

School of Geography South Parks Road University of Oxford Oxford, OX1 3QY United Kingdom

admin@caribsave.org www.caribsave.org

CCCCC Lawrence Nicholas Building Belmopan Belize

CARIBSAVE

FINAL REPORT

Montego Bay - Jamaica

November 2009

CONTENTS

	NTS	
	ITRODUCTION	
	LIMATE MODELLING: Observed and Projected Changes in Climate at Montego Bay, Jamaica	
2.1	Executive Summary	
2.2	Introduction	
2.3	Temperature	
2.4	Precipitation	
2.5	Average Wind Speed	
2.6	Relative Humidity	
2.7	Sunshine Hours	
2.8	Sea Surface Temperatures	19
2.9	Temperature Extremes	
2.10		
2.11	1 ,	
2.12		
2.13	0-	
2.14		
	ULNERABILITY PROFILE	
3.1	Introduction and the Effects of Climate Variability	
3.2	Water Quality and Availability	
3.3	Energy Supply and Distribution (Regional, National & Destinational)	
3.4	Agriculture, Fisheries and Food Security	
3.5	Human Health	
3.6	Marine and Terrestrial Biodiversity, and Landscape Aesthetics	
3.7	Infrastructure and Settlements	
3.8	Comprehensive (Natural) Disaster Management	
3.9	Identification of the Most Vulnerable	
3.	9.1 Gender	
	9.2 Poverty	
3.10	\sim 1	
3.11		
3.12		
	DAPTIVE CAPACITY PROFILE	
4.1	Introduction	
4.2	Resource Availability	
4.3	Institutional and Governance Networks and Competence	
4.4	Political Leadership and Commitment	
4.5	Social Capital and Equity	
4.6	Information Technologies and Communication Systems	
4.7	Health of Environment	
4.8	Conclusion	
5. C	ONCLUSION, RECOMMENDATIONS and PLAN FOR ACTION	
5.1	General Action Points	59
5.	1.1 Completing the Adaptation Cycle	
5.	1.2 Climate Data Collection and Collation	61
5.	1.3 Application of Vulnerability Indices	
5.2	Water	
5.	2.1 Water Assessment	62
5.3	Energy	62

	5.3.	.1 Implementation of the Mitigation Spiral	62
	5.3.2	.2 Links with Existing and Forthcoming Energy Projects in the Region	62
	5.3.3	3 Climate Policy and Carbon Neutrality Research Needs	63
	5.4	Agriculture	64
	5.4.		
	5.5	Biodiversity	
	5.6	Human Health	64
	5.7	Infrastructure and Settlements	64
	5.7.	1 Sea Level Rise (SLR) Vulnerability Assessment of Tourism Assets, Infrastructure and	
	Sett	tlements	64
	5.8	Identification of those Most Vulnerable	65
	5.8.	1 Vulnerabilities, Livelihoods, Gender and Climate Change	65
	5.9	Comprehensive (Natural) Disaster Management	69
	5.9.	1 Mainstreaming Climate Change Impacts on Tourism into Comprehensive Disaster	
	Mar	nagement (CDM) using Evidence-based Planning	70
6.	ACK	(NOWLEDGEMENTS	71
7.	REF	ERENCES	72
8.	ANN	NEX	80
	Annex	c 1: Adaptation Cycle	80
	Annex	c 2: Mitigation Spiral	81
	Annex	3: Flow Chart of Methodology	82

1. INTRODUCTION

The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), published in 2007, provides undisputable evidence that human activities are the major reason for the rise in greenhouse gas emissions and changes in the global climate system (IPCC, 2007a). Climate change will affect ecosystem services in ways that increase vulnerabilities with regard to food security, water supply, natural disasters, as well as human health. Notably, climate change is ongoing, with "observational evidence from all continents and oceans ... that many natural systems are being affected by regional climate changes, particularly temperature increases" (IPCC, 2007b: 8). Observed and projected climate change will in turn affect socioeconomic development (Global Humanitarian Forum, 2009; Stern, 2006), with some 300,000 deaths per year currently being attributed to climate change (Global Humanitarian Forum, 2009). Mitigation, to reduce the speed at which the global climate changes, as well as adaptation to cope with changes that are inevitable, are thus of great importance (Parry et al., 2009).

The IPCC (2007: 30) notes that "warming of the climate system is unequivocal, as it is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice and rising global average sea level". Climate change has started to affect many natural systems, including hydrological systems (increased runoff and earlier spring peak discharge, warming of lakes and rivers affecting thermal structure and water quality), terrestrial ecosystems (earlier spring events including leaf-unfolding, bird migration and egg-laying, biodiversity decline, and poleward and upward shifts in the ranges of plants and animal species), as well as marine systems (rising water temperatures, changes in ice cover, salinity, acidification, oxygen levels and circulation, affecting shifts in the ranges and changes of algae, plankton and fish abundance).

