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We present a framework for prioritizing adaptation approaches at
a range of timeframes. The framework is illustrated by four case
studies from developing countries, each with associated charac-
terization of uncertainty. Two cases on near-term adaptation
planning in Sri Lanka and on stakeholder scenario exercises in
East Africa show how the relative utility of capacity vs. impact
approaches to adaptation planning differ with level of uncertainty
and associated lead time. An additional two cases demonstrate
that it is possible to identify uncertainties that are relevant to de-
cision making in specific timeframes and circumstances. The case
on coffee in Latin America identifies altitudinal thresholds at which
incremental vs. transformative adaptation pathways are robust
options. The final case uses three crop–climate simulation studies
to demonstrate how uncertainty can be characterized at different
time horizons to discriminate where robust adaptation options are
possible. We find that impact approaches, which use predictive
models, are increasingly useful over longer lead times and at higher
levels of greenhouse gas emissions. We also find that extreme
events are important in determining predictability across a broad
range of timescales. The results demonstrate the potential for ro-
bust knowledge and actions in the face of uncertainty.
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Achieving food security under climate change is a complex
public policy issue, a so-called “wicked problem.” The mag-

nitude of plausible impacts, and costs of inaction or delayed ac-
tion, mean that individuals and societies must undertake adap-
tation actions despite uncertainty. Policymakers are accustomed
to making decisions under considerable uncertainty and do not
necessarily need systematic reductions in uncertainty to act on
climate change (1). Nonetheless, science can make a major con-
tribution by elucidating or prioritizing uncertainties in ways that
are helpful to the decision-making processes of national policy-
makers and other stakeholders (2–4). The purpose of this article is
to demonstrate how science can provide practical approaches to
addressing uncertainty that can assist adaptation planning for agri-
culture in developing countries over multiple lead times. We ach-
ieve this goal by presenting four case studies linked by a framework
that combines a simple uncertainty analysis with a characterization
of different approaches to adaptation planning.

Impact and Capacity Approaches to Adaptation Planning
Adaptation planning can incorporate scientific information both
from projections of climatic impacts and assessments of adaptive
capacity (Fig. 1). Impact approaches (5, 6) use statistical or
mechanistic models to attach probabilities to possible outcomes
under a range of scenarios; they arrive at adaptation options for
agriculture and food security via analyses that start with climate
forcings and global circulation models, and from these project

progressive impacts on local climates, crop physiology, crop yields,
food prices, and, finally, outcomes for human welfare and nutri-
tion. Capacity approaches (7, 8) start by assessing the existing
capacities and vulnerabilities of socioeconomic groups such as
communities, industries, or countries. From this base, they de-
velop sets of “no regrets” options that are considered politically
and economically feasible over a range of possible climatic
futures. Overall, capacity approaches to analysis and planning are
more compatible with stakeholder-driven processes (7, 9).
The two approaches also have different implications for un-

certainty. Impact approaches have been criticized on technical
grounds for the accumulation of uncertainties along the cascade
of impact, and exclusion of potentially important factors about
which little is known (10, 11). Global change researchers have
put considerable emphasis on quantifying imprecision in pro-
jections—e.g, through the use of ensemble modeling techniques
(5). A key concern is that models are more conducive to an
emphasis on precision (measurable uncertainty, or known
unknowns) than on ambiguity (nondescribed uncertainties, or
unknown unknowns) (3). Some critics have gone further to argue
that systematic reductions in uncertainty have little or no rele-
vance to policy-making on climate change; worse still, the “un-
certainty fallacy” hinders urgently needed action by providing
a rationale for delay (1). Furthermore, complexities in economic
and social systems may outweigh climatic uncertainties in de-
termining possible and desirable suites of adaptation actions,
thus favoring a capacity approach (12, 13). However, capacity
approaches, though increasingly used in national planning, have
received less scrutiny than impact approaches. The treatment of
uncertainty in vulnerability assessments is relatively immature (13),
with little explicit treatment of either imprecision or ambiguity.
The need to integrate impact approaches with capacity ap-

