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Abstract
Seawater intrusion (SWI) is a universal concern, intensified and aggravated due to over-exploitation of groundwater, 
sea-level rise, and climate change in the coastal province. According to the Ghyben–Herzberg principle, the stability 
between freshwater and saltwater is caused by the density difference between the two, until the pressure equalizes. The 
keystone of India’s geography, economy, biodiversity, and the environment are its extended and vast coastline, which 
occupies the most precious as well as potential aquifer system. This review mainly fascinated on the status, knowledge, 
and vulnerability of SWI within the aquifers of the coastal region of Gujarat, India. Foregoing investigations reveal that 
the meteoric intensification in the salinity of coastal regions of Gujarat is the chief provenance of socioeconomic devel-
opment and environmental degradation. Different studies are performed to analyze and mitigate the SWI problem. In 
this region, groundwater over-exploitation is the foremost driver of SWI. There are miscellaneous developmental and 
management skills and techniques to diminish the SWI in coastal regions of the world. Numerous models are fabricated 
and established to analyze and epitomize the complications associated with it. Numerical models suggest some valuable 
techniques to manage groundwater-related problems. This study also delivers some advanced management strategies 
such as dilution of salinewater by artificial recharge techniques, construction of physical barriers in the subsurface to 
reduce the intrusion etc. feasible to the coast of Gujarat.
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1 Introduction

On the planet earth, groundwater is the enormous source 
of freshwater. It has been utilized to a great extent to meet 
the demands of agricultural, industrial, and municipal 
water supply schemes all over the world including coastal 
regions [1]. Coastal belts encompass some of the highest 
densely populated zones with an average population 
density of almost 80 individuals per sq. km, which is esti-
mated as twice of the world’s average population density 
[2]. Along with rampant increase in the population growth, 
uninterrupted progress in standards of living is addition-
ally enhanced the groundwater requirement in coastal 

regions [3]. But seawater intrusion (SWI) in the coastal 
region is such a menace that not only contaminates this 
precious groundwater resource but also affects vegeta-
tion, soil conditions and the sustainability of groundwa-
ter that contributes to the economic improvement of 
the coastal communities. Therefore, SWI is considered as 
a global coastal threat. Furthermore, the key elements 
contributing to SWI comprise changes in land use pat-
terns which might influence the recharge of aquifer and 
rise in sea-level owing to climate changes. Degradation 
of groundwater quality is influenced by the intrusion of 
seawater into the coastal aquifers where less than 1% of 
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seawater can transform drinkable freshwater to unsuitable 
for the same [4].

SWI has been defined as the flow of water towards the 
land from the sea into the adjoining inland aquifer system 
[4]. Foregoing research and investigations have acknowl-
edged two basic categories of SWI: (i) active and (ii) pas-
sive [5–7]. In the active SWI, the hydraulic gradients tilt in 
the direction of the land, and strengths originated by the 
disparities in densities and crude groundwater movement 
proceed within the similar direction, initiating additional 
insistent salinization [7], whereas the hydraulic gradient 
angles in the direction towards the sea in case of passive 
SWI. This phenomenon evaluates the density-induced 
strengths which are operating within the reverse track of 
the natural movement of groundwater, generating sym-
metrical and wedge-shaped plumes of seawater which are 
conventionally analogous with SWI [8].

The degree of SWI in any coastal region is driven by 
the geology, presence of palaeo-salinewater, hydraulic 
gradient, amount of groundwater extraction, rock–water 
interaction, recharge of groundwater and anthropogenic 
contamination [9]. The intensity of SWI differs extensively 
from regional to the global scale. Therefore, numerous 
studies have been conducted in coastal zones through-
out the world to understand the vulnerability and the 
effect of SWI. Various geophysical and geochemical stud-
ies in addition to experiments carried out in the laboratory. 
Techniques related to hydrodynamic, and modeling are 
often integrated with multivariate geostatistical analysis, 
geospatial analysis, and tracer studies have been adopted 
for investigation [6, 7]. The considerable difference in 
resistivity between the saturated formation of the salt-
water and the freshwater has been applied by numerous 
researchers for investigating the SWI in coastal areas [10]. 
Groundwater salinity was estimated in the western part 
of the Netherlands using the resistivity method [11]. The 
results of the resistivities were interpreted which found to 
be strongly interrelated to the analytically computed salin-
ity of groundwater. Similarly, the Schlumberger sounding 
resistivity method is a potent technique for delineating 
the saltwater–freshwater interface. This tool was applied 
in the geological setting of the eastern shore of Virginia, 
and SWI zone was mapped for the region [12]. The hydro-
geochemical and isotopic investigations have been carried 
out globally to evaluate the quality of groundwater and to 
identify the hydrological and salinization processes in vari-
ous coastal aquifer systems [13, 14]. Integration of stable 
isotopes (δ18O and δ2H) along with major ionic ratios of 
groundwater have been employed in both the shallow and 
deeper aquifers to study the mechanisms of SWI [15, 16].

The ruin of environment that emerging from SWI is 
generally related to the relevance of excessive ground-
water salinity into cultivation, following reformed soil 

chemistry and depleted soil productivity [17, 18]. The key 
losses that take place in the world due to salinity impacts 
on groundwater and other freshwater resources include 
amplification in energy cost due to deepening of water 
levels to achieve drinkable water, agricultural losses, losses 
of domestic customers who have to shift to another water 
source, irreversible loss of the aquifer as a safe store for 
freshwater, increased water scarcity and meager public 
health [19].

Globally, India is the greatest consumer of groundwater 
extracting 230 × 109 m3 of water/year and having 25% of 
the population resides in the coastal belts [20, 21]. Ambi-
guity in rainfall, shortage of surface water in Summer sea-
son, at a few areas and the onsite accessibility of clean 
groundwater have brought about greater dependency 
on groundwater resources in India. Groundwater over-
extraction in urban areas of coastal belts must show the 
way to SWI in numerous locations. Various researches have 
focused on a reduction in the level of groundwater and 
decline of fresh groundwater resources in India [22, 23]. 
Their studies reveal that the semi-arid state, Gujarat having 
the longest coastline among the Indian States, is critically 
affected by salinity contamination [24, 25]. Therefore, the 
key objectives of this review are to identify the status of 
SWI in coastal regions of Gujarat, represent the lacuna of 
scientific research and identify possible efficient manage-
ment plans suitable to combat SWI in Gujarat.