The IPCC (2007b) also notes that small islands are particularly vulnerable to the effects of climate change, including sea-level rise and extreme events. Deterioration in coastal conditions is expected to affect fisheries and tourism, with sea-level rise being "expected to exacerbate inundation, storm surge, erosion and other coastal hazards, threatening vital infrastructure, settlements and facilities that support the livelihood of island communities" (IPCC, 2007b: 15). Climate change is projected to reduce water resources in the Caribbean to a point where these become insufficient to meet demand, at least in periods with low rainfalls (IPCC, 2007b). Together, these changes are projected to severely affect socio-economic development and well-being in the world (Stern, 2006), with the number of climate change related deaths expected to rise to 500,000 per year globally by 2020 (Global Humanitarian Forum, 2009). However, not all regions are equally vulnerable to climate change. The Caribbean needs to be seen as one of the most vulnerable regions, due to their relative affectedness by climate change, but also in terms of their capacity to adapt (Bueno *et al.*, 2008). This should be seen in the light of Dulal *et al.*'s (2009: 371) conclusion that:

"If the Caribbean countries fail to adapt, they are likely to take direct and substantial economic hits to their most important industry sectors such as tourism, which depends on the attractiveness of their natural coastal environments, and agriculture (including fisheries), which are highly climate sensitive sectors. By no incidence, these two sectors are the highest contributors to employment in the majority of these countries and significant losses or economic downturn attendant to inability to adapt to climate change will not increase unemployment but have potentially debilitating social and cultural consequences to communities."

This report looks specifically at the consequences of climate change for those sectors that are of key importance in defining vulnerability (i.e., water quality and availability, energy, agriculture, biodiversity, human health and infrastructure and settlements).

2. CLIMATE MODELLING: Observed and Projected Changes in Climate at Montego Bay, Jamaica

2.1 Executive Summary

- Observed mean annual temperatures over Jamaica in gridded temperature observations have increased at an average rate of 0.27°C per decade over the period 1960-2006. Annual mean temperatures at the closest observation station to Montego Bay (Sangster airport, Montego Bay) have been increasing at an average rate of 0.41°C per decade between 1973 and 2008. Observed temperatures at both the Sangster observation station and as an average over Jamaica have increased most rapidly in JJA.
- Annual mean temperature changes specifically for Montego Bay simulated by Regional Climate Model (RCM) indicate increases of 3.1-3.2°C by the 2080s under a higher emissions scenario (A2), with changes ranging between 2.7 and 3.8°C for in surrounding grid boxes. Temperature increases are marginally more rapid in JJA and SON than the other seasons. RCM projections indicate much more rapid increases in temperature over Jamaica than any of the models in the General Circulation Model (GCM) ensemble when the projections are compared for the A2 scenario. This is because the RCM is able to represent the land mass of Jamaica, whilst the GCM resolution is too coarse.
- Observations of rainfall over the period 1973-2008 from the Sangster airport gauging station indicate sharp decreases in all seasons over recent years but this record is not long enough to indicate long term trends. A really-averaged records for Jamaica over 1961-2006 do not indicate any significant trend in total rainfall.
- Both RCM variants, and most of the GCM ensemble, indicate overall decreases in annual rainfall for Jamaica as a whole, particularly throughout MAM and JJA. However, regional model projections for Montego Bay from the two different driving GCMs give very different indications of change in rainfall regimes. Driven by HadCM3, the RCM indicates large overall decreases in rainfall, with the largest decreases in SON. Driven by ECHAM4, the RCM indicates only small decreases in rainfall at Montego Bay in MAM and JJA, with slight increases in DJF and SON.
- Both the observed and projected changes in wind speed in the region are very uncertain. Observed mean marine wind speeds around Jamaica have shown significantly increasing trends over 1960-2006, whilst observations from the nearest land-based observation station to Montego Bay indicate decreasing (but not statistically significant) trends between 1973 and 2008. Whilst mean wind speeds generally increase a little in GCM projections for Jamaica, whilst in RCM projections they generally decrease over Jamaica, and at Montego Bay, particularly in SON.
- Observed relative humidity (RH) in Jamaica has not shown any trend over recent years. The model
 projections generally indicate increases in RH over ocean surfaces and decreases over the land
 surface. Because the land mass of Jamaica is too small to be represented in the GCMs, these
 models all indicate small increases in relative humidity. In the RCMs, where the island is

represented, we see substantial decreases in relative humidity over land areas. Coastal destinations such as Montego Bay are likely to experience increases in relative humidity due to their proximity to the ocean, but should expect to be affected by decreases in RH in the more inland areas.

- The number of sunshine hours per day has increased in MAM and JJA in observations over Jamaica between 1981 and 2003. Both variants of the RCM indicate larger increases in the number of sunshine hours than any of the models in the GCM ensemble. Both RCM variants indicate increases in sunshine hours at Montego Bay, although they differ in the seasonality of these changes, with the HadCM3 driven projections indicating largest increases in JJA and SON whilst ECHAM4 driven projections indicate largest increases in DJF and MAM.
- Sea surface temperatures (SST) in the waters surrounding Jamaica in JJA and SON have increased at an average rate of 0.7°C per decade between 1960 and 2006. GCM projections indicate increases of 0.9 to 1.8°C in annual mean sea surface temperature, relative to the 1970-99 average, in waters surrounding Jamaica by the 2080s across the three scenarios.
- 'Hot' days and nights have increased in frequency by an additional 6% of days and nights (22 additional hot days/nights per year) every decade over 1973-2008. GCM projections indicate that 'hot' days and nights that have occurred on 10% of days in the observed climate period might occur on 30-98% of days per year by the 2080s in Jamaica.
- The frequency of 'cold' nights has at a rate of 4% fewer 'cold' nights (14 fewer cold nights per year) per decade over this 1973-2008. In GCM projections, 'cold' days and nights reduce in frequency from 10% of days/nights in the observed period, to less than 2% by the 2080s. In some model projections, these events do not occur at all by the 2050s in Jamaica.
- Rainfall Extremes (1- and 5- day annual maxima) have decreased in magnitude over Jamaica in the
 observed record over 1973-2008, as has the proportion of total rainfall that has fallen in 'heavy'
 rainfall events. GCM projections span both decreases and increases in rainfall extremes in the
 future, but tend toward continued decreases.
- North Atlantic hurricanes and tropical storms appear to have increased in intensity over the last 30 years, although there is still debate regarding whether this represents a long-term trend. Observed and projected increases in SSTs indicate potential for continuing increases in hurricane activity, and model projections (although still relatively primitive) indicate that this may occur through increases in intensity of events (including increases in near storm rainfalls and peak winds), but not necessarily through increases in frequency. RCM projections for the Caribbean indicate potential decreases in the frequency of tropical cyclone-like vortices under warming scenarios due to changes in wind shear.
- Sea-level rises of around 1.5 to 3 mm per year have been observed at tidal gauging stations around the Caribbean. Model projections are currently very uncertain regarding future rates of sea-level rise (SLR) due to difficulties in predicting the melt rates of the Greenland and Antarctic ice sheets.

