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A B S T R A C T   

Attribution of high-impact weather events to anthropogenic climate change is important for disentangling long- 
term trends from natural variability and estimating potential future impacts. Up to this point, most attribution 
studies have focused on univariate drivers, despite the fact that many impacts are related to multiple com
pounding weather and climate drivers. For instance, co-occurring climate extremes in neighbouring regions can 
lead to very large combined impacts. Yet, attribution of spatially compounding events with different hazards 
poses a great challenge. Here, we present a comprehensive framework for compound event attribution to 
disentangle the effects of natural variability and anthropogenic climate change on the event. Taking the 2020 
spatially compounding heavy precipitation and heatwave event in China as a showcase, we find that the 
respective dynamic and thermodynamic contributions to the intensity of this event are 51% (35–67%) and 39% 
(18–59%), and anthropogenic climate change has increased the occurrence probability of similar events at least 
10-fold. We estimate that compared to the current climate, such events will become 10 times and 14 times more 
likely until the middle and end of the 21st century, respectively, under a high-emissions scenario. This increase in 
likelihood can be substantially reduced (to seven times more likely) under a low-emissions scenario. Our study 
demonstrates the effect of anthropogenic climate change on high-impact compound extreme events and high
lights the urgent need to reduce greenhouse gas emissions.   

1. Introduction 

Compound extreme events cause impacts that are often much more 
severe than those of individual extreme events (Zscheischler et al., 2018, 
2020). Scientific research to address whether and to what extent 
anthropogenic climate change has altered the characteristics of a 
particular extreme event—“event attribution”—has thus far focused 
largely on univariate extremes (Herring et al., 2022). Event attribution is 
a key aspect of understanding climate-change risks (Stott et al., 2016). In 
particular, it is vital to inform society how climate change is worsening 
extreme events and further guide the community to better prepare for 
future increases in climate-related risks and to better rebuild cities and 
infrastructure after disasters to be more resilient in an impending 
climate-changed world (Stott, 2016; Qian et al., 2022a). Concepts for 
the attribution of compound extreme events have only emerged recently 

(Chiang et al., 2021; Zscheischler and Lehner, 2022; Bevacqua et al., 
2023). 

Among the various types of compound extreme events, spatially 
compounding events occur when multiple connected locations are 
concurrently affected by the same or different hazards, thus inducing an 
aggregated impact (Zscheischler et al., 2020). Attribution studies of 
spatially compounding events are still rare, and limited to those 
considering the same hazard (Vogel et al., 2019; Verschuur et al., 2021; 
Zscheischler and Lehner, 2022). Attributing different types of spatially 
co-occurring hazards is methodologically challenging because of the 
different spatiotemporal scales often involved. It is a challenge, for 
example, to design a compound index that is impact-relevant and can 
easily be applied to model simulations. 

The commonly used risk-based (or probability-based) framework for 
event attribution treats an observed event as one of a class of similar 
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events and helps provide guidance for future adaptation and disaster 
recovery (Stott et al., 2004; Otto et al., 2016; Philip et al., 2020). 
However, this approach does not provide much information on the event 
itself. As an alternative, the storyline framework for event attribution 
examines the contribution of various factors to the specific event itself 
and is valuable for understanding the evolution of the event in response 
to various drivers (Trenberth et al., 2015; Shepherd, 2016). The story
line approach generally neglects possible changes in the configuration of 
the dynamics behind the event, but it is possible for the dynamic 
configuration to also be altered by anthropogenic forcings (Otto et al., 
2016; Shepherd, 2016). The two frameworks provide complementary 
insights into a high-impact event (Shepherd, 2016; Qian et al., 2022a). 
However, they are rarely used in combination (Ye and Qian, 2021; Qian 
et al., 2022b). 

In this paper, we develop a storyline–probability combined frame
work for applying extreme event attribution to spatially compounding 
events that involve different hazards, with the goal of increasing con
fidence in the attribution statement. We combine the storyline and risk- 
based approaches to quantify the contribution of large-scale atmo
spheric circulation resembling the observations of the event (dynamic 
effect) and anthropogenic forcings conditional on the atmospheric cir
culation (thermodynamic effect) to the intensity of the event and the 
overall anthropogenic contribution to the intensity and the occurrence 
probability of similar events. 

