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Abstract The threats of wide-scale coral bleaching and reef demise associated with
anthropogenic (global) climate change are widely known. Less well considered is the
contributing role of conditions local to the reef, in particular reef water quality, in co-
determining the physiological tolerance of corals to increasing sea temperatures and
declining pH. Here, the modelled benefit of reduced exposure to dissolved inorganic
nitrogen (DIN) in terrestrial runoff, which raises the thermal tolerance of coastal coral
communities on the central Great Barrier Reef (Australia), is considered alongside
alternative future warming scenarios. The simulations highlight that an 80% reduction in
DIN ‘buys’ an additional ~50–60 years of reef-building capacity for No Mitigation
(‘business-as-usual’) bleaching projections. Moreover, the integrated management benefits
provided by: (i) local reductions of ~50% in DIN contained in river loads, and (ii) global
stabilisation of atmospheric CO2 below 450 ppm can help ensure the persistence of hard-
coral-dominated reefscapes beyond 2100. The simulations reinforce the message that
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beyond the global imperative to mitigate future atmospheric CO2 emissions there still
remains the need for effective local management actions that enhance the resistance and
resilience of coral reef communities to the impacts of climate change.

1 Introduction

Anthropogenic-driven climate change is very likely to warm the surface waters of the Great
Barrier Reef (GBR) at an unprecedented rate throughout the 21st Century (CSIRO and
BoM 2007). The rising sea surface temperatures (SST) are predicted to cause increased
coral bleaching and coral mortality, with serious consequences for the Reef’s biodiversity,
ecology, appearance and dependent recreational use and economic activity (reviewed in
Johnson and Marshall 2007). The severity of the problem is highlighted by predictions that
coastal reefs in the central GBR area may be severely set back or even transformed to non-
coral dominated states by as early as 2030 (Wooldridge et al. 2005). These risks are likely to be
exacerbated by emerging ocean chemistry changes arising from the absorption of
anthropogenic CO2 into surface ocean waters (Sabine et al. 2004). So-called ocean
acidification may increase the susceptibility of corals and coral reef organisms to temperature
stress, reduce productivity and disrupt the process by which coral produce their calcium
carbonate skeletons (Kleypas et al. 2006; Anthony et al. 2008; Veron et al. 2009).

Given these unprecedented threats, a fundamental challenge for sustainable reef
management is to identify policy and management interventions that might help to
safeguard the reef system against long-term (and potentially irreversible) negative changes
to its structure and dynamics. In principle, these could include local actions that improve
the survivability of coral communities and/or aid their post-disturbance rate of recovery.
However, ecological model simulations for the GBR suggest that improved recovery alone
is unlikely to sustain hard-coral-dominated reefscapes beyond 2050 for anything except the
most optimistic (low) rates of future warming (Wooldridge et al. 2005). Success in
maintaining resilient reef communities under higher (and more likely) rates of future
warming thus appears ultimately tied to also improving coral survival rates from thermal
bleaching.

Present upper thermal bleaching thresholds of corals are the result of long-term adaptation of
the coral-zooxanthellae symbiosis to its local thermal regime (see e.g., Fitt et al. 2001; Coles
and Brown 2003). There is variability in heat resistance among strains of zooxanthellae (e.g.,
Baker et al. 2004), and some evidence that the relative proportions of heat-resistant strains can
vary following heat stress events (Berkelmans and van Oppen 2006). However, present
indications are that the speed and persistence of shifts is unlikely to compensate for the trend
of increasing temperature stress predicted over the course of this century (see e.g., Coffroth et
al. 2010; LaJeunesse et al. 2010). Further, there are no indications that local management
interventions could be used to change the symbiotic composition at appropriate time and
space scales to raise reef-wide thermal bleaching resistance.

Management interventions can, however, affect other characteristics of the system that
influence thermal tolerance. Many efforts to improve the health of reef ecosystems focus on
improving water quality, and recent reports suggest that poor water quality may exacerbate
effects of heat stress by lowering the thermal bleaching threshold of certain coral species
(Wooldridge and Done 2009; Wooldridge 2009a; Carilli et al. 2009a, b; Wagner et al. 2010;
Faxneld et al. 2011). For example, the post-1980’s increase in bleaching intensity and
frequency at a Mesoamerican reef was best explained by reduced water quality in the region
due to a substantial increase in coastal development (Carilli et al. 2009a, b). Similarly in
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Jamaica, where underwater ecological observations date to the 1950s, mass bleaching went
unreported until 1987 (Goreau 1992), after coastal water quality had declined, despite
similar thermal stress in 1957 and 1958 to that in 1987 (Carilli et al. 2009a). Finally, corals
on GBR reefs that are regularly exposed to poor water quality appear to have a higher
bleaching sensitivity (per unit increase in SST) than those on less or unexposed reefs
(Wooldridge and Done 2009).