proaches is increasingly recognized (9, 14). For example, the
Intergovernmental Panel on Climate Change’s (IPCC) method
for vulnerability analysis integrates an impact assessment of ex-
posure with assessments of sensitivity and adaptive capacity.
Arguably, the main challenge is not the technical task of bridging
impact and capacity analyses, but rather the effort needed to
bridge science and policy. There is a considerable literature on
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this topic. Recommended strategies include specific go-between
roles for boundary organizations (15) or decision scientists (4).
Emerging principles of “consensus beats reality” and “good
enough is best” suggest that stakeholder trust and agreement
may be more important to effective evidence-based decision
making for wicked problems than high levels of scientific rigor
and certainty (15, 16).

Uncertainty in Nearer-Term and Longer-Term Adaptation
The uncertainties pertinent to longer-term vs. nearer-term ad-
aptation planning are likely to differ. At low levels of climate
change, the climate signal may be indistinguishable from climate
variability, and thus improving precision and managing known
risks may be more important than identifying completely new
(and ambiguous) possibilities. Farmers and societies can adjust by
making incremental adaptations and innovations based on long
experience in dealing with a highly variable climate. Thus, the key
investment in incremental adaptation is likely to be institutional
support to farmers to enlarge their portfolio of strategies, both
old and new, to manage increasing climatic risks (17). There are
rich historical antecedents for innovation systems for agricultural
risk management that share learning among farmers, businesses,
scientists, and other stakeholders (18).
At higher levels of climate change, systemic or even trans-

formative adaptation may be needed: wholesale reconfigurations
of livelihoods, diets, and the geography of farming and food
systems (19, 20), as has happened historically in response to
market changes, for example. These adaptations require dif-
ferent understandings of uncertainty. For example, assessments
of seasonal predictability have the potential to improve risk
management, such as by informing the financial efficiency, and
hence affordability, of index-based crop and livestock insurance.
However, at some particular magnitude of climate change, risk
insurance will become significantly less effective, and a change in
herd size or crop variety (systemic change), or a switch entirely
from crop systems to livestock (transformative change) may be
needed. Systemic and transformative adaptation will benefit

from large-scale, anticipatory investments in infrastructure,
livelihoods diversification, and possibly migration. These inno-
vations carry major costs, and in some cases disruptive social
changes that are not evenly distributed, and thus can lead to
massive misallocations of resources if misjudged (21). Shared
learning among stakeholders is arguably even more critical to
successful adaptation over decadal timeframes than to near-term
innovation. The ability of stakeholders at all levels to make long-
term no-regrets decisions will be limited by their capacity to en-
visage and prepare for unknown unknowns. Adaptation planning
based purely on stakeholder consensus may lead to malad-
aptation (22, 23), particularly where there is future likelihood of
entirely novel climates or crossing thresholds in productivity of
crops, rangelands, livestock, or fisheries.

Results and Discussion
Here we present a framework for prioritizing adaptation ap-
proaches at a range of uncertainty levels linked to lead times.
The framework draws on methods to calculate when a climate
change signal emerges from the “noise” of climate variability
(24). We develop and illustrate the framework using four case
studies. Fig. 2 presents the framework for linking uncertainty
analysis with adaptation planning, including impact vs. capacity
analytic approaches (9), and three types of adaptation: incre-
mental, systemic, and transformative (19). The x axis is a signal-
to-noise ratio (the ratio of the mean trend to the imprecision
around that mean) for an observable and, at least to some extent,
predictable variable. This variable measures the extent to which
climate change is detectable, using a climatic or impact variable
(case 4). We place time on the y axis (24) because it is the de-
pendent variable—i.e., our analysis assesses when a transition be-
tween types of adaptation occurs, rather than the range of possible
conditions and associated adaptations at a fixed point in time. For
example, a transformative adaptation may happen in Fig. 2 at
some time between t1 and t4. For a known emissions trajectory, this
time window is narrowed (e.g., t3–t4 for the low-emissions path-
way). Similarly, a narrower uncertainty in the response of the sys-
tem to climate change (lower signal-to-noise ratio) results in
a narrower uncertainty in the time of transformation (t1–t3).
Near-term adaption planning can be effective using capacity