We illustrate the proposed approach for a spatially compounding 
event that occurred in China in 2020. A record-breaking persistent 
heavy rainfall event struck the middle and lower reaches of the Yangtze 
River in China during the Meiyu period (June–July) in 2020. At the same 
time, South China suffered from a concurrent record-breaking heatwave 
event (Ye and Qian, 2021) (Fig. 1). These two events contributed to 
widespread severe flooding and drought, respectively, in the two re
gions. Both areas are important economic centres with high population 
densities. Attribution studies of the precipitation event alone have been 
carried out based on climate model simulations (Zhou et al., 2021; Lu 
et al., 2022; Tang et al., 2022), and these studies consistently concluded 
that anthropogenic forcing has reduced the occurrence probability of the 
extreme precipitation event in 2020 almost by half (Zhou et al., 2021; Lu 
et al., 2022; Tang et al., 2022). Conditional attribution of the contri
butions of climate change and atmospheric circulation to the precipi
tation and temperature events has been estimated separately, based on 
observational and reanalysis data (Ye and Qian, 2021). In that study, it 
was found that atmospheric circulation explained about 71% and 44% of 
the extreme precipitation event and the concurrent heatwave event, 
respectively; and that compared with past climate under similar atmo
spheric circulation conditions, the occurrence probability of an event 
reaching or exceeding the 2020 Meiyu amount increased by about five 
times under the present climate, and heatwave events reaching or 
exceeding a threshold of one standard deviation increased from 0.6% 
under past climate conditions to 69% under the present climate. Both 
events were driven by the same modulator, i.e. an intensified western 
Pacific subtropical high (Ye and Qian, 2021), and strongly affected the 
agricultural sector in both regions. According to statistics from the 
Ministry of Emergency Management, the persistent heavy rainfall in the 
middle and lower reaches of the Yangtze River affected approximately 
3.5798 million ha of crops, including 893.9 thousand ha that experi
enced crop failure, resulting in direct economic losses of 132.2 billion 
Chinese Yuan for July alone (https://www.mem.gov.cn/xw/yjglbgzdt/ 
202101/t20210102_376288.shtml). The inundation of crops also 
resulted in a phenological delay in crop growth in 2020 (Qin et al., 
2022) and a reduction in vegetable yields. The heatwave in South China 
also affected the growth of vegetables there. As a result, the national 
Consumer Price Index for Vegetables in July 2020 in China saw 
year-on-year increases of 11.4% (https://sannong.cctv.com/2020/08/0 
5/ARTIv08N1New9JFarvghwIqV200805.shtml). We therefore consider 
this event to be a spatially compounding extreme event (Zscheischler 
et al., 2020) and focus on a compound index that is, effectively, the 

average of the standardized temperature and precipitation anomalies in 
both regions. We conducted an event attribution analysis employing 
both the storyline approach (Shepherd, 2016), which is conditional on 
the large-scale atmospheric circulation, and the unconditional 
risk-based approach (Stott et al., 2004). 

We first estimated the contribution of the atmospheric circulation 
resembling the observations in 2020 (dynamic effect) and that of 
anthropogenic forcings conditional on the atmospheric circulation 
(thermodynamic effect) to the intensity of the event from a storyline 
perspective to demonstrate the role of anthropogenic forcings. In the 
storyline approach, we propose a novel constructed flow analogues 
(CFA) method to evaluate the contribution of the dynamic effect. CFA 
can construct analogues of atmospheric circulation that are almost the 
same as the observed atmospheric circulation and, thus, better estimate 
its contribution compared to the flow analogues method (Yiou et al., 
2007; Jézéquel et al., 2018), which has limitations when the intensity of 
the extreme event is too strong to find suitable analogues. When esti
mating the thermodynamic effect, we used the simulation from the latest 
Met Office attribution system, the HadGEM3-GA6-N216 model (Cia
varella et al., 2018), and conditioned the atmospheric circulation using 
the CFA method to resemble that of 2020. This storyline approach can 
help us better understand the compound event itself. We also took into 
account the possible influence of anthropogenic forcings to changes in 
atmospheric circulation by integrating a risk-based analysis of the in
tensity of similar events with the same return period based on the 
HadGEM3-GA6-N216 model and compared the result with that from 
phase 6 of the Coupled Model Intercomparison Project (CMIP6) 
multi-model ensembles (Eyring et al., 2016). By using CMIP6, we further 
estimated the role of historical emissions of greenhouse gases (GHGs) 
and anthropogenic aerosols (AAs). 

We then carried out a risk-based attribution in terms of the proba
bility of occurrence risk of similar compound events. This risk-based 
approach, which we also applied to future projections, takes into ac
count the influences of anthropogenic forcings on the atmospheric cir
culation and involves the probability of similar compound events; thus, 
it is valuable for future adaptation. 

2. Data and methods 

2.1. Observational data 

We used the observed daily maximum temperature (Tmax) and 24-h 
precipitation data (R) for the period 1961–2020 from the CN05.1 
dataset (Wu and Gao, 2013) (resolution of 0.25◦ × 0.25◦), which was 
obtained based on interpolation from over 2400 observing stations in 
China. For atmospheric circulation data, we used the daily mean sea 
level pressure (SLP), surface pressure (SP), geopotential height at 500 
hPa (Z500), wind, and specific humidity (eight levels, from 1000 to 300 
hPa) from the NCEP–NCAR Reanalysis I dataset (Kalnay et al., 1996) 
with a resolution of 2.5◦ × 2.5◦ for the period 1961–2020. 

2.2. Model descriptions and evaluation 

Model simulations with daily resolutions from CMIP6 were used (see 
Supplementary Table S1 for details on model names, scenarios, and 
number of ensemble members). Data include historical simulation ex
periments with combined natural and anthropogenic forcing (Eyring 
et al., 2016), Detection and Attribution Model Intercomparison Project 
(DAMIP) experiments with individual forcing only (Gillett et al., 2016), 
and the Shared Socioeconomic Pathway 1–1.9 (SSP1-1.9), 2–4.5 
(SSP2-4.5), and 5–8.5 (SSP5-8.5) scenario experiments for future pro
jections (O’Neill et al., 2016). We combined historical simulations with 
corresponding SSP2-4.5 scenarios to extend the data to 2020 for attri
bution analysis. 

Additionally, we used model simulations with and without anthro
pogenic forcings (historical and historicalNat, respectively) from the 
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latest Met Office attribution system—the HadGEM3-GA6-N216 model 
(Ciavarella et al., 2018). This model has 525 members for 2020 for each 
experiment (historicalExt and historicalNatExt, respectively; hereafter, 
Hist2020 and HistNat2020, respectively), forced by the observed sea 
surface temperature/sea-ice concentration (SST/SIC) and external 
forcings in 2020. Such a large number of ensemble members is relevant 
given that a large sample size is required for robust attribution of 
compound events (Bevacqua et al., 2023). Fifteen members of the 

historical simulations for 1961–2013 were used to evaluate the model 
performance. 