IPCC projections range between 0.18 to 0.56 m by 2100 under an A2 emissions scenario, whilst alternative scenarios based on accelerating ice sheet melt indicate increases of up to 1.45m.

• **Storm surge** heights will be increased by the underlying rise in sea-level. These increases are likely to be enhanced by any increases in hurricane and tropical storm intensity.

2.2 Introduction

We present a summary of climate change information for Montego Bay, Jamaica, derived from a combination of recently observed climate data sources, and model projections of future climate from both a General Circulation Model (GCM) ensemble of 15 models and the Regional Climate Model (RCM), *PRECIS*.

For each of a number of climate variables (average temperature, average rainfall, average wind speed, relative humidity, sea-surface temperature, sunshine hours, extreme temperatures, and extreme rainfalls) the results of GCM multi-model projections under three emissions scenarios at the country scale, and RCM simulations from single model driven by two different GCMs for a single emissions scenario at the destination scale, are examined. Where available, observational data sources are drawn upon to identify changes that are already occurring in the climates at both the country and destination scale.

General Circulation Models (GCMs) provide global simulations of future climate under prescribed greenhouse gas scenarios. These models are proficient in simulating the large scale circulation patterns and seasonal cycles of the world's climate, but operate at coarse spatial resolution (grid boxes are typically around 2.5 degrees latitude and longitude). This limited resolution hinders the ability for the model to represent the finer scale characteristics of a region's topography, and many of the key climatic processes which determine its weather and climate characteristics. Over the Caribbean, this presents significant problems as most of the small islands are too small to feature as a land mass at GCM resolution.

Regional Climate Models (RCMS) are often nested in GCMs to simulate the climate at a finer spatial scale over a small region of the world, acting to 'downscale' the GCM projections and provide a better physical representation of the local climate of that region. RCMs enable the investigation of climate changes at a sub-GCM-grid scale, such as local changes at a tourist destination.

In this study, we use RCM simulations from PRECIS, driven by two different GCMs (ECHAM4 and HadCM3) to look at projected climate for those countries and destinations. Combining the results of GCM and RCM experiments allows us to make use of the high-resolution RCM projections in the context of the uncertainty margins that the 15-model GCM ensemble provides.

Our projections are based on the IPCC standard 'marker' scenarios – A2 (a 'high' emissions scenario), A1B (a medium high scenario, where emissions increase rapidly in the earlier part for the next century but then plateau in the second half) and B1 (a 'low' emissions scenario). We examine climate projections under all three scenarios from the multi-model GCM ensemble, but at present, results from the regional models are only available for scenario A2.

We also examine the potential changes in hurricane and tropical storm frequency and intensity, Sea-level rise, and storm surge incidence. For these variables, we draw on existing material in the literature to assess the potential changes affecting this tourist destination.

A supplementary technical document describes the data sources and processing in further detail.

2.3 Temperature

Refer to <u>www.caribsave.org</u> for figures in supplementary information.

Jamaica

Observed mean annual temperatures over Jamaica in gridded temperature observations have increased at an average rate of 0.27°C per decade over the period 1960-2006. The observed increases have been most rapid in the seasons JJA at a rate of 0.31°C per decade.

General Circulation Model (GCM) projected mean annual temperatures across the 15 GCM ensemble increase by 0.7 to 1.8°C by the 2050s and 1.0-3.0°C by the 2080s, considering there different emissions scenarios. The range of projections across the 15 models for any one emission scenarios spans around 1-2°C. Projected mean temperatures increase most rapidly in JJA.

Regional Climate Model (RCM) projections indicate much more rapid increases in temperature over Jamaica than any of the models in the GCM ensemble when the projections are compared for the A2 scenario. RCM projections indicate increases of 2.9 and 3.4, when driven by ECHAM4 and HadCM3, respectively, compared with GCM ensemble projections of 2.0-3.0°C. The increased rate of warming over Jamaica in the RCM projections arises because the improved spatial resolution allows the land mass of the island of Jamaica to be represented, whilst the region is represented only by 'ocean' grid boxes at GCM resolution. Land surfaces warm more rapidly than ocean due to their lower capacity to absorb heat energy.

Montego Bay

Observations from Montego Bay's Sangster Airport indicate increases in annual mean temperature of 0.41° per decade over the period 1973-2008, with the most rapid increases in JJA at 0.55°C per decade. The apparently more rapid rates at Montego Bay compared with the entire island at least partly reflect the difference in observation period (Montego Bay record includes data only from 1973 onwards when increases are more rapid than in the 1960s).