analytic approaches alone. Case 1 on Sri Lankan national ad-
aptation planning shows the utility of capacity approaches for
near-term planning where there is not yet a strong climate
change signal, and adaptation options derive from existing good
development practice. However, limitations to this approach are
likely to emerge over longer timeframes, as climatic impacts and
possible responses move beyond collective historical experience.
Case 2 on East African scenarios documents a stakeholder-led
approach to planning for longer time horizons that addresses
ambiguity about the future (unknown unknowns) and tests ca-
pacity solutions against impact projections.
Sources of uncertainty in adaptation studies vary depending on

the climate change challenge or policy response in question (e.g.,
between different time horizons, localities, or agricultural sys-
tems). Quantification of uncertainty can assist policy by identi-
fying those uncertainties that are irrelevant to specific policy
decisions and those for which further characterization of un-
certainty would be most helpful to decision making. Case 3 on
coffee in Central America provides an example of altitudinal
thresholds providing the basis for robust and differentiated ad-
aptation pathways for different localities, despite wide disagree-
ment among model projections. Case 4, which presents three sets
of crop–climate simulations, demonstrates how uncertainty can
vary in identifiable ways across time and with different adaptation
options, providing opportunities for robust decision making.
Taking our four case studies together, we offer the general-

ization that capacity analyses are most important for near-term
adaptation planning, but impact predictive tools, though useful

Fig. 1. Impact and capacity approaches to adaptation planning.
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even in the near term, generally become increasingly important
over longer-term planning horizons, which contain increasingly
novel climates (Fig. 2). Building analytic approaches into itera-
tive stakeholder processes is crucial whatever the timeframe and
whatever the combination of impact and capacity analyses (1, 9,
15, 25). Stakeholder processes for near-term planning may em-
phasize consensus-building around current knowledge, but over
longer time horizons this may shift toward scenarios-based di-
alogue and priority-setting, as climate change surpasses human
experience and major transformations are required.

Case 1: Adaptation Planning Under Climatic Uncertainty in Sri Lanka.
The National Climate Change Adaptation Strategy for Sri Lanka
2011–2016 (26) provides an example of national priority-setting
in the face of ambiguous climate projections. In particular, pro-
jections of precipitation do not provide a reliable basis for plan-
ning. The majority of models project higher mean annual
precipitation under a range of emissions scenarios (27–31), but-
with considerable discrepancies in the distribution of precipitation
between the two monsoons, whereas others project lower mean
annual precipitation (32, *). Projections of the future spatial
pattern of rainfall display similar contradictions. Given this
uncertainty, the Government of Sri Lanka took a pragmatic
approach of basing its adaptation plan on an integrated vulner-
ability analysis across five key sectors, including agriculture and
water, coupled with a multistakeholder analysis of intervention
options that show a high degree of policy and technical feasibility
(i.e., capacity rather than impact). Sri Lanka’s vulnerability in-
dex (33) uses the IPCC framework of exposure, sensitivity, and

adaptive capacity (34), but is designed to minimize the de-
pendence of the analysis on ambiguous model-based projections.
The Sri Lankan exposure index uses frequency of historical ex-
posure to climate hazards (droughts, floods, cyclones, and mul-
tihazards) as a proxy for future climate hazard exposure. The
sensitivity index uses rural population density, degree of em-
ployment in agriculture, availability of irrigation water to paddy
areas, and agricultural diversity as proxies for sensitivity to cli-
matic changes. The adaptive capacity index uses the availability of
infrastructural assets and socioeconomic assets as proxies for
adaptive capacity. This information is readily available, meaning
that the index is simple to calculate.
The Government of Sri Lanka then used this analysis of