We interpolated the observed and model-simulated precipitation and 
temperature data to a common 1◦ × 1◦ grid. Then, we calculated the 
area-weighted average of the precipitation anomaly percentages (here
after, the R% anomaly) in the middle and lower reaches of the Yangtze 
River (120.0◦E|35.0◦N, 123.0◦E|30.0◦N, 108.0◦E|25.0◦N, 105.0◦E| 
30.0◦N) and that of the Tmax anomaly in South China (120.0◦E|29.0◦N, 

Fig. 1. Characteristics of the spatially compound event of 2020. (a) Spatial distribution of the observed precipitation anomaly in percentages (R% anomaly, 
shading) and the column-integrated moisture flux anomaly from 1000 to 300 hPa (vectors; kg (s m)

− 1) during June–July 2020. (c) Anomaly in the number of hot days 
(days with a daily maximum temperature Tmax > 35 ◦C) during June–July 2020. Time series of the (b) average precipitation percentage anomalies, (d) temperature 
anomalies, and (f) compound index over target areas (shown as the black box in (a) and (c)) based on observations (1961–2020) and the HadGEM3-GA6-N216 model 
ensemble means (1961–2013) under historical (red) and historicalNat (blue) experiments (shading indicates a range of 15 member simulations of the model). The 
blue dashed line represents the linear trend. The red diamonds in (b), (d), (e) and (f) indicate the 2020 event (in (e) and (f), the second strongest compound event that 
occurred in 2016 is also shown, in blue). (e) Bivariate distribution of the normalized R% anomaly and normalized Tmax anomaly based on observational data (red 
dots) during 1961–2020, with isolines indicating equal levels of the compound index (Equation (1)). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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123.0◦E|22.7◦N, 109.0◦E|18.0◦N, 106.0◦E|24.3◦N) over June–July 
(Fig. 1a–d; the two regions were delineated by Ye and Qian (2021), but 
we exclude grid points with land portions that are less than 50%). 
Following Zhang et al. (2020), we used the R% anomaly rather than the 
R anomaly in order to reduce the effect of the model biases on the 
climatological values and anomalies. In detail, we first calculated the 
area-weighted average of the precipitation (temperature) over 
June–July and then calculated its anomaly percentage (anomaly). All 
anomalies were calculated relative to the 1961–1990 climatology for all 
datasets separately. For each model, the climatology is estimated via 
averaging the ensemble mean of the historical simulations. 

Model evaluation was divided into three parts, an approach similar 
to that described in Zscheischler and Lehner (2022). Firstly, we assessed 
whether the observed and model-simulated distributions for the Tmax 
anomaly and R% anomaly were significantly different based on a Kol
mogorov–Smirnoff (K–S) test. Secondly, we checked whether the 
observed and model-simulated empirical copula distributions between 
these two variables were significantly different based on a Cramér-von 
Mises (C-VM) test (Genest et al., 2009). Lastly, we assessed the models’ 
skill in simulating the correlation between these two variables. All 
evaluations were conducted based on the period of 1961–2013 for the 
HadGEM3-GA6-N216 model and 1961–2014 for the CMIP6 models. The 
evaluation results are shown in Supplementary Table S2, and only 
models passing the evaluation (i.e., the HadGEM3-GA6-N216 model and 
four CMIP6 models) were included in the subsequent attribution and 
projection analyses. 

2.3. Index for the spatially compounding event 

In order to quantify the magnitude of the spatially compounding 
event, we defined a compound index: 

Compound index=
1
2

(
Tanom

σTanom

+
R%anom

σR%anom

)

(1) 

Here, Tanom and σTanom represent the Tmax anomaly and climatological 
standard deviation, respectively, for the area-weighted-average time 
series in South China (Fig. 1d). R%anom and σR%anom are the same, but for 
the R% anomaly in the middle and lower reaches of the Yangtze River 
(Fig. 1b). Note that each term in Eq. (1) is a standardized anomaly and 
dimensionless quantity to allow comparability across variables (Daber
nig et al., 2017). Hence, this index assumes that individual extremes in 
temperature and precipitation and moderate extremes in both variables 
at the same time are equally relevant to a potential impact. Other as
sumptions on the functional relationship of the compound index could 
be made, but without impact data to calibrate this relationship, they all 
seem equally valid (Bevacqua et al., 2021). It should be noted that the 
results obtained from the subsequent reconstructions from flow ana
logues for 2020 based on reanalysis data were also normalized by the 
observed climatological means and climatological standard deviations 
so that they could be compared with the observed intensity; however, 
the corresponding indices from model data were normalized by their 
own climatological means and climatological standard deviations. The 
standard deviation of a model was calculated as the multi-ensemble 
mean of the standard deviation of each ensemble member of that model. 

We analysed the linear trend in the observed index and its statistical 
significance using the nonparametric Wang and Swail (2001) iterative 
method, considering repeated values in the significance testing (Qian 
et al., 2019). We regarded the linear trend as statistically significant 
using an alpha level of 5%. 