Dissolved inorganic nitrogen (DIN = nitrate + nitrite + ammonium) is a key water
quality attribute affecting the stability of the coral-zooxanthellae symbiosis, and it has been
proposed that elevated ambient DIN concentrations exacerbate the damage to cellular
processes that underpin thermal bleaching (Wooldridge 2009b; Wooldridge and Done
2009). This mechanistic explanation is consistent with results of experimental enrichment
of seawater with DIN, wherein the temperature-dependent loss of zooxanthellae was
increased (Schlöder and D’Croz 2004; Baohua et al. 2004; Kuntz et al. 2005; Haas et al.
2009). In these studies, DIN concentrations as low as 1–10 μM alone increased
zooxanthellae loss, even at normal ambient summer temperatures. Field measurements
indicate that summer DIN concentrations at specific reefs on the Florida Keys (USA)
often exceed 1 μM (typically due to terrestrial waste-water discharge) and bleach more
severely during periods of thermal stress (Wagner et al. 2010). Similarly, a strong
quantitative relationship exists between the bleaching threshold of inshore corals on the
GBR and the degree of exposure to DIN-rich (>1–10 μM; Devlin et al. 2001) flood-plume
(terrestrial) waters (Fig. 1a; Wooldridge 2009a). In this case, the variable water quality
regime spans ~2°C variation in bleaching ‘resistance’, with the marginal rate of increased
resistance (°C) being significantly higher at the lowest DIN exposure levels; i.e., sites
with good water quality (Fig. 1b).

Based on the evidence detailed in the above studies, this study assumes that a
quantitative causal relationship between terrestrial DIN loading and thermal bleaching
thresholds exists. This highlights the particularly crucial role of management activities that
improve water quality as a way of increasing the probability that corals will tolerate
predicted temperature increases. In anticipation of increasing interest in management of
water quality as a way of building reef resilience to climate change, we have developed a
modelling framework to map coral bleaching risks at terrestrially impacted (i.e. coastal)
reefs as a function of two key drivers: local land management and global warming. Here,
we develop and apply this modelling framework to support management decision making
that aims to build climate change resilience of reefs through spatially targeted water quality
management. Specifically, we: (i) simulate the potential improvement in bleaching tolerance
(°C) of locally-impacted corals due to 20, 40, 60 and 80% reductions in the end-of-river
DIN loads for the major basins that drain the GBR catchment, and, given a range of future
warming scenarios, (ii) project the benefit of this improved thermal tolerance on coral
survival rates to bleaching.

The central GBR represents an ideal study area to highlight important aspects of the
modelling framework. Flood-plume sampling within the central GBR lagoon demonstrates
that DIN is well mixed (= conservatively diluted) throughout the plume volume (Devlin et
al. 2001). The DIN-enriching footprint of terrestrial runoff intrusions into the GBR
therefore increases considerably as end-of-river DIN concentrations rise. Current modelling
indicates that the estimated 3–5 times increase in end-of-river DIN concentrations since
European settlement (Furnas 2003) has increased the area of DIN-enriched waters in the
central GBR by a factor of ~10–20 (Wooldridge et al. 2006). This has extended nutrient-
enriched coastal waters typically bathing near-shore reefs (with characteristic corals and
macro-algae zones—Done 1982; DeVantier et al. 1998) to mid- and even outer-shelf reef
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locations (characterized by other corals and coralline algae—Wooldridge et al. 2006;
Maughan and Brodie 2009).

0

0.1

0.2

0.3

0.4

0.5

0.6

Normalised WQ improvement

M
ar

gi
na

l T
hr

es
ho

ld
 In

cr
ea

se
 (o C

)

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e 

T
hr

es
ho

ld
 In

cr
ea

se
 (o C

)

lowhigh

b

y = 5.78305E+17e-1.38640E+00x

0

0.2

0.4

0.6

0.8

1

29 29.5 30 30.5 31.5 32

P
(c

hl
a 

> 
0.