district-level vulnerability to identify feasible, cost-effective, low-
risk responses in high-vulnerability districts. Through stakeholder
consultation (involving government, nongovernment, private and
research organizations, and the general public), the 5-y adapta-
tion strategy adopted multiple-benefit adaptation interventions
that simultaneously deliver climate resilience and address current
development needs. These types of common-sense interventions
are able to maximize current benefit-cost ratios while also pro-
viding robustness to climatic uncertainty (25). The best example
of such an intervention in Sri Lanka is the restoration of the an-
cient tank storage system in the country, to provide “insurance”
against climate variability in the most vulnerable districts (pri-
mary agricultural). Other no-regrets interventions for water and
agriculture, currently practiced at a low level, but warranting
wider adoption, are rainwater harvesting (30), development of
sustainable groundwater, adoption of microirrigation technolo-
gies, and wastewater reuse (33). Quantitative decision tools can
help when choosing among options. The Sri Lankan case illus-
trates how “good enough” knowledge assists decision making
under climatic and socioeconomic uncertainty.

Fig. 2. Schematic framework of the relationship
between signal-to-noise ratio for a climate impact
and the period during which progressive levels of
adaptation occur. The relationship varies according
to greenhouse gas emissions. The shaded box shows
current climate variability, where the signal-to-
noise ratio is less than 1.

*Basnayake BRSB, Rathnasiri J, Vithanage JC, Paper presented at the Second Assessments
of Impacts and Adaptations to Climate Change (AIACC) Regional Workshop for Asia and
the Pacific, November 2–5, 2004, Manila, Philippines.
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Case 2: Scenarios of Societal and Climatic Uncertainty in East Africa.
Multistakeholder processes to derive regional socioeconomic
scenarios have been organized by the Research Program on Cli-
mate Change, Agriculture and Food Security (CCAFS), and they
provide an example of how capacity and impact approaches can
be combined. In East Africa, CCAFS brought together national
policy advisors and representatives from regional economic bod-
ies, academia, media, civil society, farmers’ associations, and the
private sector working in the agriculture and food, environment,
and planning sectors. These stakeholders explored key regional
socioeconomic uncertainties as they might affect future food se-
curity, environments, and rural livelihoods, and the capacity of the
region to adapt to climate change (35). These uncertainties were
structured to produce four socioeconomic scenarios up to 2030,
designed to providemultiple plausible, future contexts for decision
makers to use in regional, national, and local planning (36).
Rather than attempting to forecast, these multistakeholder pro-
cesses seek to combine societal perspectives and explore unknown
unknowns to challenge assumptions about the future, and foster
collaborative, adaptive decision making (37).
As in the current IPCC-related Shared Socioeconomic Path-

ways (38), CCAFS socioeconomic scenarios are produced as
complementary to climate projections, allowing for combinations
of both sets. In East Africa, the stakeholder-driven socioeco-
nomic scenarios were themselves quantified through two global
agricultural economic models: International Model for Policy
Analysis of Agricultural Commodities and Trade (IMPACT)
(39) and Global Biosphere Management Model (GLOBIOM)
(40), with regional stakeholders providing iterative feedback.
These models explore long-term consequences of stakeholder-
generated futures, such as market dynamics and food prices, land
use change, and greenhouse gas emissions. The models also allow
stakeholder assumptions about regional socioeconomic change to
be compared against long-term global socioeconomic projections,
such as future global food demand. Additionally, the models allow
for the application of the impacts of climate scenarios, through
crop model outputs, on the socioeconomic scenarios (39, 40).
To link scenarios to decision making, workshops were coorganized

with the East African Community and partners, inviting state and
nonstate participants to develop and test adaptive planning
actions across the different scenarios by planning backward from
desired outcomes while navigating the challenges and opportu-
nities in the different scenarios (36). This exercise yielded both
no-regrets adaptations expected to work under any scenario with
appropriate adjustment, as well as scenario-specific options. For
example, combining regionally coordinated food reserves with an
early warning system for food crises was deemed unfeasible in a
scenario that was characterized by strong regional political in-
stability and fragmentation, but feasible in other scenarios.
Other policy objectives, such as increased participation of

farmers’ associations in policy development for more effective links
between farmers’ needs and policy decisions and the fostering of
community-led experiments with climate-resilient indigenous
crops, were seen as generally feasible across all scenarios, but
the pathways and actors needed to achieve them varied strongly
between the scenarios. Decision makers attested that the scenario
exercise equipped them with a diverse set of strategies to achieve
those objectives, while also establishing the need for strategic
rather than linear planning.
Participants from the East African Community countries and