2  Seawater intrusion (SWI)

SWI is predominantly triggered by over-stressing the 
groundwater resources of the coastal zones owing to the 
over-population, urban sprawl, industrial expansion, and 
numerous developmental activities. The degree of SWI 
is expected to associate with the climate change effects 
like an increase in sea-level and rise of temperature and 
reduction of precipitation, coupled with excess ground-
water abstraction. The origin of SWI is wide-ranging, for 
example, over-withdrawal and the variation between the 
densities of seawater and freshwater [26]. The manifesta-
tion of SWI owing to over-exploitation of groundwater 
detectable within the coastal regions because of a decline 
in groundwater levels [27]. The principle of static equilib-
rium between both freshwater and salinewater is com-
monly renowned as the Ghyben–Herzberg principle. This 
principle was applied to hydrologic issues of seacoasts by 
W. Badon Ghyben, a Dutch captain of engineers, in 1889 
and Herzberg (1901) [28, 29]. Numerous factors disturb-
ing the hydrodynamic equilibrium between the fresh-
water and seawater causing SWI in coastal aquifers are 
geological factors such as lithology, geomorphology and 
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structural features, tidal activities, climate change and rise 
in sea-level and anthropogenic interferences.

3  Water budget

Water takes various forms in its existence like vapor in 
atmosphere, water, snow, or ice on the surface and as 
groundwater capturing the entire voids within the stra-
tum of geology underneath the surface [30]. Entire supply 
of water into the earth is always in continuous movement 
from earth to atmosphere and vice versa excluding the 
subterranean groundwater. This structure of circulation of 
water is renowned as hydrologic cycle. This cycle is incred-
ibly enormous and intricate having a bulky quantity of 
pathways with fluctuating period [31]. Key elements of 
hydrological cycle are precipitation (P), alteration of ter-
restrial storage of water (ΔTWS) with both subsurface and 
surface storage runoff (Q) that envelope infiltration, base-
flow also surface runoff and evapotranspiration (ET) those 
are valuable in assessing the equation of water budget for 
any basin.

Commonly, water budget equation can be given as [30]:

Water budgets furnish methods for evaluation of acces-
sibility and sustainability of the water supply. The water 
budget basically enunciates that the change in rate of 
stored water in a region, like a watershed, is balanced 
by the flow rate of water into and out of that region. The 
indulgence of water budgets and primary hydrologic pro-
cesses affords a core for effective resource of water with 
proper environmental planning and management [30]. 
For evaluating the consequences of changing climate and 
anthropogenic events on water resources, the modifica-
tions are perceived in water budgets of any region over a 
period can be measured. The effects of numerous factors 
like geology, land use, soil, and vegetation on the hydro-
logic cycle of different regions can be calculated. Water 
budgets deliver a foundation for valuation by means of a 
natural or anthropogenic alteration in a single portion of 
the hydrologic cycle possibly will distress the other fea-
tures of the cycle [30].

Therefore, the equation of water budget states that [30]:

The infiltration of water into the soil moves to the unsatu-
rated zone (ΔSu) and recharges the groundwater (ΔSgw) 
[32]. Groundwater (Rgw) and water of the unsaturated zone 
(Rsub) can also provide input to the river as subsurface run-
off. The runoff process comprises three elements like (a) 
the overland flow, (b) the interflow, and (c) the baseflow. 

P − ET − Q ± ΔTWS

Change in Storage = In Flow − Out Flow

The overland flow is also known as surface runoff (Rs) or 
Hortonian overland flow. The interflow (or subsurface run-
off Rsub) is the part of infiltrated rainfall that flows laterally 
across the upper soil layers until it achieves the stream 
channel. The baseflow (or groundwater runoff, Rgw) is the 
section of infiltrated rainfall that reaches the groundwater 
table and then discharges into the streams [32, 33]. The 
direct runoff integrated with the baseflow runoff provides 
to the total discharge (or streamflow). These elements and 
their inter-relations lead to the following formulation of 
equation [34]:

where P = precipitation  [hm3/time unit]; R = runoff (s: sur-
face, sub: subsurface, gw: groundwater)  [hm3/time unit]; 
E = Evaporation (s: surface, i: interception, t: transpiration) 
 [hm3/time unit]; ΔS = Change in storage over time  [hm3/
time unit]; 1  hm3 = 1 million  m3.

The movement of groundwater is along the flow 
paths of fluctuating lengths from recharge areas to dis-
charge areas. The universal flow paths begin at the water 
table, persist through the groundwater aquifer system, 
and terminate at the stream or at the pumped well. The 
groundwater flow in any section of aquifer is obtained by 
using transmissivity, the hydraulic gradient, and the area 
through which the water is moving. The groundwater flow 
through an aquifer is obtained from the equation [35]:

where Q = total groundwater flow through the section 
considered; T = average transmissivity in that section; 
i = hydraulic gradient; W = the width of the section being 
considered.

Humans alter the natural or pre-development flow sys-
tem by withdrawing (pumping) groundwater for usage, 
transforming patterns of recharge by irrigation and urban 
development, altering the vegetation types, and other 
anthropogenic activities. The source of water for pump-
age is supplied by (1) increased recharge of groundwater 
aquifer system, (2) decreased discharge, (3) removal of 
water that was stored in the system, or some combination 
of these three. Thus, the groundwater system serves both 
as a water reservoir and a water-distribution system [36].

4  Seawater intrusion: world scenario

SWI into coastal aquifers is recognized as a single possi-
ble footprint of recent climate change [37]. Throughout 
the twentieth century, the global mean sea-level (GMSL) 
amplified with a typical rate of 1.8 mm/year [38]. The rise 
in sea-level creates magnified pressure in coastal aquifers 

P = RS + Rsub + Rgw + Es + Ei + Et ± ΔS

Q = T × i ×W
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enduring inundation of land and reduction in riverine 
residue yield to estuaries [39]. The concern of such an 
enhancement in the sea-level is to intensify SWI into the 
coastal aquifers. The influences of unstable circumstances 
like sea-level and land use, during the Holocene on SWI 
in a 2-dimensional intersect at the Dutch coastline were 
assumed [40]. The development of salinization in consider-
able coastal aquifer systems, like Zona Citricola (Mexico), 
Laizhou Bay (China), Fortescue Marsh (Australia), Rhone 
Delta (France), Buan-gun (Korea), Saturna Island (Canada), 
and Shean–Harod (Israel) have been probed globally by 
different scientists and researchers [9, 13, 14, 41]. Numer-
ous works in Atlantic Canada have indicated the occur-
rence of SWI [42]. SWI was exposed to have emerged at 
Shippagan (NE New Brunswick) and Richibucto (SE New 
Brunswick), where over-pumping is the liable reason 
[43]. Seawater intrusion was also detected at Upper Law-
rence town and Summerside, where low freshwater head 
evolved in land-ward alter of the saltwater–freshwater 
edge with lessening or redeployment of withdrawing was 
consequently suggested [44, 45]. Due to the expansion of 
huge groundwater demand, intrusion has also been rec-
ognized at Pictou. In Prince Edward Island, saltwater intru-
sion seems to be arisen primarily owing to consequence of 
natural circumstances and even in areas with insignificant 
pumping [46, 47].