Annual mean temperature changes specifically for Montego Bay simulated by RCM indicate increases of 3.1-3.2°C by the 2080s under higher emissions scenario A2, with changes ranging between 2.7 and 3.8°C for in surrounding grid boxes. Temperature increases are marginally more rapid in JJA and SON than the other seasons.

Table 2.3-1: Observed and GCM ensemble projections of temperature change in Jamaica.

Jamaica	a: Country S	cale Changes	in Tem	perature								
	Observed Mean	Observed Trend		Projected changes by the 2020s			2050s	d changes by		Projected changes by the 2080s		
	1970-99	1960-2006		Min	Median	Max	Min	Median	Max	Min	Median	Max
	(°C)	(change in °C per decade)		Change in °C			Change in °C			Change		
			A2	0.4	0.7	0.9	1.0	1.6	1.7	2.0	2.7	3.0
Annual	23.7	0.27*	A1B	0.3	0.8	1.1	1.0	1.6	1.8	1.3	2.3	2.9
			B1	0.4	0.8	0.9	0.7	1.1	1.4	1.0	1.5	2.0
			A2	0.4	0.7	0.9	0.8	1.5	1.8	1.8	2.5	3.0
DJF	23.7	0.20*	A1B	0.3	0.7	1.0	0.9	1.4	1.9	1.2	2.2	2.8
			B1	0.4	0.7	0.9	0.5	1.1	1.4	0.9	1.4	2.0
			A2	0.4	0.7	0.9	0.9	1.5	1.7	1.8	2.7	2.9
MAM	24.3	0.27*	A1B	0.2	0.7	1.1	0.9	1.5	1.8	1.2	2.3	2.7
			B1	0.3	0.7	0.9	0.6	1.1	1.4	0.8	1.5	1.9
			A2	0.4	0.8	1.0	0.9	1.7	1.8	2.1	2.9	3.1
JJA	23.7	0.31*	A1B	0.4	0.8	1.1	1.1	1.7	1.9	1.4	2.3	2.9
			B1	0.3	0.7	0.9	0.8	1.2	1.4	1.0	1.6	2.0
			A2	0.5	0.8	1.0	1.0	1.6	1.8	2.2	2.8	3.1
SON	23.2	0.28*	A1B	0.3	0.8	1.1	1.1	1.7	2.0	1.5	2.4	3.1
			B1	0.4	0.8	1.0	0.7	1.2	1.4	1.1	1.5	2.0

Table 2.3-2: GCM ensemble and RCM projections of temperature change in Jamaica under the A2 scenario.

Jamaica: GCM emissions scena	and RCM Temperatu ario	re comp	arison (under A2
	Projection	Projected 2080s	d Changes I	by
		Change i	n °C	
	GCM Ensemble Range	2.0	2.7	3.0
Annual	RCM (Echam4)		3.4	
	RCM (HadCM3)		2.9	
	GCM Ensemble Range	1.8	2.5	3.0
DJF	RCM (Echam4)		3.0	
	RCM (HadCM3)		2.8	
	GCM Ensemble Range	1.8	2.7	2.9
MAM	RCM (Echam4)		3.2	
	RCM (HadCM3)		3.0	
	GCM Ensemble Range	2.1	2.9	3.1
JJA	RCM (Echam4)		3.6	
	RCM (HadCM3)		3.1	
	GCM Ensemble Range	2.2	2.8	3.1
SON	RCM (Echam4)		3.6	
	RCM (HadCM3)		2.8	

Table 2.3-3: Observed and RCM projected changes in Temperature at Montego Bay, Jamaica.

	Observed Mean 1970-99	Observed Trend 1973-2008		Projected 2020s Min	changes Median	by the	Projected 2050s Min	d changes by Median	the Max	Projected changes by 2080s Min Median		the Max	
	(°C)	(change i		Change in	°C		Change	Change in °C		Change in °C			
Annual	26.7	0.41*	Echam A2 Hadley A2	0.7	0.8	1.1	1.5	1.6	2.0	2.9 2.7	3.2 3.1	3.8 3.5	
DJF	25.3	0.53*	Echam A2 Hadley A2	0.6	0.7	0.9	1.3	1.5	1.7	2.7 2.6	2.9 3.0	3.3 3.5	
MAM	26.4	0.33*	Echam A2 Hadley A2	0.7	0.8	1.1	1.3	1.4	1.8	2.8 2.7	3.2 2.9	3.7 3.5	
JA	28.0	0.55*	Echam A2 Hadley A2	0.7	0.9	1.4	1.5	1.7	2.2	3.1 2.9	3.4 3.4	4.1 3.7	
ON	27.2	0.51*	Echam A2 Hadley A2	0.7	0.8	1.2	1.7	1.9	2.3	3.1 2.7	3.4 3.2	4.1 3.7	

2.4 Precipitation

Refer to <u>www.caribsave.org</u> for figures in supplementary information.

Jamaica

There are no significant trends in observed rainfall over Jamaica from gridded datasets over the period 1960-2006 and long term trends are difficult to identify due to the large inter-annual variability.

