flooded (1000s)</td>
<td>1.78</td>
<td>42.38</td>
</tr>
<tr>
<td>Loss of wetlands area (% of country’s total wetland)</td>
<td>58.32%</td>
<td>80.11%</td>
</tr>
</tbody>
</table>

Table 15. Number of additional people flooded (1000s), and percentage of total wetlands lost by the 2080s under the high and low SRES A1B and mitigation (RCP 2.6) scenarios (Brown et al., 2011).

National-scale or sub-national scale assessments

Literature searches yielded no results for national-scale or sub-national scale studies for this impact sector.
References

BENESTAD, R. 2008. Heating degree days, Cooling degree days, and precipitation in Europe: Analysis for the C E L C T-project.

BROWN, S., NICHOLLS, R., LOWE, J.A. and PARDAENS, A. (2011), Sea level rise impacts in 24 countries. Faculty of Engineering and the Environment and Tyndall Centre for Climate Change Research, University of Southampton.

DINAS-COAST Consortium. 2006 DIVA 1.5.5. Potsdam, Germany: Potsdam Institute for Climate Impact Research (on CD-ROM)

Acknowledgements

Funding for this work was provided by the UK Government Department of Energy and Climate Change, along with information on the policy relevance of the results.

The research was led by the UK Met Office in collaboration with experts from the University of Nottingham, Walker Institute at the University of Reading, Centre for Ecology and Hydrology, University of Leeds, Tyndall Centre — University of East Anglia, and Tyndall Centre — University of Southampton.

Some of the results described in this report are from work done in the AVOID programme by the UK Met Office, Walker Institute at the University of Reading, Tyndall Centre — University of East Anglia, and Tyndall Centre — University of Southampton.

The AVOID results are built on a wider body of research conducted by experts in climate and impact models at these institutions, and in supporting techniques such as statistical downscaling and pattern scaling.

The help provided by experts in each country is gratefully acknowledged — for the climate information they suggested and the reviews they provided, which enhanced the content and scientific integrity of the reports.

The work of the independent expert reviewers at the Centre for Ecology and Hydrology, University of Oxford, and Fiona’s Red Kite Climate Consultancy is gratefully acknowledged.

Finally, thanks go to the designers, copy editors and project managers who worked on the reports.