2.4. Storyline analyses: dynamical and thermodynamical contribution to 
the intensity of the 2020 compound event 

Here, we express the intensity of the extreme event as: 

M(E)=M(D) + M(ND) (2)  

where M is the magnitude of the event itself (E), D is the dynamical 
situation, and ND is the nondynamical situation (the complement of D). 
With the storyline approach, we examine the role of the various factors 
contributing to the event itself as it unfolded in a conditional manner 
(Shepherd, 2016), but with the sole focus here on large-scale atmo
spheric circulation and anthropogenic forcings. The first term in Eq. (2) 
is estimated via conditioning on atmospheric circulation conditions that 
resemble the D that occurred in 2020. The second term in Eq. (2) in
cludes (i) the thermal effect of anthropogenic forcings conditioning the 
atmospheric circulation to resemble that of 2020, (ii) the possible in
fluence of anthropogenic forcings on the changes in atmospheric cir
culation, and (iii) other effects. Here, we only focus on effect (i) and 
leave effect (ii) in the risk-based attribution of the intensity of similar 
events with the same return period. We did not consider effect (iii) in 
this study. 

We first estimated the contribution of atmospheric circulation to the 
intensity of the 2020 event as the ratio of the difference between the 
reconstructed intensity under analogue and random atmospheric cir
culation patterns to the observed intensity in June–July. In order to do 
so, we developed a new method. Deser et al. (2016) proposed the con
structed circulation analogue (CCA) approach to estimate the dynamical 
contribution to winter surface air temperature trends over North 
America during 1963–2012. We introduced this CCA method into the 
event attribution to estimate the contribution of atmospheric circulation 
and refined the CCA method to make it more appropriate for our pur
poses by incorporating steps from the flow analogue method. We coined 
this new method as the CFA approach. It involves picking out daily 
analogues, combining them to obtain the reconstructed value of the 
variable, and calculating the contribution of the atmospheric circulation 
to the intensity of a target event. The main steps of this CFA approach 
are shown in Supplementary Fig. S1. Specifically, we selected the closest 
Na analogues of the dynamic situation in 2020 according to the spatial 
pattern of atmospheric circulation for each day in June–July 2020 from 
a ±30-d window centred on the target day over the period 1961–2019. 
We then randomly subsampled Ns analogues from the Na analogues to 
compute their optimal linear combination that best fit the target atmo
spheric circulation field for each day. The coefficients of the combina
tion were calculated based on singular value decomposition. Then, the 
corresponding Tmax or R% anomalies of the Ns analogues were also 
combined linearly based on the same coefficients to obtain the recon
structed anomalies conditional to the observed atmospheric circulation 
for each day in June–July. This CFA approach can construct analogues of 
atmospheric circulation that are almost the same as the observed spatial 
patterns and thus better estimate the contribution of the atmospheric 
circulation to extreme events than the original flow analogue, without 
the cost of decreasing sample size. Note that the nonlinear trend of all 
variables (estimated based on quadratic polynomial fitting (Deser et al., 
2016; Ye and Qian, 2021) in this study) was removed prior to selecting 
the analogues to minimize the impact of climate change (Deser et al., 
2016; Jézéquel et al., 2018; Ye and Qian, 2021). 

In this study, we determined Na = 100 and Ns = 25, according to the 
resultant relatively small root-mean-square error (RMSE) (Supplemen
tary Fig. S2). After sensitivity testing (Supplementary Figs. S3 and S4), 
we determined that the suitable target area to calculate the flow 
analogue was the small-sized area (102◦–123◦E, 16◦–35◦N) (shown in 
Supplementary Figs. S1, S3a, and S4a), the suitable atmospheric circu
lation variable was SLP (Supplementary Figs. S3b and S4b), and the 
suitable method of measuring the similarity between atmospheric cir
culation patterns was the spatial Pearson correlation coefficient (Sup
plementary Figs. S3c and S4c). Note that the sensitivity testing in 
Figs. S3 and S4 was carried out after removing the trends of all variables 
prior to selecting the analogues, to minimize the impact of climate 
change as stated in the previous paragraph. The underestimations reflect 
the positive contribution of climate change. We reconstructed the daily 
Tmax anomaly and corresponding R% anomaly simultaneously over June 
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and July based on the steps in Supplementary Fig. S1, and then calcu
lated the bimonthly mean anomalies and the compound index. These 
steps were repeated 10,000 times (Fig. 2a). 

We estimated the contribution of atmospheric circulation (dynamic 
effect) to the intensity of the 2020 event based on the above re
constructions from the CFA approach (Fig. 2a). We combined some steps 
from the flow analogues method (Yiou et al., 2007; Jézéquel et al., 2018) 
in calculating Control-1 and Control-M, which respectively represent 
totally random atmospheric circulation patterns (reconstructed 
completely randomly) and considering the persistence in the atmo
spheric circulation (reconstructed randomly, but the analogues in the 
adjacent M days were not repeatedly picked). Here, M represents the 
number of days for which the atmospheric circulation persists and is 
obtained from an autoregressive moving average model, as in Ye and 
Qian (2021). The contribution of the dynamic effect to the intensity of 
the event was then estimated by subtracting the median of Control-M 
from the median of 10,000 reconstructed results obtained from the 
CFA approach and then dividing the observed intensity of the event, as 
in Jézéquel et al. (2018). 

We then estimated the contribution of the thermodynamic effect 
(effect of anthropogenic forcings conditional on the atmospheric circu
lation pattern) to the intensity of the 2020 event based on the CFA 
approach (Fig. 2b). We conditioned the spatial pattern of the atmo
spheric circulation to resemble that observed in 2020 in the Hist2020 

and HistNat2020 simulations and then computed the difference between 
the medians of the reconstructed compound index in these two simu
lations divided by the observed compound index in 2020. The resultant 
value was regarded as the contribution of the thermodynamic effect to 
this compound event. One may argue that anthropogenic forcings may 
affect the atmospheric circulation and thus counteract or enhance the 
thermodynamics (Seneviratne et al., 2021); this effect is considered in 
the subsequent unconditional risk-based analysis. 