In several countries, like Cyprus, Israel, Mexico, and 
Oman, numerous dug wells all along the coastline have 
had to be ceased due to SWI [48]. In California, saline-
water from the Pacific Ocean has percolated into the 
coastal aquifer of Los Angeles Basin [49]. In these areas 
ever-increasing exploitation of the groundwater causes 
lowering of groundwater tables and caused SWI into the 
aquifers. These countries are facing a scarcity of adequate 
drinking water and either looked for substitute sources, 
such as imported water, or implemented expensive scien-
tific solutions, such as desalination technology.

Owing to excruciating anthropic exercise because of 
urbanization and proliferation of tourism with an approxi-
mate growth rate of 0.1 million guests/year that affects the 
coastal hydrologic systems the coastal regions of Phuket 
Island confront the jeopardy of SWI [10]. Geo-electrical 
surveys of four lines were prosperously operated in the 
field of study in this research. High resolution subsurface 
resistivity irregularity of seawater intrusion is shown by 
two-dimensional (2D) inversion models from the resistivity 
data. With the objective to know the history of a saltwater 
affected groundwater system and its presumably response 
to historic and future changes a study was accomplished 
in the Danish-German border neighboring the Wadden 
Sea [50]. In this study, integrated hydrogeological, geo-
physical, and geochemical data with a numerical density 
dependent groundwater flow and transport model were 

used. Airborne electromagnetic data exhibiting saltwater 
up to 20 km inland is competently compared with the 
stretch of the resembled SWI. The results explain the salt-
water originating from a combination of laterally intruding 
seawater and vertically infiltrating transgression water.

More than 50% of population in Africa reside in coastal 
areas with the demand of freshwater as a basic human 
need in the limelight [51]. The coastal strip hydrosystems 
with 38% of the African coast is vigorously distressed 
by human developments and is assorted by the United 
Nations Environment Programme (UNEP) in 1998 as under 
arduous menace due to over-development [52]. Because 
of lofty permeability and lower hydraulic gradient aris-
ing from huge principal porosity and minor karstification, 
salinity pollution is enormously noticeable in regions with 
coral limestone. Amongst the most endangered aquifers 
owing to SWI created by groundwater over-utilization is 
also located along the Kenyan south coast aquifer system 
(Tiwi) in East Africa [53]. Utilizing climatic and geophysi-
cal data to evaluate the contemporary stretch, previous 
development and drivers of coastal aquifer salinization 
was studied [54]. Local aquifer lithology, groundwater 
abstraction and freshwater recharge in floodplains con-
trol SWI spatial designs which are revealed by geophysical 
data. Over the past 30 years the saltwater front has pro-
ceeded towards the well-field by as far as 2 km and rose by 
as high as 80 m that reciprocates with a maximal velocity 
of about 60 m/year horizontally and 2 m/year vertically 
which is shown by comparison with previous (1984) resis-
tivity data. A study on SWI in Port Sudan in 2015 reveals 
that the interface between the fresh and brackish water is 
about 8 km from the coast but off the coastline it is about 
2 km [55].

Likewise, because of stress affiliated with increased 
demand of water and climate change, SWI has been fea-
tured as a hazard to Australia’s coastal aquifers in all states 
and the Northern Territory [56]. The zones of highest risk to 
SWI in unconfined aquifers at Derby, West Australia (WA) 
and Esperance (WA) as well as confined ones at Esper-
ance (WA) and Adelaide, South Australia (SA) are spotted 
through the physically based, analytic method [57]. This 
method gives information on the expanse of seawater 
in aquifers and the alteration from passive to active SWI, 
where active SWI concludes about the inland movement 
of the interface under a land-ward sloping hydraulic gradi-
ent [58, 59].

A model is a basic illustration of the complex natural 
world. An infrastructure to synthesize information of the 
field and conceptualize hydrological processes quantita-
tively is bestowed by a model of groundwater. These mod-
els have significant roles concerning both development 
and management of the groundwater resources, and in 
forecasting the consequences of management measures. 
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Owing to rapid expansion of computation technology, 
spacious accessibility and accessibility of numerous mod-
eling software, the modeling of groundwater has turned 
a worthy tool for specialized hydrogeologists for efficient 
execution of majority tasks [60].

The coastal aquifers management needs cautious 
developmental schemes of extraction procedures to con-
quer SWI. In coastal aquifer, the prediction and control of 
saltwater circulation may be achievable by integrating 
different types of models. With the advancement of com-
puter technology and proficient numerical codes, numer-
ous case studies on SWI have been presented worldwide 
applying 3D numerical models [61]. There has been 
increasing curiosity in exploring the dilemma of inland 
boundary conditions and SWI due to rise in sea-level, 
which have a considerable impact in recent times [62]. A 
FVCOM-based numerical model was built to analyze the 
seasonal changeability of currents and salinity in the Indus 
River Estuary, Pakistan [63]. The model was thoroughly cal-
ibrated with monitored data of water level, current veloc-
ity and salinity. Similarly, a FEFLOW model was created to 
scrutinize the collective paraphernalia of over-abstraction 
and SWI in the Pingtung Plain coastal aquifer system, Tai-
wan [64]. The model was created in distinctive layers to 
signify the three aquifers and two aquitards.

