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Abstract. Mangrove forests prominently occupy an intertidal
boundary position where the effects of sea level rise will be
fast and well visible. This study in East Africa (Gazi Bay,
Kenya) addresses the question of whether mangroves can be
resilient to a rise in sea level by focusing on their potential
to migrate towards landward areas. The combinatory analy-
sis between remote sensing, DGPS-based ground truth and
digital terrain models (DTM) unveils how real vegetation
assemblages can shift under different projected (minimum
(+ 9 cm), relative (+ 20 cm), average (+ 48 cm) and maxi-
mum (+ 88 cm)) scenarios of sea level rise (SLR). Under
SLR scenarios up to 48 cm by the year 2100, the landward
extension remarkably implies an area increase for each of the
dominant mangrove assemblages except forAvicennia ma-
rina andCeriops tagal, both on the landward side. On the one
hand, the increase in most species in the first three scenar-
ios, including the socio-economically most important species
in this area,Rhizophora mucronataandC. tagalon the sea-
ward side, strongly depends on the colonisation rate of these
species. On the other hand, a SLR scenario of+ 88 cm by the
year 2100 indicates that the area flooded only by equinoctial
tides strongly decreases due to the topographical settings at
the edge of the inhabited area. Consequently, the landward
Avicennia-dominated assemblages will further decrease as a
formation if they fail to adapt to a more frequent inundation.
The topography is site-specific; however non-invadable areas
can be typical for many mangrove settings.

1 Introduction

Inhabiting the interface between land and sea, mangroves
are amongst one of the most at-risk ecosystems when
sea level rises (McLeod and Salm 2006). Throughout the
Quaternary, mangroves have shown high resilience to dis-
ruptions from large sea level fluctuations over historic
timescales (Woodroffe 1990). However, adaptation probabil-
ities strongly depend on the rates of sea level rise (SLR) and
sediment supplies in combination with subsurface processes
that affect sediment elevation (Gilman et al., 2007; Gilman
et al., 2006; McLeod and Salm 2006; Wolanski and Chappell
1996; Woodroffe 1990). Ellison and Stoddart (1991) sug-
gested that mangroves are stressed by SLRs of between 9
and 12 cm over 100 yr and concluded that faster rates could
seriously threaten mangrove ecosystems. This view has been
challenged by Snedaker et al. (1994), who cited historical
records showing changes nearly twice that high in mangrove
expansion under relative sea level; however hard scientific
data or SLR simulations are not available.

As mangrove ecosystems are very dynamic, the ability of
these forests to migrate to more landward zones is a very im-
portant aspect when considering the effect of SLR on man-
groves. If the possibility presents itself, mangroves will ad-
just to a SLR by expanding landward or laterally into ar-
eas of higher elevation, or even by growing upward in place
(McLeod and Salm 2006). However, the mangrove areas that
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are most vulnerable are those situated in a physiographic set-
ting that limits landward migration due to obstacles or steep
gradients and with a net decrease in sediment elevation or
sediment accretion that is insufficient to keep up with SLR
(Gilman et al., 2008). Landward obstructions, artificial or
natural, have an effect on ecosystems that would normally
move landward in response to erosive forces. Where there
is a rise in sea level relative to the land, a coastal squeeze
takes place (Doody, 2004). On the species level, adaptation
can occur through landward migration at different speeds as
mangrove species maintain their preferred hydroperiod or by
sediment accretion (Gilman et al., 2008). Mangrove species
composition can strongly affect a mangrove’s resistance and
resilience to SLR given that, on the one hand, individual
species have varying tolerances of the period, frequency and
depth of inundation, and, on the other hand, different vege-
tation zones have different rates of change in sedimentation
elevation (Krauss et al., 2003; McKee et al., 2007; Rogers et
al., 2005). Furthermore, several scientists have also investi-
gated how different functional root types of several mangrove
species respond to changes in elevation in order to determine
the vulnerability to SLR (Ellison and Stoddart 1991; Vin-
cente 1989).

Species-specific competition may allow some species to
outcompete others and to become more dominant within the
newly formed species composition (Lovelock and Ellison,
2007). Establishment and dispersal play a significant role
in these processes. They are, however, different for various
species and strongly dependent on many biotic factors such
as buoyancy, period of obligate dispersal, longevity and pe-
riod of establishment (Allen and Krauss, 2006; Clarke et al.,
2001; Drexler, 2001; Tomlinson, 1986), whilst wind and hy-
drodynamics of tides and currents can be equally important
abiotic factors (Stieglitz and Ridd, 2001). Additionally, fac-
tors like microtopography, the soil type at the top and root
structures can also have a significant effect on the fate of
propagules once released from their parental tree, as can
human-induced degradation, like tree cutting (Di Nitto et al.,
2008).

To date, mangroves have been subjected to non-climate-
related anthropogenic stressors which have accounted for
most of the global average annual rate of mangrove loss,
estimated to be 1–2 %, with losses during the last quarter
of a century ranging from 35 to 86 % (Alongi, 2002; Duke
et al., 2007; FAO 2003, 2007; Valiela et al., 2001). So far,
relative SLR has been a smaller threat to mangroves. How-
ever, it may constitute a substantial proportion of predicted
losses (about 10–20 % of total estimated losses) as several
studies have already shown that many mangrove areas have
not been keeping pace with current rates of relative SLR (Ca-
hoon et al., 2006; Gilman et al., 2007; McKee et al., 2007).
We would like to emphasise the importance of understand-
ing mangrove responses to SLR as these ecosystems provide
tremendous social, economic and ecological value (Barbier,
2003; Dahdouh-Guebas et al., 2005; Mumby et al., 2004,

Nagelkerken et al., 2008; Walters et al., 2008; Wells et al.,
2006).

This study focuses on the critical factor “tidal range” in
order to investigate the potential for landward migration of
mangrove vegetation assemblages in Gazi Bay (Kenya) un-
der different SLR scenarios. As mangrove species have their
preferred hydroperiod, the vegetation distribution in the dif-
ferent inundation classes at present is extrapolated towards
future SLR scenarios based on a static mangrove surface el-
evation. Digital terrain modelling is derived from differen-
tial GPS field measurements and used to simulate water lev-
els in a GIS environment. In combination with a mangrove
species map, preliminary results are generated regarding the
effect of SLR in the study site in Gazi Bay (Kenya). The
focus resides on individual mangrove species and their pos-
sible colonisation of back-mangrove areas that become ac-
cessible when sea level rises. We deliberately adopt a re-
ductionistic approach by taking abstraction of alterations
in sedimentation and elevation and other consequences of
global change such as increases in temperature, CO2 con-
centration and storm frequency, as well as possible shifts in
seasonal periods (Pernetta, 1993; UNEP, 1994; Woodroffe,
1990; Woodroffe and Grime, 1999). However we feel that, in
this context, relevant conclusions can be made. First of all,
this study represents the first attempt to simulate the effect of
SLR based on a large amount of detailed information on to-
pography and vegetation covering the whole bay. Secondly,
many researchers have already gathered valuable informa-
tion within this study area on diverse subjects like regen-
eration, vegetation structure dynamics, human impacts and
propagule dispersal (e.g. Abuodha and Kairo, 2001; Bosire et
al., 2003, 2008b; Dahdouh-Guebas Farid and Koedam, 2006;
Dahdouh-Guebas et al., 2002a; Di Nitto et al., 2008; Kairo et
al., 2001; Kirui et al., 2008; Neukermans et al., 2008). The
latter gives us the opportunity to draw preliminary conclu-
sions on the potential for landward migration of mangroves
in Gazi Bay and to create some views on the future vegetation
structure dynamics, which can contribute to their resilience
to SLR. Resilience is understood here as the survival of the
formation, even if displaced in space.