Ethiopia said they appreciated this open approach; they thought
the model outputs were “tangible and practical” and helpful
for policy makers wanting “legitimate information before
making choices.” CCAFS is facilitating a regional learning
partnership in 10 African countries, in which representatives
of national governments are using the scenarios, together with
evidence from case studies of agricultural adaptation, for
adaptation planning where such decisions were previously

based entirely on projections from climate models. This partner-
ship has resulted in African negotiators, for the first time, making
submissions on agriculture to the United Nations Framework
Convention on Climate Change Subsidiary Body for Scientific and
Technological Advice.

Case 3: Robust Elevation-Based Adaptation Options in Coffee-Growing
Regions of Central America. This case study shows how high sci-
entific uncertainty can be irrelevant at the time and spatial scale
of the decision required to address the problem. In the moun-
tainous regions of Latin America, Arabica coffee is a mainstay
source of income for smallholder farmers, and a commodity that
generates significant economic benefits for rural service pro-
viders and global supply chains. In Nicaragua, 14% of agricul-
tural gross domestic product is derived from coffee (41). Coffea
arabica is grown in a very narrow climatic niche, requiring mean
temperatures of 19–22 °C with little intraannual variation and
ample rainfall. Furthermore, coffee is a perennial crop, planted
either in exposed full-sun conditions or under shade, with sig-
nificant upfront investments and a desired cropping cycle of 15 y
or more. Thus, the crop must be grown across specific altitudinal
bands of suitable temperature, and changes in growing areas are
multiyear investments. In Nicaragua, the altitudinal band is 400–
1,400 meters above sea level (masl) (42), and in Colombia 1,200–
1,800 masl. Temperature in Colombia reduces by 0.5 °C for every
100 m elevation, so this altitudinal range corresponds to ∼3 °C. If
global temperature rises stay, optimistically, within 2 °C, this
would mean a 400-m change in the elevation range of the crop
or, in other words, a loss of two-thirds of the current altitudinal
band, which makes high-value coffee production particularly
vulnerable to climate change. An evaluation of the impacts of
climate change on suitability to grow coffee using general cir-
culation model (GCM) scenarios for 2030 and 2050 in Nicaragua
(42) reported a very significant decrease in suitability of 80% of
potential area for coffee production by 2050, as the zones suit-
able for the crop move up the altitudinal gradient, and in many
important coffee-growing regions simply run out of mountain
to climb.
The most important finding of this work is that despite differ-

ences among 19 GCM projections, they show absolute agreement
with regard to shifts in crop suitability across the altitudinal gra-
dient. Between 400 and 1,200 masl, covering over 90% of the land
currently suitable for coffee, there is full agreement among
models that suitability will reduce, and a threshold at which coffee
will be profitable can be identified. Likewise, above 1,600 masl
(covering only the tops of mountains) there is full agreement
between all GCMs that suitability will increase. This finding has
significant implications for climate change adaptation planning.
Even when the significant uncertainty is fully quantified through
impact analyses (from climate models through to impacts then
adaptation actions), there are robust no-regrets actions for spe-
cific farming altitudes.
The altitudinal bands correspond to progressive levels of in-

cremental, systemic, and transformative adaptation (19). Policy
derived from impact analyses could enable crop substitution in
low elevations under a no-regret basis, and start the transformation
from one high-value perennial cropping system to another (e.g.,
cocoa). In high elevations, where natural ecosystems commonly
provide water and other environmental services for downstream
urban populations, policies may look to control the expansion of
coffee farming, or to ensure that any high-elevation expansion of
the crop is achieved without detriment to the environment. At
mid-elevation, incremental adaptation through greater shading
and other management practices will suffice in areas higher than
the threshold for profitable coffee production, but nearer the
threshold altitude, system-level adaptation such as diversification
will be the more appropriate response. Thus, tradeoffs exist that

8360 | www.pnas.org/cgi/doi/10.1073/pnas.1219441110 Vermeulen et al.

www.pnas.org/cgi/doi/10.1073/pnas.1219441110


require sophisticated policy, but the inherent uncertainty from
climate is not a major concern in defining that policy.