9 
µ g

.L
-1

)

Daydream Is.

Orpheus Is.

Low Isles

Daintree Coast

Magnetic Is.

a

Bleaching Threshold (oC)

31

Fig. 1 a Quantitative linkage between upper thermal bleaching limits (°C) and the degree of exposure to
nutrient enriched terrestrial waters (after Wooldridge 2009a). Coastal reef waters with high DIN-enriching
impact are characterised by a higher annual exceedence probability (AEP) of [Chl a]>0.9 μg.L−1; a threshold
(trigger) value that correlates with localised reductions in hard coral species richness on the GBR (De’ath and
Fabricius 2010). Implicit with the bleaching limits is the exceedence of a short (<5 day) exposure period b
Marginal (bar) and cumulative (line) increase in coral bleaching threshold (°C) across the (normalised)
inshore DIN-enrichment gradient. The relationship demonstrates that water quality improvements at
relatively clean sites will attract the greatest initial improvements in bleaching threshold
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2 Methods

2.1 Water quality-dependent coral bleaching thresholds

The decision support tool ‘ChloroSim’ (Wooldridge et al. 2006) was used to model the
beneficial effects of riverine DIN reductions, relative to present day, on the size and intensity of
the enriching footprint of flood plumes within the GBR lagoon. ChloroSim is based on a
regionally-calibrated relationship that links: (i) end-of-river DIN concentrations, (ii) runoff:
seawater dilution (a measure of flood intensity), and (iii) the ensuing flood plume intensity
(‘bloom’) of phytoplankton biomass (as indicated by the concentration of photosynthetic
pigment, chlorophyll a (Chl a)). The general rationale behind ChloroSim is that for a given
runoff: seawater dilution ratio, any broad-scale differences in the plume concentration of Chl
a can be largely attributed to the initial concentration of DIN in the discharging runoff. In this
way, simulated reductions (20%, 40%, 60% and 80%) in end-of-river DIN concentration were
processed through a 30-year (1969–1998) runoff: seawater flood plume archive for the GBR
(King et al. 2002); thereby enabling the annual exceedence probability (AEP) for [Chl a>
0.9 μg/L] to be calculated for every 2 km pixel in the coastal impact model domain. The
potential degree of improvement in thermal tolerance (°C) of coastal coral communities due
to the specified (uniform%) reductions in the end-of-river DIN loads was computed for each
pixel by substituting this AEP value within the water quality-dependent bleaching threshold
relationship developed by Wooldridge (2009a) (see Fig. 1).

2.2 Projected SST warming patterns till 2100

The future SST warming pattern on the GBR (till 2100) was considered for two alternative
global CO2 emission scenarios: (a) No mitigation (‘business-as-usual’), and (ii) CO2

mitigation leading to atmospheric stabilisation of CO2 concentrations at 450 ppm early in
the 22nd century (after Garnaut 2008). The translation of global CO2 scenarios into
regional-scale SST estimates was facilitated by the ‘ReefClim’ software package. ReefClim
adopts a downscaling methodology based on analysing the results of a number of global
climate models to obtain regional patterns of maximum summer SST change expressed in
terms of local warming per degree of global warming (Mitchell 2003; Whetton et al. 2007).
The methodology attempts to incorporate the modifying impact of local weather and
ameliorating oceanographic processes.

For the present study, eight different climate models were used to develop an envelope
(distribution) of maximum summer month SST estimates, and included representations from
the Hadley Centre (two models), Max Planck Institute (two models), Canadian Climate
Centre (two models), and CSIRO (two models). Additional details of the models are
provided in supplemental Table S1. The use of a number of climate models means that
uncertainty due to model differences in the pattern of SST warming is allowed for. As there
was no way to assess which model warming pattern was most likely, the range achieved for
any 10-km grid cell location was considered representative of possible changes.

2.3 Coral mortality (LD50) thresholds

The SST projections were combined with coral mortality thresholds under different ambient
DIN to project the course of temperature driven coral mortality (LD50) until 2100. Mortality
threshold curves based on 50% mortality of thermally sensitive coral taxa have been
proposed by Berkelmans (2009). An analysis of these curves indicates that most thermally
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sensitive taxa die at temperatures ~0.5–1.5°C above their bleaching threshold. For the present
study, a modelled trigger value of 3°C above the water quality dependent bleaching threshold
was chosen to represent 50% mortality events (LD50). The higher triggering point endeavours
to represent the raised ‘GBR-wide’ average thermal tolerance due to the contribution of more
thermally-tolerant coral taxa (e.g. massive Porites spp; Marshall and Baird 2000). This reef-
average mortality threshold compares favourably with the ~2–3°C difference between field-
measured bleaching (BD50) and mortality (LD50) observations during the 1998 and 2002
mass bleaching events on the GBR (Wooldridge 2008).