2.5. Risk-based analyses: intensity and probability 

We conducted risk-based analyses based first on intensity and then 
on probability for different purposes. For the intensity analysis (Fig. 2c), 
we estimated the contribution of the anthropogenic forcings to the in
tensity of the events with the same return period as that observed in 
2020 to complement the results of the storyline attribution. We used the 
return level at the observed return period instead of the magnitude of 
the event as a way to account for the model-simulated bias in the 
magnitude. This way of accounting for model bias was also adopted by 
the World Weather Attribution initiative (van Oldenborgh et al., 2021). 
We fitted and calculated return periods of the compound index from 
observations and different model simulations based on the generalized 
extreme value (GEV) distribution, after a goodness-of-fit testing by 
quantile–quantile plotting (Supplementary Fig. S5). For the 

Fig. 2. The attribution results obtained from the combined approach. (a) Dynamic and (b) thermodynamic contributions to the intensity of the 2020 event based 
on a conditional storyline approach. (a) The reconstructed detrended compound index is based on all days (left-hand boxplot), randomly subsampled days (sub
sampled every six days to correct for serial dependence) (middle boxplot), and constructed flow analogues (right-hand boxplot). The red line represents the cor
responding observed value in 2020. (b) Distributions of the reconstructed compound index based on HadGEM3-GA6-N216 model simulations with (Hist2020) and 
without (HistNat2020) anthropogenic forcings for 2020. (c) Return periods fitted using the GEV distribution based on the HadGEM3-GA6-N216 model. The dashed 
area indicates the 5%–95% uncertainty range obtained from 1000 subsamples with data lengths the same as those of the observations. The horizontal and vertical 
black dashed lines represent the observed intensity of the event and the corresponding return period, respectively. The horizontal red and blue dashed lines represent 
the model-simulated intensity of the events with the same return period as in the observations based on the Hist2020 and HistNat2020 simulations, respectively. (d) 
Dynamic and thermodynamic contributions of this event from the storyline approach conditioning the atmospheric circulation and contribution of the anthropogenic 
(ANT) forcings to the intensity of 2020-like events based on a risk-based approach estimated from different models. Vertical bars denote the 5%–95% uncertainty 
range obtained from 1000 instances of bootstrap resampling. The contribution of greenhouse gas (GHG) forcing and that of anthropogenic aerosol (AA) forcing are 
also shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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observations, we used a nonstationary-extremes fitting model to esti
mate the return period. In detail, we fitted the GEV distribution of the 
compound index during 1961–2020 that allowed the location (μ) and 
scale (σ) parameters to scale with the 4-year smoothed global mean 
surface temperature anomaly (T′) (section 4.3.2 in Philip et al., 2020): 

μ= μ0 exp
(

αT′

μo

)

, σ = σ0 exp
(

αT′

μo

)

(3) 

The fit was performed using a maximum likelihood method varying 
α, μ0, and σ0. We then obtained the return period for the climate of 2020. 
For the HadGEM3-GA6-N216 model, there are simulations for 2020 that 
represent factual climate conditions (Hist2020) and counterfactual 
climate conditions (HistNat2020). For the CMIP6 models, we used his
torical simulations for the most recent 20 years (2001–2020) as samples 
representing the near-present-day climate conditions, as in Christidis 
and Stott (2015). Using 20 years of samples centred on the year of the 
event is ideal; however, hist-nat simulations ended in 2020. Since the 
hist-nat simulation is stationary in the long run, we used the entire 
period (1850–2020) as the counterfactual climate conditions, as in 
Christidis and Stott (2022). The intensity when the return period 
reached the observed one in the Hist2020 (historical in CMIP6) simu
lations was compared with that in the corresponding HistNat2020 
(hist-nat in CMIP6) simulations (Fig. 2c), and their difference when 
divided by the intensity of each model’s Hist2020 (historical in CMIP6) 
simulation was regarded as the contribution of anthropogenic forcings 
to the intensity of 2020-like events (Fig. 2d). Bootstrap resampling was 

then used to estimate the 95% confidence intervals of this contribution. 
It should be noted that we pooled the high-performing CMIP6 (Sup
plementary Table S2) multi-model ensemble simulations as though they 
were from one model, as has commonly been adopted in previous event 
attribution studies (Chiang et al., 2021; Min et al., 2022), because we did 
not find inconsistencies between the modelled variability of the com
pound index and that in the observations when assessing their standard 
deviations (Supplementary Fig. S6). In detail, we estimated the forced 
response by first averaging the individual CMIP6 model runs and then 
averaging all the available models. The modelled variability was esti
mated by the individual model simulation minus the forced response. 
We then compared the standard deviation of the detrended compound 
index in the observations with that in the modelled variability (Sup
plementary Fig. S6). 