4.1  Saltwater intrusion meetings (SWIMs)

The Saltwater Intrusion Meetings (SWIMs) are a sequence 
of conferences/meetings that has been organized all over 
the world, in various countries on a two-yearly basis since 
1968. The primary aim of SWIMs is to integrate the people 
for acquiring advanced technological knowledge about 
innovative discoveries and exchange knowledge of SWI in 
groundwater systems [65]. The first benefaction of SWIM 
about the use of numerical techniques was done by Ver-
ruijt (1972) [66]. He illustrated the principles of the finite 
element method and exhibited two applications regarding 
theoretical problems of freshwater–saltwater interface. A 
handful of SWIM benefactions contend with (1) the flow 
of saline groundwater in inland aquifers like the genesis 
and migration of brines originating from leaching of salt 
domes or stratiform salt deposits [67]; and (2) the pres-
ence of brackish and saline groundwater due to aridity 
[68]. In Husum, Germany, in the year 2014, the number of 
participants in SWIM has the apex at 165 over the years. 
The fifth SWIM arranged in a Baltic country from 17th 
to 22nd June 2018 is the 25th SWIM in Gdańsk, Poland. 
Considering the methods of all technical and managerial 
execution to protect and restore the water bodies and the 
environment as well the scope of SWIM changed succes-
sively and extended a great deal from sheer over-use of 
coastal and continental aquifers which may be influenced 

by saltwater to all the facets of a sustainable development 
of groundwater resources. During early 2000s, to label SWI 
at the global scale SWICA (Saltwater Intrusion in Coastal 
Aquifers) was established and an enterprise created. In 
the year 2001, Essaouira, Morocco, the first SWICA meet-
ing was held, and in the year 2003 the second event was 
conducted in Merida, Mexico. In the year 2006, a joint 
SWIM-SWICA conference was scheduled in Cagliari, Italy. 
To amalgamate both the groups as SWIM and to schedule 
a conference every 2 years was decided in this first joint 
meeting. The first Asia–Pacific Coastal Aquifer Manage-
ment Meeting (APCAMM) was held in 2009. Having simi-
lar objectives as the SWIM, this conference has a specific 
geographic focus. In the year 2016, SWIM and APCAMM 
were organized jointly in Cairns.

5  Seawater intrusion: Indian scenario

The Indian coastline is having around 7500 km extent, 
including the coastline of mainland of 5400 km. Almost 
25% of entire residents of India inhabits into the coastal 
belts of the country and there is an incessant urban sprawl 
in the coastal regions. Figure 1 represents major coastal 
states affected by seawater and SWI studies conducted in 
various parts of coastal India. Many of the coastal dwell-
ers are dependent of groundwater to meet their daily 
needs. Therefore, there is a requirement for the sensible 
utilization of groundwater in such regions [69]. According 
to report of integrated coastal zone management project 
(ICZMP) almost 250 million communities reside within 
50 km from the shoreline of India [70]. Consequently, the 
environmental amenity of oceanic and coastal ecosystems 
of India plays an essential responsibility in India’s eco-
nomic development. The coastal province of India bestows 
a diversity of geomorphological segments and landforms 
evolved during numerous aspects like marine and aeolian 
actions, different category of rock, atmospheric, climatic 
and the fluvial impacts, tectonics, land cover and differ-
ent categories of topography. The state wise division of 
coastline length and characteristic features are provided 
in Table 1 [71].

Distinguishable mechanisms are responsible for SWI in 
coastal territory of India. Earlier reported mechanisms pro-
claim that SWI owing to excessive exploitation of ground-
water [72].

A strong opinion arises from most of the researchers is 
as follows: chloride symbolizes as an archetypical tracer 
of SWI and in perceiving a difference in active intrusion 
from freshwater flushing. Also, it assists in interpreting the 
relationships involving brackish water entities, adjoining 
freshwater within coastal sandstone along with carbon-
ate aquifers [73]. Multitudinous studies also probe into the 
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Fig. 1  Seawater influenced Coastal states and SWI studies in India
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inevitable circumstances of SWI and endeavor to acknowl-
edge the freshwater—seawater edge through analytical 
and hydrochemical techniques [4]. Kumar et al. (2015), 
premeditated the SWI in a shallow aquifer of Periyar River 
Basin, Kerala [74]. The results of the resistivity study indi-
cate that the clay horizons with excessive salinity. SWI and 
anthropogenic activities like salt panning were assessed 
in Thamirabarani delta of Tamil Nadu [75]. The engineer-
ing management plan like construction of weir across the 
Thamirabarani River near Mukkani village has been pro-
jected. By introducing this plan, the freshwater of the river 
can be deflected to the salinity contamination and sea-
water invaded regions to convalesce the circumstances. 
Geospatial technology-based seawater mixing index (SMI) 
was carried out on Southern India [76]. Bestowing to the 
final GIS map, maximum portion the region was harshly 
affected by SWI owing to over-exploitation of groundwa-
ter. Major parameters like  Na+,  Cl–,  Mg2+, and  SO4

2– were 
considered to prepare the SMI by using overlay analysis 
method in GIS platform. Stable isotopic signature (18O and 
2H) play an important role to ascertain the derivation in 
the source of groundwater and intermixing mechanism 
amongst both the fresh groundwater and the seawater 
[77]. A stable isotopic (δ18O and δ2H) study was conducted 
in Mahanadi delta, Bay of Bengal, Odisha. Here, the iso-
topic signature indicates that the intermixing of seawa-
ter and fresh groundwater owing to inland intrusion of 
seawater in this coastal region [16]. Another study was 
conducted in the coastal region of Puri district, Bay of 
Bengal, Odisha [78]. This study reveals that the aquifers of 
this region are subjected to continuous influence of sea-
water–groundwater mixing. According to various studies, 
over-exploitation and over-pumping is the primary cause 
of SWI in the coastal region of West Bengal and therefore 
various geophysical and geochemical investigations are 
carried out to identify the SWI [79–82]. In the coastline of 
Andhra Pradesh, rise in sea-level plays a significant role 
in enhancing the SWI with deteriorating the quality of 
groundwater and degrading the agricultural lands [83, 84]. 
Similarly, a hydrochemical investigation was carried out 
in Thane district, Maharastra, signifies that the low-lying 
zones are influenced by the SWI owing to the backwater 
of the sea through the rivers [85, 86]. Numerous investi-
gations reveal that, in the coastal belt of Karnataka, SWI 
is mainly influenced by over-exploitation of groundwater 
resources and tidal activities [87–89].

SEAWAT modeling has been employed to model the 
SWI in the Nagapattinam coastal aquifers, Tamil Nadu 
[90]. According to this model, SWI was primarily owing 
to ingress of salinewater through over-indulgence of 
groundwater abstraction. The influence of SWI was estab-
lished in the southern India by Kanagaraj et al. (2018) 
[91]. In this study geophysical, geochemical, and stable Ta
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isotope techniques like seawater mixing index (SMI) and 
base exchange index (BEX) were used to determine the 
SWI [92]. According to this study, about 201 km2 area is 
affected by SWI. The coastal region of Thiruvallur district, 
Tamil Nadu indicates a gradual intensification of SWI due 
to over-abstraction of fresh groundwater [93]. In this area, 
in the year 1969, the freshwater–seawater interface has 
occurred 3 km away from the coast. According to the Cen-
tral Groundwater Board (CGWB) it has been found to be 
shifted to an expanse of 13 km from the coast [20]. A vul-
nerability analysis was employed in the coastal aquifers of 
southern India using GALDIT model [94]. This study reveals 
that an area of 4.5 km2 (1.58%) extent over distinctive sites 
of southwest coast of Kanyakumari district are extremely 
vulnerable zones to SWI. According to the report of CGWB, 
the status of salinewater aquifer in the coastal region of 
India are given in the Table 2.