Calculation of the AEP of the LD50 threshold (for each level of DIN improvement) was
achieved with a standard normal (z-score) methodology. In this case, at specific time
intervals (2010, 2030, 2050, 2070, 2100) the downscaled SST projections were used to
develop a normal distribution of daily summer-averaged SST projections for each 10-km
grid cell that constitutes the riverine (flood) impacted GBR model domain. With the z-score
approach, the likelihood of exceeding the spatially explicit LD50 threshold can be
conceptualised as the area under the curve in excess of the threshold, z (supplementary
Fig. A1). The standard deviation (SD) of this distribution for each grid cell was calculated
based on a 12-year remotely-sensed climatology (AIMS SST web atlas; Skirving et al.
2002) of maximum SST during the summer (Dec-Mar) period. These SD estimates were
temporally updated based on the assumption that the coefficient of variation of SST was
stationary in time. Thus for each grid cell, the mean SST increases over time but the
coefficient of variation around this value is assumed temporally uniform.

3 Results

3.1 Simulated improvement in local coral bleaching thresholds

The potential degree of improvement in thermal tolerance (°C) of coastal coral communities due
to the specified (uniform%) reductions in the end-of-river DIN loads is presented in Fig. 2.
These simulations indicate that the potential ~2°C improvement in bleaching threshold for the
most impacted reef sites typically require large (>50%) reductions in DIN. Some care is
needed in the practical interpretation of Fig. 2 since the uniform reductions (%) in end-of-
river DIN concentration are based on pre-existing river (flood) loads. For example, to achieve
a 40% reduction in the end-of-river DIN concentration from a ‘nutrient-rich’ river system
requires a substantially larger absolute reduction in DIN (in terms of μg.L−1) than a 40%
reduction from a ‘nutrient-poor’ river system. Nevertheless, standardising the model output
does help to demonstrate the higher marginal rate of improvement (°C) at progressively
cleaner DIN sites. This is observable at two scales in Fig. 2: (i) the north to south gradient of
increasing end-of-river DIN concentrations (Furnas 2003), and (ii) the transitions from the
more diluted plume-edges to individual river mouths. Such spatial patterns suggest that it will
be hardest to achieve DIN-related improvements in thermal bleaching tolerance at reef sites
closest to the most enriched river mouths.

3.2 Simulated warming of local coral reef waters

Figure 3a illustrates the projected rate of future global warming (2000–2100) based on: (i)
no CO2 emission mitigation (‘business-as-usual’), and (ii) global CO2 emission mitigation
leading to stabilisation of atmospheric CO2 at 450 ppm (after Garnaut 2008). The linked
change in regional SST for the GBR, expressed as change per degree of global warming, is
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highlighted in Fig. 3b. Beyond the inshore (shallow) to offshore (deep) enhancement, the
dominant feature of the projected SST warming on the GBR is the proportionately higher
rate of warming in the central-southern GBR. In considering the robustness of these
predicted patterns, it is important to note that despite our best efforts to incorporate local
variability at the scale ~10’s km (e.g., due to major currents, eddies and basic bathymetry)
the warming projections are unlikely to capture the potential modifying influence of reef
scale (~1 km) bathymetry and hydrodynamics. The choice of a conservative reef-scale
mortality threshold attempts to offset this potential uncertainty.
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Fig. 2 Simulated increased in the upper thermal bleaching limits (°C) of impacted corals due to specified
(uniform%) reductions in end-of-river DIN loading for the numerous basins that drain the GBR catchment
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(after Garnaut 2008) b Regional SST changes for the GBR expressed as change per degree of global
warming based on the average of eight climate models
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3.3 Projected coral mortality (LD50) till 2100