GCM projections of future rainfall for Jamaica span both overall increases and decreases but most models project decreases. Projected rainfall changes range from -44% to +18% by the 2050s and -55% to +18% by the 2080s. The overall decreases in annual rainfall projected by GCMs occur largely through decreased MAM and JJA (early wet season) rainfall. Changes to rainfall in the wettest season (SON) are less consistent between models. RCM projections of rainfall for Jamaica are strongly influenced by which driving GCM provides boundary conditions. Driven by ECHAM4, RCM projections indicate moderate decreases in MAM and JJA rainfall, but very little change in total annual rainfall. Driven by HadCM3, the projections indicate dramatic decreases in rainfall, particularly in JJA and SON. These HadCM3-driven projections correspond with those that are at the most extreme end of the range of GCM projections.

Montego Bay

Observations from Montego Bay's Sangster Airport indicate substantial deceases in annual rainfall over the period 1973-2008 of -17.14 mm (18%) per decade. However, this trend is based on a relatively short observed record and is strongly affected by particularly high rainfalls in the early 1980s which give the impression of a dramatically decreasing trend, and should be interpreted very cautiously.

RCM projections for Montego Bay under the A2 scenario indicate changes of 0 to -17 mm per month (-8 to -46%) in average annual rainfall by the 2080s. The spatial variation in projected changes in surrounding grid-boxes is fairly large, such that the range of our projection values increases to -57mm per month to +1mm per month (-58% to +2%) when we consider neighbouring grid-boxes. The projections based on HadCM3 boundary conditions indicate considerably more extreme drying than when based on ECHAM4. This reflects the particularly dry conditions in the driving GCM whilst the majority of other driving GCMs would be expected to generate more moderate drying scenarios.

The changes in seasonality in rainfall simulated by the RCM vary depending on the driving GCM. ECHAM4 driven model runs indicate the largest proportional decreases in MAM and JJA rainfall (around -40%) but relatively little change in SON and DJF. The HadCM3-driven run indicates large proportional decreases in rainfall in all seasons (around -30% to -60% by the 2080s), but the most significant reductions in rainfall, in both absolute and relative terms, occur in SON rainfall (-50% to -70%, -20 to -135mm per month by the 2080s).

These uncertainties in both the magnitude and seasonality of rainfall changes projected for Montego Bay reflect the disagreement between driving GCMS, which reflect our incomplete understanding of many aspects of rainfall and thus deficiencies in representing those processes in climate models. Despite the disagreements between models in some aspects of the rainfall process, the broad consensus regarding overall decreases in annual rainfall is a significant outcome of these modelling experiments.

Table 2.4-1: Observed and GCM ensemble projected changes in precipitation in Jamaica.

Jamaica	: Country S	cale Cha	anges in Pr	ecipitation									
	Observed Mean 1970-99	Observe Trend 1960-20		Projected 2020s	changes	by the	Projected 2050s	d changes b	y the	Project 2080	ted changes S	by the	
	(mm per month)	(change mm decade)	per	Change in mm per month			Change i	Change in mm per month			Change in mm per month		
			A2	-10	-2	0	-27	-4	7	-40	-8	1	
Annual	155.2	-2.4	A1B	-20	0	11	-29	-3	4	-27	-8	11	
			B1	-13	-3	11	-16	-3	7	-23	-6	8	
			A2	-9	-4	5	-13	0	20	-18	-1	17	
DJF	107.2	0.2	A1B	-7	-2	19	-16	0	8	-14	-3	21	
			B1	-11	-1	11	-8	-2	6	-15	0	4	
	•		A2	-7	-2	12	-13	-5	8	-26	-7	0	
MAM	142.4	1.8	A1B	-13	0	14	-17	-1	4	-12	-6	5	
			B1	-12	-2	7	-13	0	17	-13	-3	15	
			A2	-21	-6	3	-46	-15	23	-64	-32	-5	
JJA	141	-6.2	A1B	-34	-7	36	-47	-13	5	-54	-24	0	
			B1	-24	-10	3	-20	-5	7	-34	-14	6	
			A2	-19	0	8	-38	-1	21	-53	-2	26	
SON	227.6	-4.5	A1B	-32	1	32	-43	0	18	-49	-2	49	
			B1	-28	-5	43	-31	-4	19	-37	-9	25	

Table 2.4-2: GCM and RCM projected changes in precipitation in Jamaica.

	GCM and RCM Precip	itation co	mparisor	under A2
		Projecte	ed change s b	D y
		2080	s	
	Projection	Change	in mm	
	GCM Ensemble Range	-40	-8	1
Annual	RCM Echam		-4	
	RCM Hadley		-36	
	GCM Ensemble Range	-18	-1	17
DJF	RCM Echam		0	
	RCM Hadley		-17	
	GCM Ensemble Range	-26	-7	0
MAM	RCM Echam		-7	
	RCM Hadley		-26	
	GCM Ensemble Range	-64	-32	-5
JJA	RCM Echam		-8	
	RCM Hadley		-35	
	GCM Ensemble Range	-53	-2	26
SON	RCM Echam		-2	
	RCM Hadley		-64	

Table 2.4-3: Observed and RCM projected changes in precipitation in Montego Bay, Jamaica.

	Observed Mean 1970-99	Observed Trend 1973-2008		Projected 2020s	l changes	by the	Projected 2050s	d changes l	by the	Projected changes by the 2080s			
	(mm per month)		mm per		Change in mm per month			Change in mm per month			Change in mm per month		
Annual	95.5	-17.14*	Echam A2 Hadley A2	-5	1	3	-5	0	3	-8 -57	0 -17	1 -12	
JF	77.2	-11.64	Echam A2 Hadley A2	-1	9	14	-8	4	6	-5 -31	5 -13	8 -6	
1AM	71.6	-10.42	Echam A2 Hadley A2	-16	-3	1	-11	0	10	-21 -35	-6 -10	1 -3	
IA	89.3	-16	Echam A2 Hadley A2	-8	-1	1	-7	-1	5	-10 -53	-1 -8	0 4	
ON	142.3	-24.54	Echam A2 Hadley A2	-7	0	6	-10	-1	3	-8 -135	1 -36	4 -20	

Table 2.4-4: Observed and GCM ensemble projected changes in precipitation (%) in Jamaica.