6  Seawater intrusion: present scenario 
of Gujarat

Gujarat state is located on the western coastal region 
of India and extended between  20o 06′ 00″ N to  24o 04′ 
00″ N and  68o 10′ 00″ E to 72° 28′ 00″ E latitudes and 

longitude respectively (Fig. 2). Having an overall area of 
1, 96,024 km2, Gujarat is the 9th biggest state in India. 
Its coastline is 1600 km long, which is nearly 1/3rd of the 
entire coastline of India and the longest one of the coun-
tries. To the west and southwest Gujarat is delimited by the 
vast Arabian Sea, by Pakistan to the northwest, Rajasthan 
to the North, Maharastra to the South and Madhya Pradesh 
to the east. The coastal belt of 1125 km stretches from 
Bhavnagar to Lakhpat borders Saurastra and Kachchh 
districts of Gujarat. It has overall population of 6.03 crore, 
almost 4.99% of entire population of India. The major 
districts affected by salinity in Gujarat are Ahmedabad, 
Amreli, Anand, Bharuch, Bhavnagar, Porbandar, Jamnagar, 
Junagadh, Kachchh, Navsari, and Surat [95].

The Gujarat coast is split up into five zones viz., Rann of 
Kachchh, the Gulf of Kachchh, the Saurashtra coast, the 
Gulf of Khambat, and the South Gujarat coast from west to 
east on the ground of geomorphic features. For major part 
of the year, the Rann of Kachchh (area about 22,000 km2) 
continues to be saline desert and during monsoon it turns 
marshy when it becomes over-loaded partly by river water 
and partly by that of tidal. The surface is enclosed with a 
layer of salt and shingle when dry. Except in a few small 
higher regions with accessibility of some freshwater no 
vegetation is flourished here. The Great Rann (northern 

Table 2  Traces of salinewater in the coastal region of India

Coastal region Location Depth (meters 
below ground 
level)

Electrical con-
ductivity (μS/
cm)

Total dis-
solved solid 
(ppm)

Chloride (ppm)

East Coast
Tamil Nadu and Puducherry Bhuvanagiri- Chidambaram- Porto Novo 

belt, south of Tranquebar (Tharangam-
badi) up to south of Nagapattinam 
district including Karaikal region

100–300 30,000

Tiruvallur and Tuticorin districts 4–200 11,000–1,36,800 4000–74,000
Andhra Pradesh Peddada, Amalapuram, Dangeru, 

Cheyyeru and Peddagadimoga in East 
Godavari district

94–300 > 600

Odisha Balasore, Bhadrak, Jajpur, Kendrapara, 
Jagatsinghpur, Cuttack, Puri and 
Khurda.

98–110 17,573

West Bengal South of Behala-Sonarpur-Bhangar area 150 5960–41,350 1750–6300
Southern part of Haora district 160 6830
Haldia-Digha coastal tract 40–60 9000–26,000

West Coast
Kerala Chellanum in Ernakulam district and 

Azhikode in Thrissur district
40–60 (Shallow) 3000

Karnataka and Goa Hangarkatta in Kundapura block of 
Udipi district

Shallow 4230 980

Maharashtra Thane and Raigarh districts Shallow > 2250
Gujarat Bhavnagar, Una, Madhavpur, Maliya, 

Lakhpat, Surat, Bharuch, Vadodra, 
Kachchh districts

30–200 > 2250 > 2000
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Fig. 2  Seawater influenced Coastal districts and SWI studies in Gujarat
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parts of Rann) and the Little Rann (eastern parts of Rann) 
are the additional splitting of the Rann. The lower Indus 
deltaic plain featured with tidal creeks and mangroves lies 
on the west of the Great Rann of Kachchh. In the Gulf of 
Kachchh the coastline has substantial mudflats and it is 
extremely indented with several rocky islands. The coast 
is braided by coral reefs and mangroves here. Algae, salt 
marsh, dunes, and salt pans also are very common [96].

The Saurashtra coast has numerous cliffs, islands, 
tidal flats, estuaries, embayment, coastal depressions or 
low-lying areas locally termed as ‘Ghed’, sandy beaches, 
dunes, spits, bars, bays, marshes, and also upright beaches 
at some places in Peninsular Gujarat. In Gulf of Khambat, 
the coast is indented by estuaries and consists of mudflats, 
dunes, and beaches. The coast of south Gujarat is relatively 
invariable and indented by a series of creeks, estuaries, 
marshes, and mudflats. From Great Rann to south Gujarat 
coast, the coast of Gujarat gives out confirmation for both 
emergent and submergent coasts [95, 96].

6.1  Hydrogeology of Gujarat

The diverse terrain conditions have given rise to different 
groundwater situations in the state. The rock formations 
ranging in age from Archaean to recent include gneisses, 
schists, phyllites, intrusive, medium to coarse grained 
sandstones, basalts, and recent alluvium [95]. A general-
ized geological map of the Gujarat illustrating primary 
geological formations is given in Fig. 3. The high relief 
area in the eastern and north eastern part occupied by 
Archaean and Deccan Trap have steep gradient allowing 
high runoff and therefore, have little groundwater poten-
tial. The yield of wells in these formations range from 5 
to 10 m3/h where the yield in sandstones varies from 50 
to 170 m3/h and in wells tapping quaternary alluvium in 
Cambay basin ranges between 75 and 150 m3/h. The top 
aquifer among the five major ones in alluvial sediments 
has dried up due to excess withdrawal [95, 96]. A miscel-
lany of hard and fissured formations incorporating basalt 
and consolidated sedimentary formations beside semi-
consolidated sediments engrosses virtually the whole Sau-
rastra and Kachchh areas advancing the low–lying coastal 
zones. Moderate yield potential is obtained from the dis-
continuous aquifers brought about by the rocks with com-
pact and fissured character and an aquifer originated by 
the friable semi-consolidated sandstone. In the state of 
Gujarat, the coastal and deltaic regions create a narrow 
linear strip underlain by tertiary sediments and alluvium. 
Salinity is an inhibition for amelioration of groundwater 
despite highly potential aquifers present in these regions. 
Ahead of the coast, Rann of Kachchh and in parts of The 
Dangs, Surat and Bharuch districts, the shallow water lev-
els of less than 5 mbgl were identified [95, 96].

