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We describe a method for analyzing short-pulse laser propagation through tissues for the detection of tu-
mors and inhomogeneities in tissues with the goal of developing a time-resclved optical tomegraphy system.
Traditivnal methods for analyzing photon transport in tissues usually involve the parabolic or diffusion ap-

proximation, which implies infinite speed of propagation of the optical signal

To overcome such limitations

we calculate the transmitted and reflected intensity distributions, using the damped-wave hyperbelic P, and

the discrete-ordinates methods, for a wide range of laser, tissue, and tumor parameters
compared with the parabolic diffusion P, approximation

OCIS codes: 170.6920, 290 4210

Time-resclved optical tomegraphy is an example of
diagnostic methods that use short-pulse laser inter-
actions with highly scattering and absorbing media
such as biological tissues and is of great scientific,
engineering, and medical interest'"® Short-pulse
probing techniques have distinct advantages over
conventional large-pulse-width or cw lasers, primarily
because they can convey additional information about
the tissue’s interior by temporal variation of the
observed signal. When cw laser sources are utilized,
the information available is the magnitude of the
net attenuation and the angular distribution of the
transmitted or reflected signal The distinct feature
of a short-pulse laser is the multiple-scattering-
induced temporal signature that persists for times
greater than the duration of the source pulse and is a
function of the source pulse width, the scattering and
absorbing properties of the medium, and the location
in the medium where the properties undergo changes.

Most previous studies considered the parabolic
diffusion approximation,’”-® which one derives from
a complete transport equation by neglecting certain
time-derivative terms in the radiative transport equa-
tion  Some of the studies cited have experimentally
investigated short-pulse laser transport through tis-
sues and indicated that the parabelic approximation
is adequate only for thick tissue samples. Also, the
results of these parabelic models do not match most
of the available experimental results and cannot
accurately account for the change in properties at
internal interfaces® A Monte Carlo simulation,
which ineludes finite speed of propagation of radiation
transport but entails great computational expense,
was considered by many researchers *® The Monte
Carlo results have been shown not to match the
parabolic diffusion results for tissue samples of small
thickness.® Some discussions of these limitations
have been reported in the literature!'™ In addi-
tion, in most previous research, appropriate phase
functions were not considered or a simplified form
of a scattering phase function distribution was used
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to represent tissue, leading to inaccurate values of
transmitted and reflected signals.

In this Letter we show that the temporal trans-
mitted and reflected optical signals from the tissue
samples obtained with the hyperbolic discrete ordi-
nates method are significantly different from the
commonly used parabolic diffusion approximation
and hyperbolic P) models. For brevity, only the
effects of variation of the laser pulse width, tumor
properties and location, and scattering phase-function
distribution on the transmitted and reflected signals
are analvzed here by the hyperbolic discrete-ordinates
method.

The physical case under consideration is a one-
dimensional scattering and abscrbing layered tissue
medium of thickness L, infinite horizontal extent, and
azimuthal symmetry. For illustration, we assume
that inhomogeneities such as tumors that have differ-
ent properties from those of the surrounding healthy
tissues are present at depths from L, to L, + L»
from the tissue surface (i e, inhomogeneity thickness,
Loy We use the following radiative transfer equation
to analyze short-pulse laser propagation through
tissues'’;
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where [ is the intensity [W m~2 sr™!]; ¢ is the speed
of light in the medium {= speed of light in vacuum di-
vided bv the refractive index of the medium); x is the
Cartesian distance; ¢ is the time: o is the radiative
coefficient (e and s refer to extinetion and scattering,
respectively); u is the cosine of 8, where 8 is the polar
angle measured from the positive x axis; p is the scat-
tering phase function, and S is the source term. This
is an integrodifferential equation in which the partial
differentials represent a hyperbolic form of equation.
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The phase function is represented in terms of a series
of Legendre polynomials P, as

M

pl@) = Z AmPrficos O), (2)

m={
where @ is the scattering angle, M is the order
of anisotropy, and a,, are the coefficients in the
expansion.

The pulsed radiation that is incident upon the tis-
sue medium is a square pulse with a temporal duration
(or pulse width), 1, The intensity in the medium can
be separated into a collimated component, which corre-
sponds to the incident source, and a scattered intensity
If the collimated intensity is I, then [ is the remain-
ing part, which can be described by Eq. (1}). The colli-
mated component of the intensity, I, is represented by

Iz, 0= Iy expl—o .2} [H(t - x/c)
“HU—t, - x/elSlu-1, (3

where I is the peak power at the surface, H(¢) is the
Heaviside step function, and §(f} is the Dirac delta
function. Source function S for the scattered intensity
field is then given by
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The equation of transfer, Eq. (1), is complicated be-
cause of the integral on the right-hand side, which
corresponds to the in-scattering gain term. To reduce
the integral to a simpler form, we use two techniques,
namely, the linear spherical harmonies expansion (P;)
and the discrete-ordinates method.