Jamaica	a: Country S	cale Cha	inges in Pro	ecipitation									
	Observed Mean 1970-99	Observe Trend 1960-20		Projected 2020s	changes	by the	Projected 2050 s	l changes b	y the	Project 2080 .	ted changes S	by the	
	(mm per month)	(change per deci		% Change			% Chang	% Change			% Change		
			A2	-31	-2	0	-41	-6	18	-55	-10	2	
Annual	155.2	-1.6	A1B	-30	-1	18	-44	-6	8	-40	-10	18	
			B1	-20	-4	11	-29	-4	10	-35	-7	13	
·	•		A2	-30	-6	7	-34	2	24	-51	-1	25	
DJF	107.2	0.2	A1B	-26	-4	34	-46	-1	35	-35	-4	26	
			B1	-32	-3	23	-22	-4	15	-42	0	9	
			A2	-20	-4	43	-45	-16	49	-52	-20	1	
MAM	142.4	1.3	A1B	-24	2	32	-48	-9	9	-51	-12	7	
			B1	-37	-5	11	-29	-1	41	-44	-12	37	
			A2	-38	-10	2	-53	-15	14	-65	-31	-13	
JJA	141	-4.4	A1B	-33	-8	22	-45	-18	9	-62	-19	-1	
			B1	-40	-11	3	-52	-8	5	-57	-13	10	
	•		A2	-42	0	6	-39	-1	25	-55	-2	22	
SON	227.6	-2	A1B	-33	1	39	-44	0	12	-51	-1	41	
			B1	-28	-3	35	-36	-3	19	-38	-8	23	

Table 2.4-5: RCM and GCM projected changes in precipitation (%) in Jamaica.

	: GCM and RCM Precipos scenario	pitation	compariso	on under A2
			ed change s l	by
		2080	5	
	Projection	Change	in %	
	GCM Ensemble Range	-55	-10	2
Annual	RCM Echam		-14	
	RCM Hadley		-41	
	GCM Ensemble Range	-51	-1	25
DJF	RCM Echam		9	
	RCM Hadley		-42	
	GCM Ensemble Range	-52	-20	1
MAM	RCM Echam		-23	
	RCM Hadley		-36	
	GCM Ensemble Range	-65	-31	-13
JJA	RCM Echam		-35	
	RCM Hadley		-31	
	GCM Ensemble Range	-55	-2	22
SON	RCM Echam		-6	
	RCM Hadley		-53	

Table 2.4-6: Observed and RCM simulated changes in precipitation (%) in Montego Bay, Jamaica.

	Observed Mean 1970-99	Observed Trend 1973-2008		Projected 2020s	changes	by the	Projected 2050 s	l changes b	y the	Projected changes by the 2080s		
	(mm per month)	(change decade)	in % per	Change	in %		Change	in %		Change	in %	
Annual	95.5	-17.94*	Echam A2 Hadley A2	-17	9	23	-19	0	20	-33 -58	-8 -46	2 -24
DJF	77.2	-15.08	Echam A2 Hadley A2	7	69	72	-23	28	36	-12 -72	39 -56	52 -23
МАМ	71.6	-14.56	Echam A2 Hadley A2	-36	-8	6	-25	6	27	-54 -54	-39 -37	-7 -14
IJA	89.3	-17.92	Echam A2 Hadley A2	-59	-19	42	-50	-21	66	-69 -65	-40 -31	0 16
ON	142.3	-17.24	Echam A2 Hadley A2	-27	-5	24	-43	-15	16	-34 -72	7 -58	26 -47

2.5 Average Wind Speed

Refer to <u>www.caribsave.org</u> for figures in supplementary information.

Jamaica

Observed mean wind speeds from the ICOADS mean monthly marine surface wind dataset demonstrate significantly increasing trends around Jamaica in all seasons over the period 1960-2006. The increasing trend in mean annual marine wind speed is 0.26 ms⁻¹ per decade.

Mean wind speeds over Jamaica generally increase in GCM projections, but not as dramatically as in the gridded observations of the last few decades from the surrounding marine area. Projected changes in annual average wind speeds range between -0.1 and +0.5 ms⁻¹ by the 2080s across the three emissions scenarios. The greatest increases occur in MAM and JJA, ranging between -0.5 and +1.3ms⁻¹, and -0.2 to 1.2 ms⁻¹ by the 2080s, respectively, whilst the models span in wind speeds in DJF and SON span both increases and decreases similarly across the 15 model ensemble.

RCM projections based on two driving GCMs lie in the lower end of the range of changes indicated by the GCM ensemble, indicating small decreases in mean wind speed over Jamaica by the 2080s under the A2 scenario. The largest decreases in wind speeds in these models occur in SON (the peak of the hurricane season) at -0.3 to -0.5 ms⁻¹. The RCM simulates larger decreases in wind speed in SON and DJF when driven by the GCM HadCM3 than by ECHAM4.