For probability analysis (Fig. 3), we adopted the concepts of fraction 
of attributable risk (FAR; Stott et al., 2004) and probability ratio (PR; 
Fischer and Knutti, 2015) to carry out the event attribution and future 
projection. FAR was defined as–1 − P0/P1, in which P1 indicated the 
occurrence probability of similar events under factual climate condi
tions, and P0 indicated that under counterfactual climate conditions 
(Stott et al., 2004). PR was defined as P1/P0 (Fischer and Knutti, 2015). 
We regarded the previous record-breaking value (in the year of 2016) as 
the threshold, since 2020 was the single year that exceeded the previous 
record (Fig. 1f), and then analysed the occurrence probability of similar 
events (equal to or larger than the threshold). Using this threshold al
lows us to examine whether the occurrence probability of experiencing a 
more severe year than the record-breaking 2016 (such as 2020) has 

Fig. 3. Attribution and projection of the compound extreme event based on the risk-based approach. (a) GEV distributions of the compound index in the 
Hist2020 (red) and HistNat2020 (blue) simulations from the HadGEM3-GA6-N216 model. The dashed and solid lines represent the intensities of the 2016 and 2020 
events, respectively. The grey line shows the fraction of attributable risk (FAR; see y-axis on the right side of the panel). (b) The FAR value (bottom axis, the 
corresponding probability ratio (PR) is shown on the top axis) associated with the 2020-like event based on the HadGEM3-GA6-N216 (black) and CMIP6 (purple, the 
multi-model ensemble is shown) models. Horizontal bars denote the 5%–95% uncertainty range (see Section 2.5). (c) The PR obtained from the GEV distributions 
based on three different scenarios in CMIP6 (a 20-year moving window from 2021 to 2100) compared with the near-present-day climate (historical simulations of 
2001–2020). Shaded areas denote the 5%–95% uncertainty range (see Section 2.5). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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changed. Selection of this threshold, rather than the value in 2020, is 
also a way to reduce the selection bias and has commonly been used in 
previous event attribution studies (Stott et al., 2004; Lewis and Karoly, 
2013; King et al., 2014; Knutson et al., 2014). Using the 
HadGEM3-GA6-N216 model, we fitted the GEV distribution to com
pound index values in the Hist2020 and HistNat2020 simulations and 
calculated the corresponding FAR/PR values to show the effect of 
anthropogenic forcings on the frequency of similar events (Fig. 3a and 
b). We also compared the results with those from the CMIP6 models, 
using historical simulations of 2001–2020 as near-present-day climate 
conditions and hist-nat simulations of 1850–2020 as the counterfactual 
climate conditions, as described earlier (Fig. 3b). The 95% confidence 
intervals of FAR/PR were calculated based on the Koopman method 
(Koopman, 1984). This method regards the occurrence of events as 
samples from a binomial distribution, which can be counted and then 
used to calculate test statistics (Paciorek et al., 2018; Zscheischler and 
Lehner, 2022). 

To further explore the role of precipitation and temperature in 
changes in the compound index, we used the normal kernel function to 
construct univariate and bivariate probability density functions 
(Bowman and Azzalini, 1997) to demonstrate changes such as that of the 
R% anomaly and Tmax anomaly in different simulations (Fig. 4). 

3. Results 

3.1. Observed trends in the spatially compound event 

Driven by an anomalous convergence of moisture flux, the observed 
precipitation percentage anomaly (R% anomaly) averaged in the middle 
and lower reaches of the Yangtze River over June and July 2020 was 
record-breaking based on data going back to 1961 (Fig. 1a and b). The 
magnitude of the R% anomaly in 2020 reached 95%, 1.7 times the 
previous record in 1996, which was 56% (Fig. 1b). At the same time, 
South China experienced an anomalously high number of hot days, 
reaching up to 36 days for an individual grid box (Fig. 1c). The regional 
average daily maximum temperature (Tmax) anomaly was also record- 
breaking (Fig. 1d). The magnitude of the Tmax anomaly in 2020 was 
1.6 ◦C, 1.14 times the previous record in 2016, which was 1.4 ◦C 
(Fig. 1d). 

To capture the magnitude of the spatially compounding event, we 
employed a compound index, which is the average of the June–July 
normalized precipitation anomaly in the middle and lower reaches of 
the Yangtze River in percentages (box in Fig. 1a) and the normalized 
temperature anomaly in South China (box in Fig. 1c) (see Section 2.3; 
isolines in Fig. 1e). The compound index shows a strongly increasing 
trend, with a magnitude of 0.22/decade (P = 0.00014, section 2.3) 
during 1961–2020 (Fig. 1f). Its intensity in 2020 was also record- 
breaking, with an anomaly of four standard deviations (σ) (Fig. 1e and 
f). Both the Tmax anomaly and R% anomaly in 2020 were very large 
(2.5σ and 5.4σ, respectively) (Fig. 1e). 

3.2. Attribution of the intensity of the 2020 event 

To conduct the event attribution analysis, we used climate model 
simulations. We evaluated the performance of the HadGEM3-GA6-N216 
model and found that the historical simulations captured the temporal 
evolutions of the R% anomaly, Tmax anomaly, and the compound index 
(Fig. 1b, d, f). Furthermore, the model represents the distribution of the 
R% anomaly, Tmax anomaly, and their bivariate distribution and corre
lation well (Supplementary Table S2 and Section 2.2). We therefore 
conclude that this model can be used in the subsequent analysis. 