In Valsad and Kachchh, the average decadal rainfall 
ranges from 2338 mm to about 469 mm respectively. The 
average annual rainfall is 510 to 760 mm in Peninsular 
Gujarat though in the central parts around Junagarh it is 
higher up to 1100 mm. In southern districts like Vadodara 
and Bharuch the difference of rainfall is from 760 to 
1525 mm, but in the neighborhood of Surat, Navsari and 
Valsad districts which are still more southern, it is higher 
ranging from 1525 mm to 2000 mm [95, 96].

6.2  Seawater intrusion in Gujarat

Ingress of seawater by massive recession of groundwater 
and scanty rainfall, converts accessible resources of fresh 
groundwater to a saline belt among the coast of Gujarat. 
As a result, the cultivable lands turn barren, the water in 
the dug wells become saline which is unacceptable for 
agriculture and lose its portability. 779 villages with an 
extent of 1.65 million hectares and a population of 1.33 
million are affected by salinity ingress as per the data of 
the year 1976 [97]. To recommend preventive measures 
for salinity ingress and establish remedial procedures to 
compensate the previous damages, High Level Commit-
tees (HLC) were appointed by Gujarat Government in the 
year 1976 and 1978. Accreditation of a yearly study to 
screen the areas exaggerated by the ingress of salinity was 
suggested by the HLCs. Similar yearly operation was latest 
done in year 2007–2008. An altogether augment of 15% 
area in salinity ingress, involving a supplementary 88,947 
hectares of exaggerated area was reported in comparison 
with the base data of the year 1977–1984.

During the time period from 1977 to 2008, there were 
increase by 92% and 85% in the areas affected by SWI in 
Madhavpur-Malia and Lakhpat-Malia respectively. A loss 
of 1237 hectares was observed in Una-Madhavpur Reach 
due to inundation by seawater.

In the year 2007, Groundwater Resources Development 
Corporation (GWRDC) and Groundwater Division, Rajkot 
collected samples of groundwater from 88,626 observa-
tion wells of coastal zones and an analysis of groundwater 
quality was done [98]. The results reveal that the quality 
is unsafe and unacceptable in most of the areas as shown 
in Table 3. Presently, approximate 12% of the coastal ter-
restrial zone is saline, which is closed to a global average of 
7%. As the groundwater is declining by 3–5 m/year, caus-
ing the salinity ingress to 0.5–1.0 km/year.

The groundwater recourses of entire coastline had 
been affected by salinity ingress qualitatively. According 
to a baseline study, 540 villages out of total 1165 coastal 
villages were victims of drinking water knots like absence 
and lack of source and unacceptable quality of water [99].

Desai et  al. [100] investigated hydrochemical char-
acterization of SWI in the stretch of Mangrol-Chorwad 
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Fig. 3  Geological map of Gujarat (adopted from Bhukosh, Geological Survey of India)
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coast, Saurashtra, Gujarat. To find out the reason of esca-
lating salinity in the groundwater, the geohydrological 
and geochemical data of key aquifers in this province 
was analyzed. Three distinguishable categories of water, 
such as I, II and III based on the total ion chemistry and 
the  Cl−/(HCO3

− + CO3
2−) ratio was found. The representa-

tion of hydrochemical zonation followed the order from 
northeast to southwest with progressively greater salinity 
towards the coast.

The groundwater hazards evaluation was carried out 
in a coastal district Jamnagar of Gujarat [101]. From this 
study, it was revealed that, about 181 villages of this dis-
trict were devastated by excess total dissolved solids, 39 
villages with excess fluoride and 2 villages by means of 
both excess total dissolved solids (TDS) and fluoride. In 
this area, groundwater contamination was principally 
due to the natural salinity of rocks or sediments, seawa-
ter ingress. Toxic elements like lead (Pb), nickel (Ni) and 
radicals  (SO4

2−,  NO3
−,  Cl− and Fluoride) zones had been 

recognized and delineated in brackish groundwater. Anal-
ysis of the groundwater as well as SWI for the section of 
limestone zone of coastal Gujarat, India had been carried 
out [102]. Three different sites of limestone mines in prox-
imity were distinguished covering a zone along the Guja-
rat coast, India with excess values of TDS (> 4000 mg/L), 
Cl (> 2000 mg/L) and also the ratio of  Cl−/HCO3

– > 1, were 
shown by the hydrochemical statistics of different ground-
water samples. The presence of SWI into the coastal aqui-
fer was assumed from these data. Measurement of WQI 
for groundwater in respect of SWI was studied at coastal 
area of Surat City [103]. APHA standard procedures were 
followed for hydrogeological and geochemical analysis of 
25 collected samples of groundwater. In winter season, the 
WQI of the samples was ranged from 418.65–2281.15 and 
in summer season, it was 936.89–2411.65. Approximately, 
99% of the samples surpassed the maximum of WQI for 
drinking water i.e. 100. The higher value of chloride, chem-
ical oxygen demand (COD), fluoride, hardness, iron, salin-
ity, and total dissolved solids in the groundwater caused 
higher values of WQI of these sampling sites. The perma-
nent nature of hardness of water is indicated by the signifi-
cant interrelation of magnesium and chloride. Identifica-
tion of salinization in coastal aquifers of Sabarmati River 

Basin was investigated by isotopes as well as ion chemis-
try. A study shows the electrical conductivity of shallow 
groundwater in the coastal borders generally varies from 
1500 to 4500 μS/cm excluding in the region between Sikka 
and Hadiyana of Jamnagar coast [96]. Nevertheless, strips 
of Kachchh and Saurashtra coasts and parts of Gulfs of 
Kachchh and Khambat are also there with electrical con-
ductivity values above 4500 μS/cm. As the coastal tracts 
are influenced by SWI the quality of groundwater in the 
Miliolite limestone mostly in areas of 2–4 km inland from 
the coast is good. The quality of groundwater is generally 
just slightly fresh in owing to intrinsic salinity of ground-
water formation and intercalation of clays. The shallow 
groundwater is mainly brackish to saline in the mainland 
coastal belts of southern Gujarat excluding more south 
in Valsad district where electrical conductivity is less than 
1500 μS/cm. In deeper aquifer the quality of groundwater 
is saline in large parts.