2 Material and methods

2.1 Study area

Gazi Bay (4◦26′ S, 39◦30′ E) is a shallow tropical water sys-
tem situated circa 40 km south of the historic port (Kilin-
dini) of Mombasa (Fig. 1). The mangrove forest covers an
area of approximately 6.5 km2 and is drained by two tidal
creeks. The tidal regime within the bay is semi-diurnal with
a macro tidal range of 3.5 m and an ebb-dominant asym-
metry (Kitheka 1996, 1997). Ten East African mangrove
species are present within this bay fringed with mangrove
forests, seagrass beds and coral reefs, more specificallyAvi-
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Fig. 1.Representation of(A) the Kenyan coast (Dahdouh-Guebas et al., 2000) and(B) Gazi Bay. The satellite image (QuickBird) shows the
whole bay of Gazi ; however this research focuses on the western part as encompassed by the overlaid vegetation map.S. alba= Sonneratia
alba, R. mucronata= Rhizophora mucronata, C. tagalLw = Ceriops tagalon the landward side,C. tagalSw= Ceriops tagalon the seaward
sideA. marinaLw = Avicennia marinaon the landward side andA. marinaSw= Avicennia marinaon the landward side. Classification of
the mangrove species coverage was obtained by Neukermans et al. (2008).

cennia marina(Forsk.) Vierh.,Bruguiera gymnorrhiza(L.)
Lam., Ceriops tagal(Perr.) C. B. Robinson,Heritiera lit-
toralis Dryand., Lumnitzera racemosa Willd.,Rhizophora
mucronataLam., Sonneratia alba Sm.,Xylocarpus grana-
tum Koen, a second yet unidentifiedXylocarpusspecies,
andPemphis acidulaForst. (Gallin et al., 1989) (nomencla-
ture according to Tomlinson, 1986). Topographical measure-
ments (see Sect. 2.2) were conducted throughout the western
part of the bay during two dry periods (July–August 2003
and 2005).

Mangrove species distribution within this study area was
obtained by Neukermans et al. (2008). A classification of
a Standard QuickBird multispectral satellite image was per-
formed in combination with ground truthing based on vegeta-
tion transects by the point-centred quarter method (PCQM+)

of Dahdouh-Guebas and Koedam (2006). The two socio-
economically most important species within this study area,
R. mucronataand C. tagal (Dahdouh-Guebas et al., 2000,
2004a), are mapped with user’s accuracies above 85 %,
whereas all four dominant mangrove species (A. marina(on
the seaward side (Sw) and the landwards side (Lw)),S. alba,

R. mucronataandC. tagal(Sw and Lw)) are mapped with an
overall accuracy (OA) of 72 %.

2.2 Topographical field survey and construction
of a DTM

The aim of the topographical field surveys was to construct
a digital terrain model (DTM) in order to simulate water lev-
els at present and for different Intergovernmental Panel on
Climate Change (IPCC) scenarios of SLR (for explanation
on IPCC scenarios, see Sect. 2.3). Measurements were car-
ried out using a Leica GPS-AT302, which is a centimetre-
precise differential global positioning system (DGPS) with
a fixed reference station and a mobile rover station. Since
a dense mangrove cover disrupts the DGPS signal, a strati-
fied design was applied targeting the low-cover mangroves,
back-mangrove areas, tidal mudflats and creeks. Resolution
of the DTM varies from 1m in the topographically “rough”
areas to 50 m in areas characterised by a relatively flat and
even surface. All DGPS points were post-processed in SKI
(Static Kinematic Program), and after converting these geo-
graphical coordinates into projected coordinates (WGS 1984,
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UTM zone 37S) and assigning their absolute height, a thor-
ough knowledge of the field was used to add extra points
and breaklines in order to eventually optimise the constructed
DTM. As the height measurements of these points are rel-
ative, we followed the high-water line of a chosen spring
tide on two consecutive days and collected thexyz data of
116 points using the DGPS. Based on the Kilindini tide ta-
bles (Kenya Ports Authority, KPA) the approximated abso-
lute height of the water was calculated, and the relative ele-
vations in the DTM converted to approximate absolute field
topography. We recognise a temporal delay in tides between
Mombasa and Gazi Bay; however this does not influence our
study.

The final coordinates resulting from the topographical
measurements were inserted into a geographical information
system (GIS) and served as an input to create a triangular
irregular network (TIN) of the area. The TIN was based on
the (non-constrained) Delauney triangulation of the original
set of points by use of Voronoi diagrams, a theory for which
we refer to Raper (1990). In this paper it is not the intention
to investigate in depth the impact of these elevation errors
through principal component analysis (Lopez, 1997), but we
give an estimation of the absolute mean error and the stan-
dard deviation in densely covered and less densely covered
areas. After extracting 30 points from each of the latter areas,
the TIN was reconstructed and height values were reassessed
for these particular points.

2.3 Spatial analyses

IPCC has predicted several SLR scenarios (+ 9 cm (mini-
mum), + 20 cm (relative),+ 48 cm (average) and+ 88 cm
(maximum)) by the year 2100 (IPCC 2001)1 based on
atmosphere–ocean general circulation models and emission
scenarios incorporating uncertainties regarding changes in
terrestrial ice, permafrost and sediment deposition. The main
purpose of the spatial analyses is to predict possible changes
in vegetation assemblages under these different scenarios of
SLR.

This modelling exercise mainly focuses on the potential of
mangroves to migrate towards landward areas, but it is solely
based on sea level rise relative to a static mangrove surface
elevation. In this stage, data on sediment-related changes are

1We based our analysis on SLR scenarios of the IPCC Third
Assessment Report (TAR) (2001) and not on those of the Fourth
Assessment Report (AR4) (2007), which forecast a range from 9 to
88 cm by 2100 and a range from 18 to 59 cm by 2090–2099, respec-
tively. The reason is the following: due to lacking of published liter-
ature, AR4 models do not include uncertainties in climate–carbon-
cycle feedback, nor do they include the full effects of changes in ice
sheet flow. The AR4 projections do, however, include a contribu-
tion due to increased ice flow from Greenland and Antarctica at the
rates observed for 1993–2003, but these flow rates could increase or
decrease in the future. The AR4 could have similar ranges to those
of TAR if uncertainties were to be treated in the same way.

not available; however we do not underestimate the impor-
tance of sediment in mangrove vegetation dynamics in view
of SLR.

The modelling exercise started with an assessment of the
current species-related zonation or spatial structure present
in Gazi Bay. First of all, the height boundaries for each in-
undation class according to Watson (1928) (Table 1) was de-
fined based on the combination of the tide tables (July 2003–
July 2004) published by the KPA and the monthly inunda-
tion frequencies per class (Table 1). In further analysis, in-
undation frequencies higher than those of “class 1” will be
referred to as “class 0”. Using ArcGIS 8.2, these boundaries
were classified into inundation classes based on the DTM for
the current scenario versus different IPCC scenarios of eu-
static SLR. The relative scenario of+ 20 cm coincides with
the current trend of SLR within the long-term data set (1985–
2003) obtained from gauge measurements by the Kenya Ma-
rine and Fisheries Research Institute at the Kilindini Port in
Mombasa. This initiative is part of the Global Sea Level Ob-
serving System (GLOSS) founded by the Intergovernmental
Oceanographic Commission (IOC) of UNESCO.

Secondly, an overlay between the vegetation map and the
current inundation classes (Fig. 2b) gives an estimation of
the vegetation surface of each species within each inunda-
tion class. To review the accuracy of the DTM and/or the
classification of the vegetation, it is important to investigate
whether the distribution of the species within the inunda-
tion classes deviate from a random distribution. To perform
the statistical analyses, the complete area was divided into
10 equally sized blocks. Within each block the areal cover-
age (ha) was calculated for each species in all inundation
classes of the current situation. Secondly, a Kolmogorov–
Smirnov test was performed to compare the observed cumu-
lative distribution function to a theoretical normal distribu-
tion, whereafter Kruskal–Wallis tests were completed to in-
vestigate whether the vegetation distribution within the inun-
dation classes is random. Since the species concerned are not
randomly distributed, extrapolations of the vegetation struc-
ture towards future IPCC scenarios of SLR were performed.
The area increase (%) of each inundation class within each
scenario was calculated in relation to the current situation,
whereafter these percentages were multiplied by the current
vegetation area (ha).