Montego Bay

Contrary to the aerial-average observations from the ICOADS dataset for marine wind speeds, local average wind speeds observed on land at Montego Bay's Sangster airport between 1973 and 2008 demonstrate decreasing, but not statistically significant, trends. These should be interpreted cautiously due to the large inter-annual variability in mean wind speeds which makes long term-trends very difficult to identify in a relatively short record such as this.

RCM projections indicate decreases of up to -0.8 ms⁻¹ in mean annual wind speeds in Montego Bay by the 2080s. Driven by ECHAM4, the model simulations indicate only small changes in mean wind speeds with the largest changes affecting SON with reductions by 0.2 to 0.6 ms⁻¹. HadCM3-driven simulations indicate decreases in DJF and SON of -0.2 to -1.0 ms⁻¹ and -0.1 to -1.3 ms⁻¹, respectively.

Table 2.5-1: Observed and GCM ensemble simulated changes in wind speed in Jamaica.

	Observed Mean	Observe Trend	d	Projected 2020s	changes	by the	Projected 2050 s	d changes by	the	Projecte 2080 s	d changes by	the
	1970-99	1960-200	06	Min	Median	Max	Min	Median	Max	Min	Median	Max
	(ms ⁻¹)	(change ms ⁻¹	in per	Change in	Change in ms ⁻¹		Change in ms ⁻¹			Change in ms ⁻¹		
		decade)										
			A2	-0.2	0.0	0.1	-0.1	0.0	0.1	-0.1	0.2	0.5
Annual	6.6	0.26*	A1B	-0.2	0.0	0.1	-0.1	0.0	0.2	-0.2	0.1	0.3
			B1	-0.2	0.0	0.1	-0.1	0.0	0.2	-0.1	0.0	0.1
			A2	-0.5	0.0	0.4	-0.7	-0.1	0.3	-0.6	0.0	0.3
DJF	7.0	0.27*	A1B	-0.4	0.1	0.3	-0.1	0.0	0.5	-0.7	-0.1	0.3
			B1	-0.4	0.0	0.2	-0.2	0.0	0.1	-0.4	0.0	0.2
			A2	-0.2	0.0	0.4	-0.4	0.2	0.5	-0.1	0.2	1.3
MAM	6.4	0.25*	A1B	-0.4	0.2	0.4	-0.3	0.0	0.6	-0.5	0.2	0.7
			B1	-0.2	0.2	0.5	-0.2	0.2	0.4	-0.4	0.1	0.4
			A2	-0.4	-0.1	0.2	-0.2	-0.1	0.3	-0.2	0.1	1.2
JJA	7.3	0.27*	A1B	-0.2	-0.1	0	-0.1	0.0	0.3	-0.2	0.2	1.0
			B1	-0.3	0.0	0.1	-0.2	0.1	0.5	-0.1	0.0	0.5
			A2	-0.3	-0.1	0.1	-0.4	-0.1	0.0	-0.5	0.0	0.4
SON	5.9	0.25*	A1B	-0.5	0.0	0.2	-0.4	-0.1	0.0	-0.5	0.0	0.2
			B1	-0.3	0.0	0.1	-0.6	0.0	0.2	-0.4	0.0	0.2

Table 2.5-2: GCM and RCM simulated changes in wind speed in Jamaica.

		Projected 2080s	,	
		A2		
		Change ii	n ms ⁻¹	
•	GCM Ensemble	-0.1	0.2	0.5
Annual	RCM (Echam4)		-0.1	
	RCM (HadCM3)		-0.2	
	GCM Ensemble	-0.6	0.0	0.3
DJF	RCM (Echam4)		-0.1	
	RCM (HadCM3)		-0.5	
	GCM Ensemble	-0.1	0.2	1.3
MAM	RCM (Echam4)		0.0	
	RCM (HadCM3)		0.0	
	GCM Ensemble	-0.2	0.1	1.2
JJA	RCM (Echam4)		-0.1	
	RCM (HadCM3)		0.2	
	GCM Ensemble	-0.5	0.0	0.4
SON	RCM (Echam4)		-0.3	
	RCM (HadCM3)		-0.5	

Table 2.5-3: Observed and RCM simulated changes in wind speed in Montego Bay, Jamaica.

	Observed Mean	Trend			Projected changes by the 2020s		Projected changes by the 2050s			Projected changes by the 2080s		
	1970-99	1973-200	08	Min	Median	Max	Min	Median	Max	Min	Median	Max
	(ms ⁻¹)	(change ms ⁻¹ decade)	in per	Change in	ms ⁻¹		Change	in ms ⁻¹		Change ii	n ms ⁻¹	
Annual	13.3	-0.38	Echam A2 Hadley A2				-0.1	0.0	0.1	-0.3 -0.8	-0.1 -0.3	-0.1 0.0
DJF	14.7	-0.4	Echam A2 Hadley A2				-0.1	0.2	0.4	-0.2 -1.0	0.1 -0.5	0.2 -0.2
МАМ	13.6	-0.35	Echam A2 Hadley A2				-0.1	0.1	0.2	-0.2 -0.4	0.1 -0.1	0.2 0.1
JJA	14.0	-0.73*	Echam A2 Hadley A2				-0.3	-0.1	0.0	-0.5 -0.5	-0.2 0.1	0.0 0.3
ON	11.0	-0.19	Echam A2 Hadley A2				-0.5	-0.3	-0.1	-0.6 -1.3	-0.3 -0.7	-0.2 -0.1

2.6 Relative Humidity

Refer to <u>www.caribsave.org</u> for figures in supplementary information.