Output for a representative inshore reef area of the central GBR is shown in Fig. 4, highlighting
the potential levels of improvement in the AEP of LD50 events given the simulated
improvement (20%, 40%, 60% and 80%) in end-of-river DIN loads relative to present day
values. To aid interpretation, a 10-yr average return interval (ARI) is highlighted (grey line),
which provides an estimate of the lowest possible ARI estimate for maintaining a viable, hard-
coral-dominated reef condition (see Discussion). Importantly, the model projections demonstrate
that for this representative area, an 80% reduction in DIN permits the maintenance of the coral-
dominated reef state for an additional ~50 years beyond the current LD50 mortality projections
for the No mitigation (‘business-as-usual’) warming scenario. Moreover, when coupled with the
CO2 mitigation (‘Stabilisation at 450 ppm’) warming scenario, the enforcement of ~50%
reduction in DIN is sufficient to ensure the long-term persistence of the impacted reefs.

3.4 Timeframes for the loss of viable reef communities

Extrapolation of the modelling framework across the entire flood-impacted GBR domain
allows the likely timeframe (yr) for the loss of viable hard-coral-dominated reef
communities to be projected for No mitigation (Fig. 5) and CO2 mitigation (Fig. 6)
warming scenarios. The key findings are: (i) without any DIN reduction the long-term
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of the maximum bleaching disturbance frequency for the maintenance of a viable hard-coral-dominated
reefscape. The results highlight that as an absolute minimum, local reductions in DIN load of ~50% and global
CO2 stabilisation at ~450 ppm are needed to ensure the long-term persistence of coastal reefs on the central
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viability of a large proportion of inshore reef area is already marginal given the existing
bleaching risk profile (2010), and (ii) local reductions in DIN loads of ~50% and global
atmospheric CO2 stabilisation below 450 ppm allows impacted reefs to persist beyond
2100, thus providing a potential integrated management target.

4 Discussion

Maintenance of reef framework and reef building capacity are important attributes of
healthy functioning coral reefs (Davies 1983; Done et al. 1996). An important parameter
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DIN Reduction 20%
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DIN Reduction 40%
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Fig. 5 Projected timeframes (yr) for the loss of viable reef communities based on the No Mitigation (‘business-
as-usual’) warming scenario and alternative levels of (uniform%) reductions in end-of-river DIN loads.
Projections are based on the suggested minimum 10 year ARI between catastrophic LD50 mortality events
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that helps to define reef-building capacity is the average return interval (ARI) between events
that cause catastrophic mortality in reef-building taxa (see e.g., Connell 1997; Done 1999).
Long-term field studies on the GBR highlight that even for sites with few local stressors, an
ARI between major disturbance events of at least 10 years is critical for maintaining hard-
coral-dominated reefscapes (see e.g., Wakeford et al. 2008). Worryingly, our modelling shows
the present day (2010) bleaching frequency experienced by many coastal reef communities on
the central GBR is already likely to exceed their long-term capacity to maintain reef-building
capacity; i.e., the viability of many reefs is already marginal before considering scenarios for
future coral bleaching and ocean acidification. This finding is supported by a recent GBR-
wide meta-analysis of inshore benthic community change data covering 1985–2007, which
concludes that thermal bleaching frequency and severity over the last two decades have
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Fig. 6 Projected timeframes (yr) for the loss of viable reef communities based on a CO2 Mitigation
(‘Stabilisation at 450 ppm’) warming scenario and alternative levels of (uniform%) reductions in end-of-river
DIN loads. Projections are based on the suggested minimum 10 year ARI between catastrophic LD50

mortality events
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caused a rapid decline in inshore coral cover (Thompson and Dolman 2010). The authors
explain that whilst significant cover of live coral presently remains on the inshore reefs, and
that recovery is observed during inter-disturbance periods, the system will not be resilient to
an equivalent or more severe disturbance regime over the long-term. Done et al. (2007) reach
a similar conclusion based on repeat analysis of photogrammetric surveys (1981–2005) taken
from a coastal reef on the central GBR.

Significant to the present study is the considered impact of post-European declines in
local water quality, specifically via terrestrial DIN-enrichment, as a contributing influence
in lowering the bleaching tolerance (i.e. enhancing the bleaching risk profile) of impacted
corals (sensu Wooldridge and Done 2009; Wooldridge 2009a). Previously, the role of water
quality in altering the resilience of coral communities under climate change has primarily
focused on recovery rates of coral from mortality events (see review by McCook et al.
2007). For example, reef waters characterised by low sediment and nutrient loads are
judged favourably in terms of: (i) promoting the re-establishment of disturbed reef sites with
new coral recruits by improving success rates for larval arrival, settlement, post-settlement
survival, and growth; and (ii) limiting the potential for faster growing seaweeds to out-compete
surviving (remnant) corals and new coral recruits. Moreover, since high levels of turbidity and
nutrients can impede the skeletal growth rate and reproductive output of adult corals (reviewed
by Fabricius 2005), good water quality is an essential ingredient for enhancing reef-building
capacity between disturbance events. Whilst these recovery-side benefits are a fundamental
driver for investment in water quality improvement, the present study highlights that
enhanced bleaching survival is also an important consideration.