2.4 Sensitivity analysis

A source of uncertainty in the input data is the DTM’s abso-
lute height, which was calibrated using Kilindini port gauge
measurements. To address the sensitivity of the model to the
absolute height uncertainty of the DTM, we investigated the
impact of changes in the height boundaries of the inunda-
tion classes. Upper and lower height boundaries are slightly
altered at a time and in a systematic manner, more specifi-
cally by an increase and decrease of these boundary intervals
with 5, 10 and 15 % corresponding to 4, 6 and 8 cm. The
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Table 1. Inundation classes and monthly inundation frequency according to Watson (1928). Height boundaries (metres above datum) of
present and future inundation classes are presented: a minimum (+9 cm), relative (+20 cm), average (+48 cm) and maximum (+88 cm)
scenario is based on IPCC eustatic SLR scenarios for the year 2100. In further analysis, inundation frequencies higher than those of “class
1” will be referred to as “class 0”.

Inundation Flooded by Monthly Present Minimum Relative Average Maximum
classes inundation situation scenario, scenario, scenario, scenario,

frequency (m) +9 cm (m) +20 cm (m) +48 cm (m) +88 cm (m)

1 All high tides (AHT) 56–62 2.10–2.60 2.19–2.69 2.30–2.80 2.58–3.08 2.98–3.48
2 Medium high tides (MHT) 45–56 2.60–3.10 2.69–3.19 2.80–3.30 3.08–3.58 3.48–3.98
3 Normal high tides (NHT) 20–45 3.10–3.50 3.19–3.59 3.30–3.70 3.58–3.98 3.98–4.38
4 Spring high tides (SHT) 2–20 3.50–3.80 3.59–3.89 3.70–4.10 3.98–4.28 4.38–4.68
5 Abnormal (equinoctial tides) (EHT) 0–2 3.80–4.20 3.89–4.29 4.10–4.40 4.28–4.68 4.68–5.08
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Figure 2 
Fig. 2. (A) Presentation of the DTM.(B) 3-D presentation of the combination between(B1) inundation classes,(B2) vegetation map and
(B3) QuickBird image.(C) Presentation of the inundation classes:(C1) current situation,(C2) scenario +9 cm,(C3) scenario +20 cm,(C4)
scenario +48 cm and(C5) scenario +88 cm. AHT stands for all high tides; MHT, medium high tides; NHT, normal high tides; SHT, spring
high tides; and EHT, equinoctial high tides. Inundation frequencies higher than those of “class 1” will be referred to as “class 0”.

comparison between the reference map (Fig. 2C1) and the
output maps after altering the height boundaries was assessed
with an error matrix, giving overall (OA), user’s (UA) and
producer’s accuracies (PA) (for calculations, see Appendix
A).

3 Results

3.1 Construction and validation of the digital
terrain model

The DTM of the study area is shown in Fig. 2a. After post-
processing in SKI, 4105 points were accepted with an aver-
age error onx, y andz of 1.16, 2.08 and 0.89 cm, respec-
tively, whereafter several breaklines and 82 extra points were
manually added to optimise the DTM. Breaklines along the
creek banks are, however, crucial and had to be added as
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Table 2. Presentation of the total area (ha) occupied by each man-
grove species with the whole studied area (TMA) and the total area
occupied by each mangrove species within the inundation classes at
present (TMAI). Sw = seaward side and Lw = landward side.

Species TMA TMAI Difference (%)

Avicennia marinaSw 46.59 41.65 11.86
Avicennia marinaLw 32.34 29.53 9.52
Ceriops tagalLw 37.99 36.53 3.99
Ceriops tagalSw 13.50 13.27 1.76
Rhizophora mucronata 109.42 105.50 3.71
Sonneratia alba 7.96 4.95 60.89

estimates (based on measurements within the creek) due to
high mangrove coverage. Absolute mean error and standard
deviation for densely covered and less densely covered areas
are 0.013 m± 0.106 and 0.089 m± 0.374, respectively.

3.2 Simulation of sea level rise scenarios

The current situation covers a total (studied) area of
423.43 ha, of which the regularly flooded area and the non-
flooded area encompass 386.53 and 36.90 ha, respectively.
When looking at the inundation classes within the different
scenarios (Fig. 2C1 to C5), we can conclude that there is an
overall trend of transgression into the terrestrial areas. The
maximum scenario in particular (+ 88 cm) represents a sig-
nificant area increase of class 0 and class 1 (AHT) (for ab-
breviations, see Fig. 2c). More specifically, the percentage
area increase of these two classes from the current situation
towards the maximum scenario of SLR is 245 and 103 %,
respectively. After calculating the extent of each mangrove
species within each current inundation class, Kolmogorov–
Smirnov tests were completed with results showing signif-
icance values< 0.05 for each species. The vegetation dis-
tribution is therefore not normal and nonparametric tech-
niques have to be used for further analyses. The following
Kruskal–Wallis test proved that the distribution of the vege-
tation within the inundation classes is not random; all signif-
icance values are< 0.05. Each species evaluated within the
area has a preference for certain inundation classes, confirm-
ing the occurrence of a specific zonation or spatial structure
in Gazi Bay and therefore also an adequate accuracy of the
field measurements.

Due to the errors on the classification of the vegetation
map (see Sect. 2.1 and Neukermans et al., 2008) and the to-
pographical measurements, the total area (ha) occupied by
each mangrove species within the whole study area (TMA)
does not fully coincide with the total area (ha) occupied
by each mangrove species within the inundation classes at
present (TMAI). This, however, does not exceed values be-
tween 2 and 12 (Table 2), except forSonneratia alba, which
mainly occurs in class 0 (38 %) and class 1 (AHT) (35 %),
consequently being the only species with a high difference

Fig. 3. (A) Graph of the total area (ha) per species within the
four SLR scenarios,(B) future prediction of the dynamics of man-
groves, non-flooded area and class 0.

between TMA and TMAI of 61 %. The high discrepancy be-
tween TMA and TMAI forS. albacould be explained by a
possible lower accuracy of the DTM at the breaklines mark-
ing the creek bank.

All other species appear to have an adequate distribution
within the whole study area:Avicennia marinaSw (seaward)
mainly resides in class 1 (AHT) (26 %) and class 2 (MHT)
(45 %), Rhizophora mucronatamainly appears in class 2
(MHT) (53 %) and class 3 (NHT) (22 %), whilstCeriops ta-
gal, which is an inner mangrove, occupies the areas in several
mid-classes.A. marinaLw (landward) dominates the land-
ward classes with 35 % in class 4 (SHT). An extrapolation of
changes in vegetation assemblages towards future scenarios
(Fig. 3a) demonstrates that, in comparison to the average sce-
nario of SLR (+ 48 cm), all species will decrease in the max-
imum scenario (+ 88 cm), resulting in a decline of 13 % in
100 yr. Although most species show a possible area increase
throughout the minimum, relative and average scenario, this
is not the case forA. marinaLw, as this species will dimin-
ish throughout all scenarios, with a highest decrease of 60 %
in the maximum scenario. When considering the two socio-
economically most important speciesR. mucronataand C.
tagal in the most probable relative scenario of+ 20 cm SLR,
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an area increase of 15 % occurs in comparison to the cur-
rent situation. Finally, the area proportions between the total
mangrove area, the non-flooded area and class 0 are shown
in Fig. 3b as percentage increase or decrease compared to
the current situation. The maximum scenario shows a con-
siderable decrease in total mangrove area of 13 %, whereas
for the relative scenario this area increases by 4 %. The most
marked increase is for the area of class 0, namely 245 % in
comparison to the current situation.

3.3 Sensitivity analysis and error matrix for map
comparison or accuracy assessment

Table B1 (see Appendix B) shows the results of the error
matrices for map comparison or accuracy assessment. When
comparing the vegetation distribution within adjusted height
boundaries for each inundation class, the outcome appears to
be relatively sensitive to an increase or decrease of 15 %. The
overall accuracy, with a comparable outcome forKhat, fluc-
tuates between 87.34 and 65.88 % when considering an in-
crease or decrease up to 10 %, yet strongly declines towards
53.61 to 48.02 % when height boundaries of each inundation
class are adjusted by 15 %. As the applied vegetation classifi-
cation confirms the occurrence of a specific zonation or spa-
tial structure in Gazi Bay, which is highly related to inunda-
tion patterns, we can conclude that sensitivity to alterations in
topography can be significant from a certain limit and should
therefore be aligned to vegetation distributions when data are
available. Furthermore, the wind setup may have affected the
high-water-line measurements at spring tide. In addition, the
inundation classification according to Watson (1928), which
is based on inundation frequency, may not always yield fully
satisfactory results, especially in regions with an irregular
tidal regime and/or irregular elevation profile, where the du-
ration of inundation seems equally important, as was shown
by Van Loon et al. (2007).