Case 4: Informing Adaptation Using Crop and Climate Models. The
ongoing focus on quantifying uncertainty in impact analyses
serves to avoid overconfidence in projections. However, this fo-
cus can also lead to the impression that nothing is known for
certain. We conducted an extensive analysis of yields on a range
of timeframes using multiple models for one crop in one location,
and found a relatively small number of climatic uncertainties (SI
Appendix, Text S1). This small study therefore demonstrates that
not all uncertainties are equally important, which in turn begs
the question: For what time horizons is uncertainty sufficiently
small to enable meaningful predictions? The results from case 3
suggest that the answer to this question will vary according to the
location and type of agricultural system studied. Two further
studies, for crop yield in two locations, elucidate this point and
in doing so provide the underpinning numerical analysis for the
framework presented above.
First, a decomposition of the uncertainty was conducted to

assess the predictive capacity of decadal mean wheat yield sim-
ulations in Northeast China for the period 1980–2099, as influ-
enced by climate variability and change. Four separate GCM
ensembles were used, corresponding to no change in crop vari-
ety, use of variety tolerant to heat stress during flowering, and
two other adaptations. Each ensemble comprised 136 equally
likely yield projections that quantify uncertainty in climate and
crop simulation for a given scenario [IPCC Special Report on
Emission Scenarios A2 (SRES A2)]. The uncertainty decompo-
sition method used (SI Appendix, Text S2) permits the total un-
certainty in simulation of decadal mean yields (noise) to be
compared with the change in decadal mean yield (signal). It also
identifies the individual contributions to total uncertainty of the
crop model, the climate model, and interannual variability in crop
yield. The results, presented in Fig. 3, demonstrate that decadal
mean yields are predictable (i.e., the signal is greater than the total

uncertainty) for a more heat-tolerant crop, but not for a crop that
is susceptible to heat stress. This difference is due to increases in
extreme heat stress increasing the interannual variability of yield.
The second example in this case study demonstrates that the

impact of extreme events on water stress is predictable on sea-
sonal timescales. We found significant seasonal predictability of
high and low yields of groundnut in West Africa (SI Appendix,
Text S3). In contrast, less extreme departures from average yields
are less predictable: root mean square errors are commonly in
the range 15–40% of mean yield. Thus, at long lead times, ex-
treme events limit the predictability of mean yields, whereas at
short lead times the impact of the extremes themselves may be
predictable. This finding demonstrates the importance of ex-
treme events across a range of timescales and suggests that there
is scope for near-term forecasting of impacts of extreme events
to support incremental or systemic adaptation strategies.
What about adaptive planning at longer timescales? The be-

havior of a hypothetical perfectly heat-tolerant crop provides an
upper limit to the benefit of heat tolerance. By removing the
impact of heat stress and then decomposing uncertainty, we
demonstrate the effect that heat stress has on the predictability
of mean yield, a result that could not be derived from knowl-
edge of crop physiology alone. Fig. 3 Upper Right shows that
decadal mean yields of this heat-tolerant crop are predictable.
The maximum predictability occurs ∼2050–2070, with the sub-
sequent decline being largely due to crop, rather than climate,
uncertainty (Fig. 3, Lower Right; see also SI Appendix, Text S2).
Significant changes in decadal mean yields may themselves sug-
gest a change in crop suitability, indicating the need for systemic
or transformative adaptation. However, in this case mean yields
increase due to elevated CO2. Adaptation to these new con-
ditions might include the use of additional fertilizer to obtain
greater gains from the change in atmospheric composition. Thus,
for this heat-tolerant crop, climate information can be used to
inform adaptation over long time periods. In this example, the
adaptation maximizes yield gain, rather than minimizing or
mitigating yield loss. This numerical illustration of a method to
determine when a climate change signal emerges from the noise
of current climate variability provides some of the theoretical
basis for the framework outlined in Fig. 2.
Analysis of uncertainty is important not only for the de-

velopment of robust statements based on existing knowledge and
models, but also for identifying where efforts to reduce un-
certainty would result in the most significant gains. All three
examples presented in this case study confirm previous findings
(43) that increased efforts to collect and maintain crop yield
datasets may result in improved predictive ability at a range of
timeframes (SI Appendix).