Based on a conditional storyline approach, we quantified the dy
namic and thermodynamic contributions to the intensity of the 2020 
compound event (Fig. 2). To achieve this, we identified atmospheric 
circulation patterns that resembled the pattern of 2020, i.e., analogues, 
and reconstructed the compound index using our newly developed CFA 
method (see Section 2.4). We found that the dynamic contribution was 
about 51% (95% confidence intervals: 35–67%) (Fig. 2a, d), which 
implied that the atmospheric circulation played a significant role in the 
occurrence of this event. There is no trend in the temporal evolution of 
the number of analogues during 1961–2019 (Supplementary Fig. S7), 
indicating that the occurrence of the 2020 dynamic configuration is 
mainly controlled by the internal climate variability. Further calculation 
revealed that atmospheric circulation contributed 56% (35–77%) to the 
intensity of the R% anomaly and 41% (21–61%) to that of the Tmax 
anomaly in 2020. The thermodynamic contribution was estimated to be 
about 39% (18–59%); this contribution was obtained via conditioning 
the atmospheric circulations to resemble those of 2020 in the HadGEM3- 

Fig. 4. Modelled changes in the univariate and bivariate distributions relevant to the event. (a) Univariate distributions of the precipitation anomaly in 
percentages (upper panel) and the Tmax anomaly in ◦C (right panel) and their bivariate distributions (bottom left panel) based on Hist2020 (red) and HistNat2020 
(blue) simulations from the HadGEM3-GA6-N216 model. The contour lines, from smallest to largest, represent 50%, 75%, and 95% of all data points. The dashed 
black and red lines represent the intensities of the 2016 and 2020 events, respectively. (b) The same as (a), but for the CMIP6 model based on historical (red, 
2001–2020), hist-nat (blue, 1850–2020), SSP1-1.9 (grey, 2081–2100), SSP2-4.5 (black, 2081–2100), and SSP5-8.5 (purple, 2081–2100) simulations. The contour 
lines represent 50% and 95% of all data points. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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GA6-N216 model’s simulations with and without anthropogenic forc
ings (Fig. 2b, d; see Section 2.4). This magnitude implied that the 
radiatively forced component also played a considerable role in the 
occurrence of the event. 

The aforementioned thermodynamic contribution was compared 
with that of the overall anthropogenic forcings to the intensity of events 
with the same return period as the observed compound event in 2020, 
allowing us to consider the possible effect of anthropogenic forcings on 
changes in atmospheric circulation. This was conducted through a risk- 
based attribution that did not condition the atmospheric circulation in 
the HadGEM3-GA6-N216 model’s simulations (Fig. 2c and see Section 
2.5). We found that the overall anthropogenic contribution was about 
37% (31–42%), i.e., very close to and statistically indistinguishable from 
the thermodynamic effect by using the storyline approach (Fig. 2d). 
These similar estimates of the thermodynamic and overall anthropo
genic contributions indicate that the anthropogenically driven change in 
the frequency of the atmospheric circulation patterns is rather minor. 
This is also in line with the nonsignificant trends found for the occur
rence of flow analogues (Supplementary Fig. S7). If we draw conclusions 
based on the result of the thermodynamic effect from the storyline 
approach alone, one may argue that anthropogenic forcings can affect 
atmospheric circulation too, and thus conditioning the atmospheric 
circulation may overestimate or underestimate the effect of anthropo
genic forcings, thereby leaving the conclusion of the attribution 
assessment somewhat uncertain. In contrast, if we draw conclusions 
based on the result of the overall anthropogenic contribution from the 
risk-based approach alone, one may also argue that climate models may 
not represent the atmospheric circulation very well, and thus induce 
uncertainty in the contribution of anthropogenic forcings. Therefore, 
combining the storyline attribution approach with the risk-based attri
bution approach allowed us to build a complementary combined 
framework, thereby enhancing our confidence in the attribution 
statements. 

To more comprehensively estimate the anthropogenic climate 
change effect on the event magnitude, we compared the aforementioned 
contribution of the anthropogenic forcings to the intensity of similar 
events with those from high-performing CMIP6 models (Fig. 2d; see 
Section 2.2, 2.5, and Supplementary Tables S1 and S2). Note that, in 
contrast to the HadGEM3-GA6-N216 model, the SST/SIC and radiative 
forcings of 2020 are not prescribed in the CMIP6 simulations. We pooled 
all available CMIP6 simulations, as has commonly been done in previous 
event attribution studies (Christidis and Stott, 2022; Min et al., 2022). 
This pooling of CMIP6 models can be justified because the models have 
variability in the compound index that is consistent with that in the 
observations (Supplementary Fig. S6 and Section 2.5); thus, they do not 
require a bias correction (Christidis and Stott, 2022). The overall 
anthropogenic contribution was 35% (32–37%), according to the CMIP6 
multi-model ensemble. This magnitude is very close to that from the 
HadGEM3-GA6-N216 model (Fig. 2d). This similarity suggests only a 
minor influence of the SST/SIC conditions in the intensity of 2020-like 
events, regardless of the model differences. When we further sepa
rated the effect of the GHG forcing and AA forcing, we found that the 
contribution from GHG forcing was 70% (60–78%). This contribution 
was partly cancelled out by AA forcing, which was − 30% (− 49% to 
− 22%). The magnitude of these two contributions is generally consis
tent among the individual CMIP6 models, except for in the MIROC6 
model under ANT (anthropogenic) and AA forcings, although there are 
some inter-model differences (Supplementary Fig. S8a). 