4 Discussion

This study was to investigate whether mangrove assemblages
in Gazi Bay have the potential to migrate to more land-
ward areas, which can contribute to their resilience to SLR
(Fig. 4), understood as the survival of the formation within
the site. Although the focus of this study was mainly on tidal
range, we emphasise the importance of sediment supply, es-
pecially for scenarios of SLR higher than 20 cm 100 yr−1

(relative scenario). Whether mangroves can be resilient to
SLR strongly depends on the physiographic setting in which
these ecosystems occur, human activities that are carried out
in the wetland and on how species-specific competition and
adaptation will unfold. There is no clear-cut answer that can
be applied to global mangrove coverage; however, by study-
ing this particular mangrove area with a mesotidal regime
and a common vegetation zonation along a gentle slope gra-

dient from land to sea, extrapolations can be made to areas
with similar characteristics.

4.1 Vegetation dynamics of mangrove assemblages
under different scenarios of SLR

Bearing in mind the reductionistic approach, the extent of
the most common assemblages, apart fromAvicennia marina
andCeriops tagalon the landward side (Lw), are forecasted
to increase in surface under the different scenarios of SLR
(except for the maximum scenario of+ 88 cm). This forecast
is in line with a few earlier reports that current sea level rise
rates do not pose a threat to mangrove ecosystems (e.g. Mc-
Kee et al. 2007; Snedaker et al., 1994; Tan and Zhang, 1997),
but contradicts many others (e.g. Ellison and Stoddart, 1991;
Fujimoto and Miyagi 1990; Parkinson et al., 1994; Pernetta,
1993). However, considering the uncertainties regarding the
impact of global change on mangrove growth and develop-
ment, such contradictions are not unexpected. In addition,
our reductionistic approach focuses on tidal range and the
possible dispersal range of propagules, but it does not take
into account the biogeomorphological capacity to maintain
or to protect a mangrove forest.

Landward migration of mangroves in Gazi Bay appears to
be limited under the maximum scenario as the highest in-
tertidal inundation class strongly decreases due to the topo-
graphical settings at the edge of the inhabited area. Conse-
quently, the coastal squeeze will signify a decrease in theAvi-
cennia-dominated assemblages if they fail to adapt to a more
frequent inundation or if competition with other species pre-
vails. Dahdouh-Guebas et al. (2004a) made a prediction of
future vegetation structure in Gazi Bay based on retrospec-
tive remote sensing, social surveys and tree distribution, and
results show that the surface extent ofA. marinaon the land-
ward side has been reducing since 1972. Furthermore, the
current situation in Gazi Bay is characterised by large bare
and sandy sites on the landward side which have remained in
the same state for a substantial time; that is, we have observed
no colonisation for at least 16 yr). When landward areas are
accessible during SLR, dispersal and early growth become
important stages in a plant life that fundamentally determine
community structure and population dynamics (Clarke et al.,
2001; Sousa et al., 2007). These processes are very complex.
A dense mangrove forest can provide an adequate propagule
supply for dispersal towards newly colonisable areas, but (1)
as Clarke et al. (2001) stated, establishment of young trees
is mainly related to the presence of parental trees, while this
is not so much the case for juveniles and the hydrochorous
dispersal of propagules, and (2) suitability for stranding or
self-planting of propagules is strongly dependent on the pres-
ence of root structures (which can facilitate the entanglement
of propagules) and the compactness of the soil (clay- or silt-
dominated) (Di Nitto et al., 2008).

As in other transitional systems, plant establishment and
community succession is driven by tolerance to physiological
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Fig. 4.Overview scheme summarising the discussion on resilience of mangroves facing sea level rise, more specifically concerning the case
study in Gazi Bay (Kenya).

stress and plant–plant interactions (Bertness, 1991; Mil-
brandt and Tinsley, 2006); hence species-specific competi-
tion could signify a natural blockage for landward migra-
tion of mangroves. However, in several cases, facilitation is
a common mechanism of succession in terrestrial habitats,
meaning that an early coloniser changes the abiotic condi-
tions in a way that allows an entry and finally a displacement
of a second species to a previous intolerable habitat (Con-
nell and Slayter, 1977). This was, for instance, the case for
(1) saltwort (Batis maritimaL.), as it was identified as an
abundant initial coloniser of an extensive black mangrove
(Avicennia germinansL.) die-off area (Milbrandt and Rins-
ley, 2006), and (2) salt marsh cordgrass (Spartina alterni-
flora Loisel.), being a potential initial soil stabiliser creating
successional stages firstly forLaguncularia racemosa(L.)
C. F. Gaertn, which is secondly outshaded and replaced by
Avicennia schauerianaStapf and Leechm. ex Mold. (Cunha-
Lignon et al., 2009).

The reported forecasts can also have an important socio-
ecological implication. Although the forest adjacent to the
village has long been overexploited for wood and decreased
in area, anthropogenic disturbance has diminished over the
last years and some mangrove assemblages have even ex-
panded (Dahdouh-Guebas et al., 2004a). An increase in man-
grove area under different scenarios of SLR, provided that it
does not go at the expense of qualitative degradation, may
imply an increase in anthropogenic threats such as tradi-
tional utilisation (McLeod and Salm, 2006). Clear felling of
mangroves species can have severe consequences for future
vegetation dynamics. Furthermore, most mangrove creeks
(like the case in Gazi Bay) are characterised by the occur-
rence of time–velocity asymmetry in which ebb flow is more
dominant than flood flow (Kitheka 1997, 1998; Kitheka et
al., 2002). Sediment trapping occurs during incoming flood
tides, and there is no significant export of sediments during
ebb tide (Furukawa and Wolanski, 1996; Wattayakorn et al.,
1990); however degradation of mangroves can lower trap-
ping efficiency (Kitheka et al., 2002), consequently increas-
ing vulnerability to sea level rise.
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Fig. 5. Decision tree to aid resilient site selection for mangroves according to McLeod and Salm (2006). This three can be applied once
candidate sites of high biodiversity have been selected using biological criteria, for instance *, factors that indicate strong recovery potential
(see Appendix Table C1). This decision tree was adjusted (**) to implement the possibility of a shift in vegetation structure. MPA = marine
protected area.

4.2 Vegetation dynamics of individual species under
different scenarios of SLR

When landward areas become accessible for the migration
and colonisation of mangrove species, we have to ask the
same question as Alongi (p4, 2008): “Are trends in man-
grove forest replacement in response to catastrophic distur-
bances the result of somewhat deterministic sequences as in
terrestrial forests, or are they the result of a stochastic “first
come, first served” opportunistic response or neither?” Em-
pirical data support the idea that recovery is stochastic with
distinct succession stages, yet early sequences of species re-
placement are greatly influenced by species present at ini-
tial recovery (Alongi, 2008; Clarke et al., 2001; Sousa et al.,
2007). Within this study the extrapolation of the present veg-
etation distribution towards scenarios under a rising sea level
is based on species-specific preference for certain inunda-
tion frequencies. The survival of these species in their shift
in a more landward direction is strongly dependent on their
colonisation rate and interspecific competition. The most
seaward mangrove speciesSonneratia albaappears in vege-