Under the P, approximation the intensity is con-
sidered to be a linear function of direction cosine
w ' The resultant hyperbolic wave equation ob-
tained by integration of Eq. (1) over all solid angles is
given by'
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where u is the intensity averaged over all solid angles
and g is an integrated phase function.” Equation (5)
indicates that, whereas the propagation speed of the
original laser pulse is ¢, the propagation speed along
the x direction of the resultant hyperbolic wave of iz is
e/v/3.

We obtain the parabolic form of the equation that
is widely used in neutron transport™ and that has
now been adopted by researchers in optical tomogra-
phy applications' by neglecting the first term on the
left-hand side and last two terms on the right-hand
side of Eq. (6). It is assumed that the absorption coef-
ficient (o) is negligible compared with o, — o:g. The
resultant classic diffusion equation is given by®
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Equation (6) implies an infinite speed of propagation
of the optical signal

In the hyperbolic discrete-ordinates methed, the in-
tegral on the right-hand side of Eq. (1) is replaced
by a quadrature of the Gaussian, Lobatto, or Cheby-
shev type. If x; are the quadrature points between
the limits of integration, —1 to 1, that correspond to
a 2K -order quadrature, and w; are the corresponding
weights, Eq. {1) is reduced to the following system of
coupled hyperbolic partial differential equations;
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where I(x,t) = I(x, u;,t). The hyperbolic wave
speed of I; along the r direction that corresponds to
the discrete ordinate w; has the magnitude u,e.

We obtained the transmitted and reflected signals
numerically by solving the transient radiative trans-
port equation, using the hyperbolic discrete-ordinates
method,’”” the hyperbolic P; approximation,’ and
the parabolic diffusion approximation '® The optical
properties considered in this Letter are those of
biological tissues and tumors.!'® A forward-peaked
phase function is used to represent the tissue
medium.'' Figure 1 shows the simulated reflected
signal from a tissue sample for three models. The
magnitudes of the reflected signals for these models
match only for long times. For shorter times, each
model predicts a different temporal shape and mag-
nitude of the reflected signals The hyperbolic and
parabolic P; models give an unrealistic negative re-
flected signal value at short times, as is evident from
Fig. 1, and are clearly not appropriate models for thin
tissue samples. The hyperbolic discrete-ordinates
method, which is the most accurate one, is therefore
used here. The average computational time is 20 s
on a Pentium III, 600-MHz PC for a 12-discrete-ordi-
nate Gaussian quadrature. The results of hyperbolic
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Fig. 1. Signal reflected from a tissue medium for the three
models of tissue-analysis methods discussed here.
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Fig. 2. Signal transmitted through a tissue medium for
various phase-function distributions.
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Fig. 3. Signal reflected from a multilayered medium for
several inhomogeneity locations.
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Fig. 4 GSignal reflected from a multilayered medium for
several laser pulse widths

discrete-ordinates method match those of the Monte
Carlo simulation.'

Figure 2 shows the effect of the phase-function
distribution on the simulated transmitted signal
Most researchers employ a simple isotropic or linear
forward anistropic phase-function distribution rather
than the realistic forward-peaked anisotropic phase
function distribution to represent tissue samples.
One can see from Fig. 2 that the decay of the trans-
mitted signal is much slower for isotropic and linear
forward anisotropic phase functions than for the real-
istic highly forward anisotropic phase function. The
photons tend to remain inside the medium for longer
times for isotropic and linear anisotropic models and

thus give incorrect transmitted signal values. It is
evident from Fig. 2 that the values of the transmitted
signals are zero until the exponentially decaying
source pulse has traversed the medium at the speed
of light.

The effect of the tumor’s location relative to the
tissue surface is shown in Fig. 3 for a multilayered
medium; ie, the tissue—inhomogeneity—tissue layer
and the albedo {(=g,/g,) of tissues {w,) and tumors
(wiy) are different  As soon as the laser pulse reaches
the tissue—tumor interface, an inflection in the re-
flected signal is observed (Fig. 3). This effect is more
proncunced for a tumor closer to the tissue surface,
i.e, for smaller L;. Figure 4 shows the effect of the
laser pulse width on the reflected signal for a mul-
tilayered medium. It is evident from the figure that

the shorter the laser pulse width is, the more clearly .
defined the interface between tissue and tumor will

be. For 10- and 20-ps pulse-width lasers, the inflec-

-

tion point corresponds to the time when the laser pulse

is shut off and not to the tissue—tumor interface, as in
the case of 1 ps. For large-pulse-width laser sources,
multiple-scattering effects will smear out the sharp in-
flection in the reflected signal. Thus it is observed
that the temporal spread of the scattered signal can be
correlated to the medium’s characteristics. The sig-
nificance of this study is that it will provide a guid-
ance tool for the development of time-resolved optical
tomography for biomedical imaging of tissues.
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