Indeed, our simulations suggest that reducing end-of-river DIN loads can considerably
benefit the future survival prospects of locally-impacted reefs on the GBR. For example, a
simulated 80% reduction in DIN ‘buys’ an additional ~50–60 years of reef-building
capacity beyond current (No mitigation) bleaching projections (Fig. 5), whilst a ~50%
reduction in DIN sustains long-term (>2100) reef-building capacity under a global CO2

mitigation (‘Stabilisation at 450 ppm’) future warming scenario (Fig. 6). Importantly, a
simplifying assumption within the present analysis is that the inter-disturbance recovery rate
is independent of DIN loads; thereby enabling a consistent interpretation to the 10-yr ARI
(viable coral reef) threshold. The central findings of this study are thus strengthened by the
intuitive likelihood that reef waters with lowered DIN levels not only assist coral
survivorship (during thermal stress events) but also promote recovery (through successful
settlement, recruitment and growth) following thermal stress events.

For the rivers of the central GBR, the degree of DIN enrichment is directly related to the
percentage of fertiliser-additive land use (typically sugarcane and banana plantations) in the
upstream catchment area (see e.g., Mitchell et al. 2009; Bainbridge et al. 2009). For the
most enriched river systems (e.g., Tully-Murray catchment near Cardwell) modelling and
monitoring show that ~80–85% of the DIN exported to the river mouths is derived from
fertiliser loss (Armour et al. 2009; Bainbridge et al. 2009). Thus, a focus on reducing these
fertiliser losses is likely to provide the greatest scope for large reductions in end-of-river
DIN discharge in the future. This contrasts with the case for suspended sediments.
Suspended sediment delivery into the GBR lagoon is dominated by soil erosion processes
exacerbated by intensive rangeland beef cattle grazing (Brodie et al. 2003). Low rates of
suspended sediment delivery are thus best achieved through reduction in grazing area
(especially in areas prone to gullying) in combination with maintenance of high pasture
cover (which may involve reduced stocking rates) (Brodie et al. 2003).

Landscape nutrient-budget models show that nitrogen-efficient management practices such
as no over–application of fertilisers, reduced tillage, split fertiliser application, and removing
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production from the least productive soil types can eliminate over 80% of agricultural DIN
exports (Roebeling et al. 2009). Linked economic analysis concludes that optimal adoption of
these best management practices could reduce DIN delivery by up to ~50% with no
additional cost, or even benefit, to the local agricultural industry (Roebeling et al. 2009). In
contrast, the reductions in production area and fertiliser application rates needed to attain the
more stringent DIN reduction targets (~80%) are only possible at a significant cost to the local
agricultural industry (Roebeling et al. 2009). However, the economic cost imposed by such
measures is likely to be more than offset by the long-term economic benefits of safeguarding
reef ecosystem goods and services, such as those that support the local reef tourism industry
(Thomas et al. 2009). The political economy of setting two important regional sectors at odds
with each other makes such decisions extremely problematic.

It is important to emphasize that any land management benefit will be most strongly
observed in inner- to mid-shelf reef areas where terrestrial nutrient sources are the
dominating influence (Furnas 2003). However, a better understanding of the spatio-
temporal dynamics of DIN loading across the entire GBR will help identify those areas
most vulnerable to heat stress. Within the central GBR, DIN loading is typically highest at
the coastal locations most exposed to terrestrial runoff, lowest at mid-shelf locations, and
moderate at offshore locations (e.g., see Sammarco et al. 1999). All things being equal, it is
thus predicted that the mid-shelf reefs of the central GBR should display the highest
resistance to heat stress. This prediction is currently the focus of new research and has
important implications for the design of a marine protected area (MPA) network that aims to
spread the risk of future bleaching impacts (sensu Done 2001; Game et al. 2008).