tation zones that are daily inundated and are never submitted
to large salinity variations (Tomlinson, 1986). When sea level
rises, this species is forecasted to increase in area (except un-
der the maximum scenario), yet as investigated by Dahdouh-
Guebas et al. (2004a), the juvenile layer within theseS. alba
stands is limited and propagule establishment is hampered
by currents that are generally known to be strongest along
the seaward side (Diop et al., 2001). The distribution of the
young individuals ofS. alba is more related to the adult
trees, whereas juveniles are generally spread over a wider
area (Dahdouh-Guebas et al., 2004a). The latter also ap-
plies for the speciesAvicennia marinaon the seaward side
(Sw). Furthermore, Imai et al. (2006) verified thatS. alba
seedlings and saplings, which require sunny conditions for
their growth, were more abundant in gaps than in the under-
storey. Competition with a more landward species such as
Rhizophora mucronatamight demonstrate that an area in-
crease ofS. albacould be overestimated by our analyses.
However, colonisation byS. albaon seaward sand banks
has occurred throughout the years. Additionally, bearing in

www.biogeosciences.net/11/857/2014/ Biogeosciences, 11, 857–871, 2014



866 D. Di Nitto et al.: Mangroves facing climate change

mind the site-specific rates of sea level rise and sediment
input rates, Ellison and Stoddart (1991) claimed that man-
grove ecosystems can keep pace with SLR of 8–9 cm per
100 yr, making seaward expansion and colonisation of these
daily inundated areas possible. Rates of 9–12 cm per 100 yr
will cause stress, yet the ability for mangroves to adjust to
even higher rates is unlikely. The minimum scenario of SLR
(+ 9 cm) could in fact provide an additional and suitable
habitat forS. albaandA. marina(Sw).

R. mucronataand Ceriops tagalare two economically
valuable pioneer species that will most likely increase as pre-
dicted unless anthropogenic impact rises. Multivariate vege-
tation structure analysis showed thatC. tagal is very abun-
dant in the understorey of assemblages dominated by other
mangroves, which could mask a dynamic shift (Dahdouh-
Guebas et al., 2004a).R. mucronataand C. tagal already
occupy the mid-zone within the mangrove area and knowl-
edge on the dispersal of their propagules indicates that prop
roots and pencil roots clearly have the ability to entangle
propagules and that preference of propagule dispersal goes
to flat areas and substrates with a more compact soil struc-
ture (clay, silt) (Di Nitto et al., 2008). One disadvantage for
R. mucronatacould, however, be represented by a further sil-
tation along the seaward sand bank creating a patch of arid
conditions and higher light intensity more favourable forA.
marina(Dahdouh-Guebas, et al. 2004a).

Avicennia marina(Lw) will have to adapt to greater in-
undation frequencies. It is known that this species can toler-
ate high salinity variation, so could the double zonation of
this species on the landward side versus the same species
on the seaward side support the idea of dynamic adaptation?
Genetic analyses based on 48 RAPD (randomly amplified
polymorphic DNA) loci have demonstrated that four DNA
fragments show a slight differentiation in allelic frequency
between the twoA. marinastands in spite of their short dis-
tance separation (Dahdouh-Guebas et al., 2004b). This in-
dicates that there is less genetic exchange between the dis-
junctive stands than within one stand, consequently suggest-
ing that an ecological or physical barrier might exist. Tidal
range might facilitate the dispersal of propagules in both di-
rections; however obstruction by complex root structures can
prevent this exchange. Additionally, interspecific competi-
tion with the adjacent speciesC. tagalcould disadvantageA.
marinaas McCusker (1977) confirms that a salinity increase
causes a reduction in water use efficiency for the seedlings
of Rhizophora, but not forCeriops. Furthermore, an elevated
CO2 level will enhance the efficiency of water use (UNEP,
1994); however this advantage is lost when salinity becomes
too high, for instance, at low inundation frequency areas on
the landward side. Another drawback forA. marinais an in-
crease of temperature, since this species has lowest optimal
temperature for leaf development (Hutchings and Saenger,
1987).

There are several well-established physiologic mecha-
nisms influencing mangrove community composition (Duke

et al., 1998; McKee, 1995), yet research is needed on in-
terspecies interactions influencing mangrove forest regener-
ation in post-disturbance mangrove communities.

4.3 Recommendation for further research and
management strategies

In the light of mangrove ecosystem stresses caused by cli-
mate change, managers face the dual challenge of selecting
and implementing conservation strategies in order to main-
tain and restore resilient mangrove forests.

In this study the emphasis resides on tidal range and not
on sediment supply; however, we give a preliminary vulner-
ability assessment of this mangrove area based on a slightly
adjusted decision tree (Fig. 5) to aid resilient site selection
for mangroves by McLeod and Salm (2006). This decision
tree was applied after appointing Gazi Bay as a high biodi-
versity candidate site based on biological and environmental
criteria (Table C1; see Appendix C). Decisions were made
based on the available literature involving the mangrove area
in Gazi Bay and the relative SLR scenario of+ 20 cm, which
coincides with the current trend along the coast of Kenyan.

Following this decision tree, the mangrove area in Gazi
Bay appears to be adequately resilient for at least 100 yr
and can most likely be appointed as a marine protected area
(MPA). However, although we do not intend to focus only
on MPAs, we want to anticipate a future scenario of sea
level rise and indicate gaps in, on the one hand, scientific
and, on the other hand, site-specific knowledge that neces-
sitate further research. Given (1) the mesotidal regime and
permanent rivers and creeks that provide freshwater and sed-
iment (mainly during wet season), (2) the knowledge that the
drainage basin of both Mkurumuji and Kidogoweni rivers,
which extend into the coastal ranges of the Shimba Hills Na-
tional Reserve, has limited anthropogenic pressures with re-
spect to the intactness of the hydrological regime, and given
that (3) landward migration in Gazi Bay is possible under the
relative scenario of sea level rise, the decision tree leads us
towards the question whether recruitment is strong. The an-
swer is definitely “yes”; however we feel that the possibility
of a shift in vegetation structure needs to be implemented,
rendering Gazi Bay a site that is “Maybe OK for MPA”. Ac-
cording to McLeod and Salm (2006) the decision tree would
have led towards “Good choice for MPA”.

The recommendations for further research and manage-
ment strategies, which can be applied globally, are the fol-
lowing: (1) identifying an early coloniser to promote early
establishment of mangrove seedlings, (2) measuring changes
in elevation by means of surface elevation tables (SETs), (3)
assuring the possibility of landward migration and (4) inves-
tigating propagule dispersal by combined hydrodynamic and
ecological behaviour modelling.
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Appendix A

Calculation of an error matrix for map comparison or
accuracy assessment

– Map 1 is a raster grid ofn classes as a model output

– Map 2 is a raster grid ofn classes from an alternative
model or comparison reference layer.

Producer’s accuracy (PA)
Producer’s accuracy (PA): Takes into account the accuracy

of individual classes and therefore indicates the probability
of the cell value in Map 2 being the same as in Map 1.

PA = xii/x+i · 100%

xii = total number of correct cells in a class

x+i = sum of cell values in the column

User’s accuracy (UA): Takes into account the accuracy of in-
dividual classes but indicates the probability of the cell value
in Map 1 being the same as in Map 2.

UA = xii/xi+ · 100%

xii = total number of correct cells in a class

xi+ = sum of cell values in the row

Overall Accuracy (OA): Summarizes the total agree-
ment/disagreement between the maps and incorporates the
major diagonal while excluding the omission and the com-
mission errors.

OA = D/N · 100%

D = total number correct cells as summed along

the major diagonal

N = total number of cells in the error matrix

Table B1.Results of the error matrices for map comparison or accu-
racy assessment when comparing the vegetation distribution within
adjusted height boundaries for the inundation classes. Values repre-
sent the overall accuracy andKhat in percentages.

Input Adjustments Comparison of vegetation distributions
parameter in input criteria within the adjusted inundation classes

Overall accuracy Khat
(%) (%)

Inundation +5% 87.34 85.34
classes +10% 76.67 75.3 1
(height +15% 48.02 49.61
boundaries) –5 % 78.09 75.28

–10 % 65.88 65.39
–15 % 53.61 50.72

N = total number of cells in the error matrix.

Khat: Measure of agreement or accuracy based on KAPPA
analysis to compare maps of similar categories in order to
determine if they are significantly different

Khat = N

((∑r
i=1xii −

∑r
i=1(xi+ · x+i)

)(
N2 −

∑r
i=1(xi+ · x+i)

) )
r = number of rows in the matrix

xii = total number correct cells in a class

(i.e. value in rowi and columni)

xi+ = total for rowi

x+i = total for columni
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Table C1.Mangrove resilience factors that contribute to site selection (according to McLeod and Salm, 2006). Case study: Gazi Bay, Kenya.