In Porbandar coast,  D2 and 18O isotopes on saliniza-
tion of groundwater into adjacent saltpans were ana-
lyzed [104]. Water samples from different sources such 
as saltpans, dug wells, seawater and bore wells were col-
lected and analyzed for various anions and cations. This 
study indicates that the deviation of ionic ratios  (Na+/
Cl−,  Ca2+/Mg2+ and  SO4

2−/Cl-) with δ2H and δ18O signifies 
that the saltpans are not responsible for the worsening 
in the quality of groundwater [105]. In this study, δ18O 
and δ2H isotopes were incorporated with ionic ratios 
to delineate SWI. The Hydrogeochemical evaluation of 
groundwater in Narmada-Mahi Inter-Stream region was 
studied to mark out suitability for irrigation and domes-
tic purposes [106]. δ18O isotopic dissimilarity and alloca-
tion in groundwater samples of this area signifies that 
the quality of groundwater within this region is highly 
diverse as well as intricate due to influence of SWI, inher-
ent sediment salinity, over-exploitation, and pollution. 
Stable isotopic study was conducted to assess SWI in 
coastal aquifers of Kachchh district [107]. According to 
the hydrochemical study, majority of the samples indi-
cated NaCl type of facies. Various ionic ratios and stable 
isotopic study suggested that, the coastal regions are 
prone to SWI. Different cationic and anionic ratios like 
SO2

4 −/Cl−,  Mg2+/Ca2+,  K+/Cl− and  Na+/Cl− were analyzed. 

Table 3  Results of water samples collected from coastal areas. Source: Data provided by GWRDC and Groundwater Division, Rajkot, 2007 
[98]

Parameters Water quality zones

Freshwater zone Low salinity zone Medium salinity zone High salinity zone

Total dissolved solids (ppm) < 2000 2000–4000 4000–6000 > 6000
Number of Samples 359 270 118 139
Percentage 41 30 13 16
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The salinity in groundwater in inland areas was per-
suaded due to variety of anthropogenic activities, over-
exploitation, and over-pumping.

In the year 2009, near Kovaya limestone mine, Sau-
rashtra coast, SWI was studied [108]. In this study, total 
27 dug wells were selected. Sampling had been done in 
April and September 2006. Excessive concentration of total 
dissolve solid (> 1000 mg/L) and chloride (103–3899 mg/L) 
contents were revealed by the analysis of the groundwa-
ter samples. On selected profiles of study spot ‘Resistivity 
Imaging Survey’ had correspondingly been implemented. 
The lowest zones of resistivity (0–3 m) were diagnosed 
within the underneath part of the resistivity depth through 
the electrical resistivity tomography images. SWI might be 
interpreted by these low resistivity zones. In close bound-
aries of seashore, anticipation of SWI for mining activity 
was studied by Singh et al. (2013) [109]. The study area is 
located 30 km towards the southern part of Bhavnagar 
district and belongs to Gujarat Mineral Development Cor-
poration (GMDC). By means of Ghyben–Herzberg principle 
regarding freshwater–salinewater interface, remote sens-
ing and ground authentication were used to study the SWI 
into the lease area of entire mining portion. Monitoring of 
groundwater table and electrical resistivity survey were 
performed in the year 2004. The result of study manifests 
the absence of SWI here. In Surka Mining Lease Area, 
Gujarat, the geophysical classification of salinity ingress 
was studied by Singh et al. (2015) [110]. The high salin-
ity ingress along the entire stretch of Rampar River had 
been observed. Instability between tidal water cycle and 
oceanic deposition owing to involvement among mature 
strand lines might be the probable reasons. The conspic-
uous factors such as inherent salinity, tidal reversal and 
marshy land along shore zone are responsible for the fore-
most causes of salinity ingress observed in this region.

Impact of seawater intrusion on coastal aquifer of 
Bhavnagar was studied by Pateliya et  al. (2016) using 
GALDIT method [111]. Following parameters such as 
groundwater incidence like aquifer category (confined, 
leaky confined and unconfined), hydraulic conductivity 
of aquifer, groundwater level with respect to mean sea-
level, the distance of inland with perpendicular to shore-
line, effect of accessible condition of SWI in the region 
and depth of aquifer are the basic of GALDIT index. Each 
of the GALDIT factor has been assessed through the vari-
ant by conveying a relative weight to establish the rela-
tive importance of each factor. Every six parameters have 
encoded with a preset weight, which indicates its relative 
importance to SWI. GALDIT map of Bhavnagar coastal area 
indicated that maximum part of this coastal zone is not 
vulnerable to salinity ingress. Around 85% area have low 
vulnerability, 10% area have medium vulnerability and 5% 
area is highly vulnerable.

6.2.1  Modeling of seawater intrusion in Gujarat

Numerous studies related to SWI and the modeling of 
solute transport is executed to manage the vast coastal 
zones of India [62]. In India, numerous models for SWI are 
bestowed by various research groups using various numeri-
cal modeling software like MODFLOW, SEAWAT, FEFLOW, 
GALDIT, NEWSAM etc. which provide more convenient and 
esteemed techniques to assess, understand and forecast SWI 
[112, 113].

Groundwater modeling was also applied in coastal aqui-
fer of Veraval area of Gujarat [114]. In this study, SUTRA 
(Saturated–Unsaturated TRAnsport) model, the latest ver-
sion i.e. V09972D was employed to simulate the process of 
SWI. Extracting and influx of coastal region was predicted 
for three distinctive periods of time (May 1975, Nov 1976, 
and May 1995) using the model. Under steady state environ-
ments, the SWI was modeled in coastal region of Saurash-
tra, Gujarat. Hele–Shaw model of SWI was studied around 
Surat city, Gujarat [115]. The mode Hele–Shaw was used in 
this study to assess the progress and shifting of seawater 
interface both the condition (with and without) of recharge 
state for three different regions of Surat City. To analyze the 
magnitude of worsening in the quality of groundwater, the 
physico-chemical parameters were also determined. To 
quantify the parameters, it is much essential to formulate the 
model from the information of the observation well. Owing 
to the recharge rates of 2.175 × 10−3  m3/s/m and 10.73 × 10−3 
 m3/s/m, the revulsion of intrusion in initial condition was 
estimated to be 90% (17.91 km) and 50% (9.95 km). Shah 
et al. (2015) assessed the temporal and spatial changes of 
salinity by Inverse Distance Weighted Modeling in ArcGIS 
[116]. Last 15 years data of well location and correspond-
ing quality data of GWRDC were used to generate 2D maps 
of spatial distribution of Static Water Level (SWL), Chloride 
(Cl) and Electrical Conductivity (EC) to study the temporal 
and spatial distribution of the salinity for the periods of pre- 
and post-monsoon. These maps were used to detect the 
interchange of the seawater and freshwater interface and 
subsequent SWI over the last 15 years, if any. The study con-
cluded that, the groundwater has become more saline over 
the years. As per the Ghyben–Herzberg principle, in some of 
the region, the seawater level has been increased over the 
years which are directly distressing the groundwater quality.