Conclusions
We provide a framework for considering adaptation options for
different time frames. We have presented two case studies in
which quantitative tools have assisted decision making under
uncertainty in adaptation planning processes over shorter (Sri
Lanka) and longer (East Africa) time horizons. Stakeholder
processes, crucial to wicked problems, can incorporate useful in-
formation from analyses of capacity and of impacts. A further two
case studies provide evidence on how predictive models can iden-
tify uncertainties that are more or less relevant to decision making
in specific timeframes and circumstances. We find that uncertainty
does not preclude robust decisions on adaptation actions, and that
exploring uncertainty can assist with decision making.

Materials and Methods
Case 1. The Sri Lankan National Climate Change Action Strategy was de-
veloped through a three-stage process: (i) preparation of sector vulnerability
profiles (SVPs) for five key sectors, using an iterative participatory process to
refine content of the SVPs and to identify and prioritize areas for future

Fig. 3. Uncertainty in decadal mean wheat yield in China, decomposed by
source (Upper): climate ensemble (QUMP, blue), crop ensemble (GLAM,
green), and natural variability in decadal mean yield (orange). The total
uncertainty (black) and change in decadal mean yield normalized to the
baseline (signal, dashed black) are also shown. The signal in decadal crop
yields is detectable when it exceeds the total uncertainty. (Lower) Fraction of
total variance explained by the three separate components of uncertainty.
These metrics are shown assuming no adaptation (Left) and temperature
adaptation (Right). Details of calculations are given in SI Appendix, Text S2.
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investment, (ii) synthesizing these sector-based analyses into one cohesive
national adaptation strategy, which includes a program for priority action
and investment, and (iii) targeting of priority districts based on the vulner-
ability profiles.

Case 2. Approximately 40 multisectoral policymakers and technical pro-
fessionals convened over 12 mo to define scenario parameters, describe and
systematically assess developments per scenario for each key food security
determinant, and plot and compare each assessment of food security out-
comes. The four scenario narratives were then quantified using the IMPACT
and GLOBIOMmodels of global food supply, demand, trade, prices, and food
security, and land use competition.

Case 3. Historical climate data were obtained from the WorldClim database
(www.worldclim.org). Statistical downscaling of 18 GCMs was done to pro-
vide projections of future climates at 10-, 5-, and 1-km resolution surfaces. In
all cases, we used the IPCC scenario SRES A2a (“business as usual”). The
method assumes that the current mesodistribution of climate will remain
the same, but that regionally there will be a change in the baseline. Though
in some specific cases this assumption may not hold true, for the great
majority of sites it is unlikely that there will be a fundamental change in
mesoscale climate variability. Suitability was estimated using MAXENT,
a general-purpose method to estimate a target probability distribution

based on maximum entropy, subject to a set of constraints that represent
incomplete information.

Case 4. Full methods are given in SI Appendix. GCM ensembles were used
with single models of crop growth or suitability [General Large-Area Model
for annual crops (GLAM), EcoCrop, CROPGRO]. For the signal-to-noise anal-
ysis, the signal ðsÞ in yield for each projection is defined by fitting a second-
order polynomial to the yield data; the residuals from this fit represent the
variability in yield ðvÞ: Yq;cðtÞ= sq;cðtÞ+ vq;cðtÞ, where the subscripts refer to
the QUMP ðqÞ or crop ðcÞmodels used. The uncertainty in yield due to the
choice of climate model and crop model are defined as Uq = σðSqÞ and Uc =
σðScÞ, respectively, where Sq represents the mean across the crop ensemble
for each QUMP member, and Sc represents the mean across the QUMP en-
semble for each GLAM member. Finally, the variability component of un-
certainty is defined as a best-fit linear trend to σðvq;cÞ, using all members.
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