3.3. Attribution and projection of the likelihood of similar events 

We quantified the contribution of anthropogenic forcings to the 
occurrence probability of 2020-like compound events based on 
HadGEM3-A-N216 and CMIP6 (Fig. 3a and b and Section 2.5). 
HadGEM3-A-N216 simulates a distribution of the compound index 
shifted toward higher values under historical anthropogenic forcing 

compared to a scenario with no emissions (Fig. 3a). Anthropogenic 
climate change has thus increased the likelihood of such extreme com
pound events. The observed intensity of the 2020 compound index in the 
model-simulated response to the current level of anthropogenic forcing 
was unprecedented, indicating how unusual the 2020 compound event 
was. Hence, we considered the intensity of the previous record-breaking 
event (2016) as the threshold by which to quantify the probability of a 
more intense event, such as that in 2020 (see Section 2.5 for more de
tails). Both the Tmax and R% anomalies were very large in 2016 (2.2σ 
and 2.4σ, respectively), although not as strong as those in 2020 (Fig. 1e). 
The FAR (Stott et al., 2004) of similar events is 0.99 (0.91, 1), equal to a 
PR (Fischer and Knutti, 2015) of 442.4 (10.8, Inf) based on the 
HadGEM3-GA6-N216 model (Fig. 3a and b). This value indicates a 
substantial contribution of anthropogenic forcings to the occurrence 
frequency of 2020-like events. The results based on the CMIP6 
multi-model ensemble are similar, with a FAR of 0.98 (0.89, 1), equal to 
a PR of 52.6 (9.5, Inf) (Fig. 3b). The magnitude of the increase in PR is 
consistent among the individual CMIP6 models, except for the MIROC6 
model (Supplementary Fig. S8b). 

We quantified the projected occurrence probability of 2020-like 
compound events because of the relevance for future planning of pro
jected changes in the frequency of extreme events under climate change. 
We considered a moving 20-year window from 2021 to 2100 using the 
CMIP6 multi-model ensembles under three typical emissions scenarios 
(Fig. 3c). The SSP5-8.5, SSP2-4.5, and SSP1-1.9 scenarios respectively 
represent a very high GHG emissions scenario, an intermediate GHG 
emissions scenario, and a scenario with very low GHG emissions and 
CO2 emissions declining to net zero around 2060 followed by net- 
negative CO2 emissions (IPCC, 2021). The SSP1-1.9 scenario will lead 
to global warming below 1.5 ◦C in 2100, in line with the Paris Agree
ment’s 1.5 ◦C target. The net-zero timing in the SSP1-1.9 scenario is 
coincidently close to that in China’s carbon neutrality scheme. We found 
that the future increase in the occurrence frequency of 2020-like com
pound events (using the value in 2016 as the threshold too) is higher in 
higher-emissions scenarios (Fig. 3c). Compared to near-present climate 
conditions (2001–2020), the event will become 10 times more frequent 
in 2050 and 14 times more frequent in 2090 under the SSP5-8.5 sce
nario; however, under the SSP1-1.9 scenario, the occurrence frequency 
for both years is only seven times greater (Supplementary Table S3). 

To further understand the role of changes in precipitation and tem
perature in changes in the compound index, we explored their univari
ate and bivariate probability density functions estimated via the normal 
kernel function (Fig. 4 and Section 2.5). We found that precipitation is 
lower in simulations with anthropogenic forcing compared to those 
without anthropogenic forcing conditions in both HadGEM3-GA6-N216 
(using the distribution in 2020 for reference, Fig. 4a) and the CMIP6 
multi-model ensemble (using the distribution of the near-present-day 
climate as reference, Fig. 4b). This phenomenon is also noticeable in 
the time series in Fig. 1b, perhaps due to the effect of AA forcing sur
passing that of GHG forcing over this stage. However, precipitation is 
projected to increase under future scenarios by the end of this century 
(Fig. 4b). The intensity of the observed 2020 precipitation event is likely 
an extreme value even in the SSP5-8.5 scenario (Fig. 4b), indicating the 
severity of the 2020 event. In contrast, temperature always tends to 
increase with anthropogenic forcing (Fig. 4a and b). In particular, the 
magnitude of the observed 2020 temperature event will be fairly normal 
by the end of this century under the SSP2-4.5 and SSP5-8.5 scenarios 
(Fig. 4b). 

4. Discussion and conclusions 

This paper presents a comprehensive framework for compound event 
attribution that combines a storyline approach with a risk-based 
approach to reach complementary conclusions. We refer to this 
approach as the storyline–probability combined approach. In the 
storyline approach, we also developed a novel constructed flow 
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analogue method to quantify the dynamic and thermodynamic contri
butions to the intensity of an extreme event. This approach is flexible 
and adaptable to other regions and other types of compound events or 
individual extreme events. 

We found that the occurrence probability of spatially compounding 
events such as the record-breaking 2020 event in China, which caused 
quasi-simultaneous floods and extreme heatwaves over different regions 
of the country, was increased by anthropogenic climate change and is 
projected to further increase in the future. Floods and heatwaves over 
different regions, which may both have negative repercussions for the 
agricultural sector, are generally considered separately. For example, 
recent studies revealed that extreme rainfall reduced one-twelfth of 
China’s rice yield over the last two decades (Fu et al., 2023), and that 
heat stress may cause a significant reduction of rice yield in China under 
future climate scenarios (Sun et al., 2022). However, the agricultural 
impacts of the 2020 event in China suggest that co-occurring weather 
hazards in different regions can compound one another and lead to 
aggregated national impacts. Overall, our study demonstrates the rele
vance of considering such spatially compounding events in attribution 
studies to avoid underestimating climate risks and to support the 
development of adaptation measures for the changing climate. 
Furthermore, our results suggest that controlling GHG emissions can 
reduce the occurrence risk of similar compound events, especially under 
a carbon-neutral scenario. This effect takes place through both the 
mitigation of warming and heavy precipitation, although the effect on 
the former is stronger. 
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