7  Impact of salinity contamination 
in Gujarat

7.1  Health impact

Kidney stones, fluorosis, intestinal ailments, and many 
other diseases due to intake of brackish water affected 
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Coast dwellers. Coastal Salinity Prevention Cell (CSPC) 
accomplished a baseline study on 1165 villages in the year 
2007–2008 (Table 4) [117].

7.2  Ecological impact

Impacts of SWI are principally coupled with deprivation 
of resources of freshwater and contamination of the wells 
meant for supply. The degradation of environment due to 
SWI is universally connected with the agrarian use of the 
groundwater of high salinity. Consequently, it altered the 
chemistry of soil and reduced its fertility [118, 119]. Salinity 
of the soil adversely affects crop productivity. Salt sensi-
tive crops like pulses and oil seeds suffer a lot because of 
excess soil and groundwater salinity [119].

7.3  Socioeconomic impact

In the coastal areas of Saurastra, salinity has been observed 
to victimize 0.7120 million hector areas, 534 villages, 1.88 
million people and 32,750 wells. Because of deteriora-
tion in quality of groundwater due to salinity, undesirable 
consequence on farming products and agriculture-based 
industries due to over-pumping by farmers, the economic 
condition of this area was highly affected. For these rea-
sons, also migration of community is increasing toward 
the nearby urban areas.

8  Management plans for coastal aquifers 
in Gujarat

The management of coastal aquifers includes socio-
economic and environmental well-being obtained from 
coastal groundwater assets. Today’s challenge for environ-
mental managers is to install efficient techniques to regu-
late SWI and facilitate a flawless exploitation of ground-
water resource.

In the literature, earlier research works have anticipated 
numerous counter tools and techniques to restrain or miti-
gate SWI. These control and management approaches may 
be concise into two core methods: (1) utilization of hydrau-
lic barriers (artificial recharge techniques) to balance the 

freshwater head loss; and (2) construction of the sub-
surface physical barriers to decrease the intrusion or to 
prevent it [120]. The other type is the sub-water-storage 
blocks with an infrastructure tie upon bedrock of the aqui-
fer and an unwrap crest next to the higher division of the 
aquifer [121, 122]. The sub-water dams are most practi-
cably used in areas with 1°–5° slope [123]. According to 
their study, the subsurface barriers are favorably built in 
the sites with greater hydraulic conductivity like deep allu-
vial layers, riverbeds with sand and gravel and weathered 
zones.

9  Way forward

The most important scientific challenge meant for SWI 
management in coastal aquifer of Gujarat is the execu-
tion of SWI awareness, pertaining to hydrogeochemical 
processes, investigative mechanisms, and management 
approaches. The detailed geometrical studies of aquifer, 
circulation of the freshwater and brackish water within the 
system, regular monitoring of the withdrawal and inter-
change of freshwater and salinewater interface are most 
important to manage the groundwater system. Engineer-
ing and pumping control techniques require being inte-
grated into decision support systems, connecting between 
biophysical models with societal constraints, as efficient 
in advance fields of management of water resources. An 
innovative barrier system, the mixed physical barrier sys-
tem (MPB) integrated with an impervious cut off barrier 
and semi-permeable subsurface can also be constructed 
to control the SWI. This technique is more applicable in 
aquifers with high hydraulic conductivity (e.g. gravel, 
sand, silt) in which the velocity of groundwater flow is 
high. The artificial recharge by surface water infiltration is 
another engineering technique, which universally appli-
cable to resolve this dilemma. This technique is applied to 
boost the piezometric levels and to upgrade the quality 
of the groundwater. Diminution of abstraction from wells 
through pumping is the easiest, shortest, and lucrative 
measure to sustain the groundwater balance within the 
aquifer system and manage the dilemmas of SWI. Never-
theless, this prospect of decreasing the abstraction can be 

Table 4  Villages affected by 
various diseases at various 
distances from sea coast. 
Source: Compiled from 
data provided by CSPC, 
Ahmedabad, 2007–2008 [117]

Total no. of villages facing health problems Diseases type

Kidney stones Fluorosis Intestinal 
Problems

890 337 753

Distance of affected villages from sea coast < 5 km 347 151 307
5–10 km 236 87 99
> 10 km 307 207 277
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restrained within certain areas with respect to the require-
ment of groundwater needs [124]. Apparently, an ancil-
lary supply of water must be premediated to replace the 
groundwater abstraction/pumping.

Artificial recharge via injection well and/or pond infiltra-
tion is implemented utmost largely to reduce salinity in 
unconfined coastal aquifers [125]. From diverted surface 
water, both the injectant and infiltrant are obtained. This 
surface water could be an amalgamation of runoff from 
natural sources, synchronized flows from reservoirs, and 
freshwater imported by other natural sources [126].

GIS integrated with geophysical methods like vertical 
electrical sounding (VES), electrical resistivity tomography 
(ERT) and ground penetrating radar (GPR) are eminent 
technique to identify salinewater intrusion [127]. These 
geophysical techniques should be applied to identify and 
forecast SWI in the coastal region of Gujarat.

10  Conclusion

In this study, we have undertaken an evaluation of the vul-
nerability of Gujarat’s coastal aquifers to SWI. We also focus 
on the various scientific studies and management options 
which can be adopted here to combat with the menace of 
SWI. Therefore, it can be concluded from the present study 
that for impact assessment of SWI on surrounding environ-
ment, the capability of engineering techniques should be 
enhanced by involving additional widespread investiga-
tion tools such as hydro-ecological study of the coastal 
regions. There is a need for more expertise and experi-
ence of the local researcher within the region to develop a 
larger dimension to invent and apply additional innovative 
techniques to investigate the SWI with collaborating and 
facilitating the accessibility of previous data of groundwa-
ter. This will create much potential to perceive trends in the 
seawater ingress into the aquifer system of the coast and 
build forthcoming predictions of probable circumstances 
under diverse climatic and anthropogenic environments.

Furthermore, due to the extensive differences in geo-
logical, geomorphological, and climatic structure along 
the Gujarat coast, it is desirable to implement the mitiga-
tion approaches based on local circumstances. Neverthe-
less, it is much desirable that involvement, association, and 
dynamic contribution of each individual at the local level 
are essential for effective management of SWI. The primary 
importance is the awareness among the communities 
reside in coastal regions for the sustainable development 
of coastal groundwater resources.
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