In terms of an integrated management target, the present analysis suggests that reduced
DIN river loads (~50%) combined with stabilisation of atmosphere CO2 at ~450 ppm can
help ensure the long-term viability of hard coral communities within the terrestrial flood
zone of the central GBR (see Figs. 4 and 6). The likelihood of achieving these specific local
and global management targets depends on the outcomes of political, environmental,
economic and social initiatives spanning local to global scales. Policy actions aiming to halt
declining water quality on the GBR are being implemented by Australian state and federal
governments, including a target of 50% reductions in ambient DIN loads by 2014 (Anon
2007, 2009). To date however, no global climate policy agreement exists between the major
CO2-emitting countries that will ensure atmospheric CO2 concentrations stabilise below
450 ppm (Garnaut 2008), although a 2°C warming target was adopted at the United Nations
Framework Convention on Climate Change 15th Council of Parties meeting in Copenhagen
in late 2009. Achieving this target would most likely require an overshoot trajectory for
greenhouse gases peaking at above 450 ppm CO2-equivalent with subsequent reductions to
an undetermined goal (Sheehan et al. 2008). Yet, some researchers still consider the
achievement of 450 ppm CO2 technically achievable (e.g., van Vuuren et al. 2007). The
next decade is critical; if delay of meaningful action stretches beyond 2020, exceedance of
550 ppm becomes all-but unavoidable (Vaughan et al. 2009). Based on the present study, at
550 ppm vast tracts of GBR reef ecosystem would pass the tipping point for maintenance of
viable coral reef (10-yr ARI), unless more aggressive reductions (~80%) in end-of-river
DIN loads were achieved. This shows the importance of hedging local management
strategies against global uncertainty when both have a critical bearing on management
outcomes. Early local action will hedge against global uncertainties, particularly if an
overshoot situation is reached, where temperatures peak but ultimately decline.

The complementary benefit of global policies that stabilise atmospheric CO2 below
450 ppm is also found in the reduced severity of future ocean acidification impacts (see e.
g., Guinotte et al. 2003). Studies into the sub-lethal impacts on tropical reefs due to ocean
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acidification are still in their infancy, as are considerations into possible interactions with
temperature stress (Kleypas et al. 2006; Reynaud et al. 2003; Anthony et al. 2008).
Encouragingly, the negative impact of elevated CO2 concentrations on skeletal growth rates
is also lessened by good quality water, particularly reduced DIN (Renegar and Riegl 2005).
Whether good water quality in combination with atmospheric CO2 stabilisation ~450 ppm
is sufficient to avoid the most serious impacts from ocean acidification is the subject of on-
going research and will be reported elsewhere.

5 Conclusions

This study reinforces the proposition that there are no ‘silver bullet’ management solutions for
safeguarding shallow water coral reefs against the risks from anthropogenic climate change
during the 21st century (sensu Marshall and Schuttenberg 2006). Declines in productivity and
reef-building capacity are already likely for many coastal reef areas on the central GBR;
climate change left unmitigated could see them terminally degraded before 2050. Yet this
outcome can still be avoided through a realistic combination of local and global management
actions. This study has identified a minimum threshold for local reductions in river DIN loads
of ~50% and global stabilisation of atmospheric CO2 below 450 ppm. Although the resulting
near-term reefscapes may still fall short of the iconic panoramas enjoyed today, the key
ecological function of symbiotic corals as reef-builders can potentially be maintained. From
this most basic functional state it must be hoped that natural selective processes, for example
endosymbiont changes towards more stress resistance zooxanthellae types (Baker et al. 2004;
Berkelmans and van Oppen 2006) and/or community composition shifts towards more
tolerant host species (Done 1999; Loya et al. 2001), can lead to a maintenance of provision of
essential ecosystem goods and services. Swift action will ensure that the goal of maintaining
viable coral reef communities and their attendant benefits remains possible, leaving little
room for delay. To date, global efforts to reduce CO2 emissions have been limited in
magnitude and weakly implemented; sustained cuts are needed to stabilise atmospheric CO2

concentration below 450 ppm. For the GBR, comprehensive government policies partnered
with on-ground implementation programs have been introduced to halt and reverse the
decline of water quality entering coastal waters. This study highlights the significant potential
of such actions for enhancing reef survivability during thermal stress in addition to aiding its
recovery after stress. This capacity is an important hedging mechanism for managing global
risks to coral reef systems.
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