Factors that allow for peat building to keep up with sea level rise Applicable to Gazi Bay Yes/No Literature available per factor

Association with drainage systems including permanent rivers and
creeks that provide freshwater and sediment

Yes e.g. Dahdouh-Guebas et al.
(2004a), Kitheka (1996, 1997),
Njambuya (2006), Obade et al.
(2004), Ohowa et al. (1997)

Sediment-rich macrotidal environments to facilitate sediment redistri-
bution and accretion

Yes

Actively prograding coast and delta Yes
Natural features (bays, barrier islands, beaches, sandbars, reefs) that re-
duce wave erosion and storm surge

Yes

Factors that allow for landward migration

Mangroves backed by low-lying retreat areas (for example, salt flats,
marshes, coastal plains) which may provide suitable habitat for coloni-
sation and landward movement of mangroves as sea level rises

No/Yes in certain places e.g. Di Nitto et al. (2008), Neuk-
ermans et al. (2008), Obade et al.
(2004)

Mangroves in remote areas and distant from human settlements and
agriculture, aquaculture, and salt production developments

Yes

Mangroves in areas where abandoned alternate land use provides op-
portunities for restoration, for example, flooded villages, tsunami-prone
land, unproductive ponds

Yes, unmanaged coconut plantations

Factors that enhance sediment distribution and propagule dispersal

Unencumbered tidal creeks and areas with a large tidal range to im-
prove flushing, reduce ponding and stagnation, and enhance sediment
distribution and propagule dispersal

Yes e.g. De Ryck (2009), Di Nitto
et al. (2008), Kitheka (1996,
1997), Ohowa et al. (1997)

Areas with a large tidal range that may be better able to adjust to in-
creases in sea level due to stress tolerance

Yes

Permanent strong currents to redistribute sediment and maintain open
channels

Yes

Factors that indicate survival over time

Diverse species assemblage and clear zonation over range of elevation
(intertidal to dry land)

Yes e.g. Beeckman et al. (1989),
Bosire et al. (2008a), Bosire et al.
(2006), Dahdouh-Guebas et al.
(2002a), Dahdouh-Guebas et al.
(2004a), Dahdouh-Guebas et al.
(2002b), Kairo (2001), Kairo
et al. (2001), Neukermans et al.
(2008), Tack et al. (1992), Van
Tendeloo (2004)

Range in size from new recruits to maximum size class (location and
species dependent)

Yes

Tidal creek and channel banks consolidated by continuous dense man-
grove forest (which will keep these channels open)

Yes

Healthy mangrove systems in areas which have been exposed to large
increases in sea level due to climate-induced sea level rise and tectonic
subsidence

No

Factors that indicate strong recovery potential

Access to healthy supply of propagules, either internally or from adja-
cent mangrove areas

Yes

Strong mangrove recruitment indicated by the presence, variety, and
abundance of established mangrove propagules

Yes

Close proximity and connectivity to neighbouring stands of healthy
mangroves

Yes

Access to sediment and freshwater Yes
Limited anthropogenic stress Yes, no major residential area in the

vicinity, selected as a fairly pristine
East African site in the EU PUMPSEA
project: http://www.pumpsea.icat.fc.ul.
pt/main.php

Unimpeded or easily restorable hydrological regime Yes
Effective management regime in place such as the control of usual
threats like dredging and filling, conversion to aquaculture ponds, and
construction of dams, roads, and dikes that disrupt hydrological regime,
etc.

Yes

Integrated coastal management plan or protected area management plan
implemented

Yes/No

Biogeosciences, 11, 857–871, 2014 www.biogeosciences.net/11/857/2014/

http://www.pumpsea.icat.fc.ul.pt/main.php
http://www.pumpsea.icat.fc.ul.pt/main.php


D. Di Nitto et al.: Mangroves facing climate change 869

Acknowledgements.Many thanks are due to the people of Gazi
Bay, more specifically Latifa S. Ba’alawy and her relatives for the
hospitable family environment and R. Abdul for the assistance on
the field. This research was funded the Flemish Interuniversity
Council (VLIR) and the Fonds David & Alice Van Buuren. D. D. is
the recipient of a VLIR PhD scholarship. This work was presented
in part at (1) the International Symposium of Aquatic Vascular
Plants (ISAVP) (January 11–13, 2006, Brussels, Belgium) (2) the
7th International Symposium on GIS and Computer Cartography
for Coastal Zone Management (CoastGIS) (July 12–16, 2006,
Wollongong, Australia) and the (3) MMM3 Meeting on Mangrove
ecology, functioning and Management (2–6 July 2012, Galle, Sri
Lanka).

Edited by: B. Satyanarayana

References

Abuodha, P. A. W. and Kairo, J. G.: Human-induced stresses on
mangrove swamps along the Kenyan coast, Hydrobiologia, 458,
255–265, 2001.

Allen, J. A. and Krauss, K. W.: Influence of propagule flotation
longevity and light availability on establishment of introduced
mangrove species in Hawaii, Pacific Science, 60, 367–376, 2006.

Alongi, D. M.: Present state and future of the world’s mangrove
forests, Environ. Conserv., 29, 331–349, 2002.

Barbier, E. B.: Habitat-fishery linkages and mangrove loss in Thai-
land, Contemporary Economic Policy, 21, 59–77, 2003.

Beeckman, H., Gallin, E., and Coppejans, E.: Indirect gradient anal-
ysis of the mangal formation of Gazi Bay (Kenya), Silva Gandav-
ensis, 54, 57–72, 1989.

Bertness, M. D.: Interspecific interactions among high marsh peren-
nials in a New England salt marsh, J. Ecol., 72, 125–137, 1991.

Bosire, J., Kairo, J. G., Kazungu, J., Koedam, N., and Dahdouh-
Guebas, F.: Spatial and temporal regeneration dynamics inCeri-
ops tagal(Perr.) C.B. Rob. (Rhizophoraceae) mangrove forests
in Kenya, Western Indian Ocean Journal of Marine Science , 7,
69–80, 2008a.

Bosire, J. O., Dahdouh-Guebas, F., Kairo, J. G., and Koedam,
N.: Colonization of non-planted mangrove species into restored
mangrove stands in Gazi Bay, Kenya, Aquat. Bot., 76, 267–279,
2003.

Bosire, J. O., Dahdouh-Guebas, F., Kairo, J. G., Wartel, S.,
Kazungu, J., and Koedam, N.: Success rates of recruited tree
species and their contribution to the structural development of
reforested mangrove stands, Mar. Ecol. Prog. Ser., 325, 85–91,
2006.

Bosire, J. O., Dahdouh-Guebas, F., Walton, M., Crona, B. I., Lewis,
R. R., Field, C., Kairo, J. G., and Koedam, N.: Functionality
of restored mangroves, A review, Aquatic Botany, 89, 251–259,
2008b.

Cahoon, D. R., Hensel, P. F., Spencer, T., Reed, D. J., McKee, K. L.,
and Saintilan, N.: Coastal wetland vulnerability to relative sea-
level rise, Wetland elevation trends and process controls, Ecol.
Stu. An., 190, 271–292, 2006.

Clarke, P. J., Kerrigan, R. A., and Westphal, C. J.: Dispersal poten-
tial and early growth in 14 tropical mangroves: do early life his-

tory traits correlate with patterns of adult distribution?, J. Ecol.,
89, 648–659, 2001.

Connell, J. H. and Slayter, R. O.: Mechanisms of succession in nat-
ural communities and their role in community stability and orga-
nization, Am. Natural., 111, 1119–1144, 1977.

Cunha-Lignon, M., Mahiques, M. M., Schaeffer-Novelli, Y., Ro-
drigues, M., Klein, D. A., Goya, S. C., Menghini, R. P., To-
lentino, C. V., Cintrón-Molero, G., and Dahdouh-Guebas F.:
Analysis of mangrove forest succession using cores: a case study
in the Cananéia-Iguape Coastal System, São Paulo, Brazil, Braz.
J. Oceanogr., 57, 2009.

Dahdouh-Guebas, F. and Koedam, N.: Empirical estimate of the
reliability of the use of the Point-Centred Quarter Method
(PCQM): Solutions to ambiguous field situations and description
of the PCQM+ protocol, Forest Ecol. Manage., 228, 1–18, 2006.

Dahdouh-Guebas, F., Mathenge, C., Kairo, J. G., and Koedam,
N.: Utilization of mangrove wood products around Mida Creek
(Kenya) amongst subsistence and commercial users, Economic
Botany, 54, 513-527, 2000.

Dahdouh-Guebas, F., Kairo, J. G., Jayatissa, L. P., Cannicci, S., and
Koedam N.: An ordination study to view vegetation structure dy-
namics in disturbed and undisturbed mangrove forests in Kenya
and Sri Lanka, Plant Ecol., 161, 123–135, 2002a.

Dahdouh-Guebas, F., Van Pottelbergh, I., Kairo, J. G., Cannicci, S.,
and Koedam, N.: Human-impacted mangroves in Gazi (Kenya):
predicting future vegetation based on retrospective remote sens-
ing, social surveys, and tree distribution, Mar. Ecol. Prog. Ser.,
272, 77–92, 2004a.

Dahdouh-Guebas, F., Verneirt, M., Cannicci, S., Kairo, J. G., Tack,
J. F., and Koedam, N.: An exploratory study on grapsid crab
zonation in Kenyan mangroves, Wet. Ecol. Manage., 10, 179–
187, 2002b.

Dahdouh-Guebas, F., Jayatissa, L. P., Di Nitto, D., Bosire, J. O.,
Lo Seen, D., and Koedam, N.: How effective were mangroves as
a defence against the recent tsunami?, Current Biol., 15, 1337–
1338, 2005.

Dahdouh-Guebas, F., De Bondt, R., Abeysinghe, P. D., Kairo, J.
G., Cannicci, S., Triest, L., and Koedam, N.: Comparative study
of the disjunct zonation pattern of the grey mangroveAvicennia
marina(Forsk.) Vierh. in Gazi Bay (Kenya), Bull. Mar. Sci., 74,
237–252, 2004b.

De Ryck, D.: Moving and settling: Experiments on the dispersal and
establishment of hydrochorous propagules, Master Thesis, Vrije
Universiteit Brussel, Brussels, 2009.

Di Nitto, D., Dahdouh-Guebas, F., Kairo, J. G., Decleir, H., and
Koedam, N.: Digital terrain modelling to investigate the effects of
sea level rise on mangrove propagule establishment, Mar. Ecol.
Prog. Ser., 356, 175–188, 2008.

Diop, E. S., Gordon, C., Semesi, A. K., Soumaré, A., Diallo, N.,
Guissé, A., Diouf, M., and Ayivor, J. S.: Mangoves of Africa
in De Lacerda LD, ed., Mangrove ecosystems, Berlin, Germany,
Springer-Verlag, 2001.

Doody, J. P.: “Coastal squeeze” – an historical perspective, J. Coast.
Conserv., 10/1-2, 129–138, 2004.

Drexler, J. Z.: Maximum longevities ofRhizophora apiculataand
R. mucronatapropagules, Pacific Science, 55, 17–22, 2001.

Duke, N. C., Ball, M. C., and Ellison, J. C.: Factors influencing bio-
diversity and distributional gradients in mangroves, Glob. Ecol.
Biogeogr. Lett., 7, 27–47, 1988.

www.biogeosciences.net/11/857/2014/ Biogeosciences, 11, 857–871, 2014



870 D. Di Nitto et al.: Mangroves facing climate change

Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger,
K., Berger, U., Cannicci, S., Diele, K., Ewel, K. C., Field, C.
D., Koedam, N., Lee, S. Y., Marchand, C., Nordhaus, I., and
Dahdouh-Guebas, F.: A world without mangroves?, Science,
317, 41–42, 2007.

Ellison, J. C. and Stoddart, D. R.: Mangrove ecosystem collapse
during predicted sea-level rise – Holocene analogs and implica-
tions, J. Coast. Res., 7, 151–165, 1991.

FAO: Status and Trends in Mangrove Area Extent Worldwide, Food
and Agricultural Organization of the United Nations, Forest Re-
sources Division, Paris, 2003.

Fujimoto, K. and Miyagi, T.: Late Holocene sea level fluctuations
and mangrove forest formation on Ponape Island, Micronesia, J.
Geogr., 99, 507–514, 1990.

Furukawa, K. and Wolanski, E.: Sedimentation in mangrove forests,
Mangroves and Salt Marshes, 1, 3–10, 1996.

Gallin, E., Coppejans, E., and Beeckman, H.: The mangrove vegeta-
tion of Gazi bay (Kenya), Bulletin de la Société Royal Botanique
de Belgique, 122, 197–207, 1989.

Gilman, E., Ellison, J., and Coleman, R.: Assessment of mangrove
response to projected relative sea-level rise and recent historical
reconstruction of shoreline position, 124, 105–130, 2007.

Gilman, E. L., Ellison, J., Duke, N. C., and Field, C.: Threats to
mangroves from climate change and adaptation options: A re-
view, Aquat. Botan., 89, 237–250, 2008.

Gilman, E. L., Ellison, J., Jungblat, V., VanLavieren, H., Adler, E.,
Wilson, L., Areki, F., Brighouse, G., Bungitak, J., Dus, E., Henry,
M., Sauni Jr., I., Kilman, M., Matthews, E., Teariki-Ruatu, N.,
Tukia, S., and Yuknavage, K.: Adapting to Pacific Island man-
grove responses to sea level rise and climate change, Clim. Res.,
32, 161–176, 2006.

Hutchings, P. A. and Saenger, P.: Ecology of mangroves, St. Lucia,
Brisbane, Australia, University of Queensland Press, 1987.

Imai, N., Takyu, M., Nakamura, Y., and Nakamura, T.: Gap for-
mation and regeneration of tropical mangrove forests in Ranong,
Thailand, Plant Ecol., 186, 37–46, 2006.

IPCC: Climate Change 2001: The Scientific Basis. Contribution
of Working Group I to the Third Assessment Report of the In-
tergovernmental Panel on Climate Change, Cambridge, United
Kingdom and New York, NY, USA, Cambridge University Press,
2001.

Kairo, J. G.: Ecology and restoration of mangrove systems in
Kenya, PhD dissertation, Vrije Universiteit Brussel, Brussels,
Belgium, 2001.

Kairo, J. G., Dahdouh-Guebas, F., Bosire, J., and Koedam, N.:
Restoration and management of mangrove systems – a lesson for
and from the East African region, S. Afr. J. Bot., 67, 383–389,
2001.

Kirui, B. Y. K., Huxham, M., Kairo, J., and Skov, M.: Influence of
species richness and environmental context on early survival of
replanted mangroves at Gazi Bay, Kenya, Hydrobiol., 603, 171–
181, 2008.

Kitheka, J. U.: Water circulation and coastal trapping of brackish
water in a tropical mangrove-dominated bay in Kenya, Limnol.
Oceanogr., 41, 169–176, 1996.

Kitheka, J. U.: Coastal tidally-driven circulation and the role of wa-
ter exchange in the linkage between tropical coastal ecosystems,
Estuar. Coast. Shelf Sci., 45, 177–187, 1997.

Kitheka, J. U.: Groundwater outflow and its linkage to coastal circu-
lation in a mangrove-fringed creek in Kenya, Estuar. Coast. Shelf
Sci., 47, 63–75, 1998.

Kitheka, J. U., Ongwenyi, G. S., and Mavuti, K. M.: Dynamics of
suspended sediment exchange and transport in a degraded man-
grove creek in Kenya, Ambio, 31, 580–587, 2002.

Krauss, K. W., Allen, J. A., and Cahoon, D. R.: Differential rates of
vertical accretion and elevation change among aerial root types
in Micronesian mangrove forests, Estuar. Coast. Shelf Sci., 56,
251–259, 2003.

Lopez, C.: Locating some types of random errors in Digital Terrain
Models, Int. J. Geogr. Info. Sci., 11, 677–698, 1997.

Lovelock, C. E. and Ellison, J.: Vulnerability of mangroves and as-
sociated tidal wetlands of the GBR to climate change, edited by:
Johnson, J. and Marshall, P., Climate Change and Great Barrier
Reef, Townsville, Australia, Great Barrier Reef Marine Park Au-
thority, 2007.

McCusker, A.: Seedling establishment in mangrove species, Int. J.
Trop. Geol. Geogr. Ecol., 1, 23–33, 1977.

McKee, K. L.: Mangrove species distribution and propagule preda-
tion in Belize – an exception to the dominance predation hypoth-
esis, Biotropica, 27, 334–345, 1995.

McKee, K. L., Cahoon, D. R., and Feller, I. C.: Caribbean man-
groves adjust to rising sea level through biotic controls on change
in soil elevation, Glob. Ecol. Biogeogr., 16, 545–556, 2007.

McLeod, E. and Salm, R. V.: Managing Mangroves for Resilience
to Climate Change Gland, Switzerland, IUCN, 2006.

Milbrandt, E. C. and Tinsley, M. N.: The role of saltwort (Batis
maritimaL.) in regeneration of degraded mangrove forests, Hy-
drobiologia, 568, 369–377, 2006.

Mumby, P. J., Edwards, A. J., Arias-Gonzalez, J. E., Lindeman, K.
C., Blackwell, P. G., Gall, A., Gorczynska, M. I., Harborne, A.
R., Pescod, C. L., Renken, H., Wabnitz, C. C. C., and Llewellyn,
G.: Mangroves enhance the biomass of coral reef fish communi-
ties in the Caribbean, Nature, 427, 533–536, 2004.

Nagelkerken, I., Blaber, S. J. M., Bouillon, S., Green, P., Haywood,
M., Kirton, L. G., Meynecke, J.-O., Pawlik, J., Penrose, H. M.,
Sasekumar, A., and Somerfield, P. J.: The habitat function of
mangroves for terrestrial and marine fauna: A review, Aquat.
Botan., 89, 155–185, 2008.

Neukermans, G., Dahdouh-Guebas, F., Kairo, J. G., and Koedam,
N.: Mangrove species and stand mapping in Gazi bay (Kenya)
using Quickbird satellite imagery, J. Spat. Sci., 53, 75–86, 2008.

Njambuya, J. W.: Sediment characteristics, its origin and stratigra-
phy of mangrove soils of Gazi Bay, Kenya, MSc. Environmental
Science and Technology Thesis, Vrije Universiteit Brussel, Brus-
sels, Belgium, 2006.

Obade, P., Dahdouh-Guebas, F., Koedam, N., De Wulf, R., and
Tack, J. F.: GIS-based integration of interdisciplinary ecologi-
cal data to detect land-cover changes in creek mangroves at Gazi
Bay, Kenya, Western Indian Ocean Journal of Marine Science, 3,
11–27, 2004.

Ohowa, B. O., Mwashote, B. M., and Shimbira, W. S.: Dissolved
inorganic nutrient fluxes from seasonal rivers into Gazi Bay,
Kenya, Estuar. Coast. Shelf Sci., 45, 189–195, 1997.

Parkinson, R. W., Delaune, R. D., and White, J. R.: Holocene Sea-
Level Rise and the Fate of Mangrove Forests within the Wider
Caribbean Region, J. Coast. Res., 10, 1077–1086, 1994.

Biogeosciences, 11, 857–871, 2014 www.biogeosciences.net/11/857/2014/



D. Di Nitto et al.: Mangroves facing climate change 871

Pernetta, J. C.: Mangrove forests, climate change and sea-level rise:
hydrological influences on community structure and survival,
with examples from the Indo-West pacific, Gland, Switzerland,
1993.

Rogers, K., Saintilan, N., and Heijnis, H.: Mangrove encroachment
of salt marsh in Western Port Bay, Victoria: The role of sedi-
mentation, subsidence, and sea level rise, Estuaries, 28, 551–559,
2005.

Snedaker, S. C., Meeder, J. F., Ross, M. S., and Ford, R. G.:
Mangrove ecosystem collapse during predicted sea-level rise –
Holocene analogues and implications - discussion, J. Coast. Res.,
Special Issue, 10, 497–498, 1994.

Sousa, W. P., Kennedy, P. G., Mitchell, B. J., and Ordonez, B. M.:
Supply-side ecology in mangroves: Do propagule dispersal and
seedling establishment explain forest structure?, Ecol. Monogr.,
77, 53–76, 2007.

Stieglitz, T. and Ridd, P. V.: Trapping of mangrove propagules due
to density-driven secondary circulation in the Normanby River
estuary, NE Australia, Mar. Ecol. Prog. Ser., 211, 131–142, 2001.

Tack, J. F., Vanden Berghe, E., and Polk, P.: Ecomorphology of
Crassostrea cucullata(Born, 1778) (Ostreidae) in a mangrove
creek (Gazi, Kenya), Hydrobiologia, 247, 109–117, 1992.

Tan, X. and Zhang, Q.: Mangrove beaches’ accretion rate and ef-
fects of relative sea level rise on mangroves in China, Mar. Sci.
Bull., 16, 29–35, 1997.

Tomlinson, P. B.: The Botany of Mangroves, Cambridge, Cam-
bridge University Press, 1986.

UNEP: Assessment and monitoring of climatic change impacts on
mangrove ecosystems, UNEP, Regional Seas Reports and Stud-
ies, Nairobi, Kenya, Report No. 154, 1994.

Valiela, I., Bowen, J. L., and York, J. K.: Mangrove forests: One of
the world’s threatened major tropical environments, Bioscience,
51, 807–815, 2001.

Van Loon, A. F., Dijksma, R., and Van Mensvoort, M. E .F.: Hy-
drological classification in mangrove areas: A case study in Can
Gio, Vietnam, Aquatic Botany, 87, 80–82, 2007.

Van Tendeloo, A.: Veranderingen in traditionele en commerciële
mens-ecosysteemrelaties in de mangrovebaai van Gazi (Kenya):
etnobiologie, percepties van de lokale gemeenschap en eco-
toeristische activiteiten, Lic./MSc, Biologie thesis, Vrije Univer-
siteit Brussel, Brussel, Belgium, 2004.

Vincente, V. P.: Ecological effects of sea-level rise and sea surface
temperature on mangroves, coral reefs, seagrass beds and sandy
beaches of Puerto Rico: A preliminary evaluation, Science-
Ciencia 16, 1989.

Walters, B. B., Ronnback, P., Kovacs, J. M., Crona, B., Hussain,
S. A., Badola, R., Primavera, J. H., Barbier, E., and Dahdouh-
Guebas, F.: Ethnobiology, socio-economics and management of
mangrove forests: A review, Aquat. Botan., 89, 220–236, 2008.

Watson, J. G.: Mangrove forests of the Malay Peninsula, Malayan
Forest Records, 6, 1–275, 1928.

Wattayakorn, G., Wolanski, E., and Kjerfve, B.: Mixing, trapping
and outwelling in the Klong Ngao mangrove swamp, Thailand,
Estuar. Coast. Shelf Sci., 31, 667–688, 1990.

Wells, S., Ravilous, C., and Corcoran, E.: In the front line: Shore-
line protection and other ecosystem services from mangroves and
coraf reefs. Cambridge, UK: United Nations Environment Pro-
gramme World Conservation Monitoring Centre, 2006.

Wolanski, E. and Chappell, J.: The respons of tropical Australian
estuaries to sea level rise, J. Mar. Syst., 7, 267–279, 1996.

Woodroffe, C. D.: The impact of sea-level rise on mangrove shore-
lines, Progress in Physical Geography, 14, 483–520, 1990.

Woodroffe, C. D. and Grime, D.: Storm impact and evolution of a
mangrove-fringed chenier plain, Shoal Bay, Darwin, Australia,
Mar. Geol., 159, 303–321, 1999.

www.biogeosciences.net/11/857/2014/ Biogeosciences, 11, 857–871, 2014