Jamaica

There is no significant trend in Relative Humidity (RH) over Jamaica in observations from the HadCRUH dataset (1973-2003).

Relative humidity data has not been made available for all models in the 15-model ensemble. Projections from those models that are available tend towards small increases in RH, particularly in DJF and MAM. However, the ensemble sub-sample range does span both increases and decreases in RH in all seasons.

Due to the coarse spatial resolution of the GCMs, the land mass of the relatively small island of Jamaica is not represented in the model, and this exerts a strong influence on RH. Ocean and land surfaces respond differently to increases in temperature due to the availability of water. Over ocean surfaces, temperature increases cause increased evaporation of water from the surface. This not only distributes some of the excess heat, but also results in a higher volume of atmospheric water vapour, causing higher specific humidity, although not necessarily higher RH. Over the land surface, only a limited amount of water is available, and therefore increased temperatures will result in an increased *potential* for evaporation, and this potential increase will only be partially met by available surface moisture. This will result in a small increase in specific humidity, but a likely decrease in RH as the air temperature increases. The representation of the land surface in climate models therefore becomes very important when considering changes in RH under a warmer climate, and we see a substantial disparity between the changes projected for the small Caribbean islands in RCM simulations, where the land surface is represented, compared with coarse scale GCM simulations, where the land surface is not represented.

RCM simulations indicate decreases in RH over Jamaica in all seasons, with changes in annual average RH of -1.1 to -1.7 % by the 2080s under the A2 scenario. The largest decreases in RH occur in JJA.

Montego Bay

The diverging projections of RH for land and ocean regions mean that it is difficult to determine the likely changes in coastal regions. The proximity to the ocean of coastal resorts such as Montego Bay lead us to expect such regions to experience the overall increases in RH associated with ocean regions, but regions a little farther inland from the coast can expect to experience decreases in RH, particularly in the warmest and driest seasons. Observations from Montego Bay's Sangster airport indicate increases in RH during 1973-2008 of 1.0-1.5% per decade, but the trends are only statistically significant in Annual and SON averages.

The RCM projections, however, indicate mixed results. Driven by HadCM3, the regional model indicates substantial decreases in RH in JJA and SON (around -6 to -7 %) Results from the ECHAM4 model indicates an overall increase in RH, with increases of 2 to 3% in DJF and SON and decreases of up to 1.0% in MAM and JJA by the 2080s under the A2 scenario.

Table 2.6-1: Observed and GCM ensemble simulated changes in relative humidity in Jamaica

Jamaica	a: Country S	cale Cha	nges in Re	lative Humi	dity							
	Observed Mean 1970-99	Observe Trend 1960-200		Projected 2020s	changes	by the	Projected 2050s	l changes b	y the	Projecte 2080s	ed changes b	y the
	(%)	(change per deca		Change in	1%		Change	in %		Change	in %	
Annual	79.3	0.03	A2 A1B	-0.1	0.5	1.4	-0.7	0.4	1.5	-1.2	0.9	1.0
Ailliuai	79.3	0.03	B1	-0.1	-0.2	1.4	-0.7	0.4	2.4	-0.8	0.5	1.5
			A2									
DJF	78.3	0.19	A1B B1	-0.4 -0.7	0.5 -0.1	1.6 1.2	-0.3 -0.6	0.7 0.1	1.5 2.3	-1.1 -0.7	1.0 -0.2	1.7 1.8
			A2	0.,			0.0		2.5	0.7		1.0
MAM	79.2	-0.06	A1B B1	-0.1 -0.3	0.8 0.2	2.0 1.7	-0.1 0.4	0.7 0.6	2.1 4.0	0.4 -0.1	1.0 0.4	2.1 2.3
			A2	0.0		2.,	011	•		0.1	• • • • • • • • • • • • • • • • • • • •	2.5
JJA	79.9	0.09	A1B	-0.1	0.1	1.0	-1.7	0.4	1.1	-2.7	0.3	1.1
			B1 A2	-1.6	-0.4	1.5	-0.7	0.1	2.0	-1.6	0.4	8.0
SON	79.9	-0.11	A2 A1B	0.1	1.0	1.6	-0.8	0.5	1.3	-2.0	0.5	0.8
			B1	-0.5	-0.3	1.1	-0.6	0.	1.5	-1.3	0.3	1.9

Table 2.6-2: Observed and RCM-projected changes in relative humidity in Montego Bay, Jamaica.

	Observed Mean 1970-99	ean Trend		Projected 2020s	changes	by the	Projected 2050s	Projected changes by the 2050s			l changes by	the
	(%)	(change per deca		Change in	%		Change	in %		Change	in %	
Annual	76.0	1.42*	Echam A2 Hadley A2	-1.1	0.1	1.1	-0.5	0.5	1.5	-1.3 -6.0	0.8 -4.0	1.7 3.3
DJF	76.3	1.22	Echam A2 Hadley A2	-0.8	1.4	2.5	-1.0	1.6	3.0	-0.2 -2.6	1.9 0.1	3.1 3.7
MAM	75.6	1.38	Echam A2 Hadley A2	-3.2	-1.5	1.2	-1.7	-0.1	1.9	-2.0 -3.4	-0.3 -2.3	1.7 3.0
JA	75.0	1.22	Echam A2 Hadley A2	-3.5	-2.0	0.4	-3.3	-1.4	2.2	-4.1 -9.4	-1.0 -7.1	1.5 3.3
ON	77.6	1.53*	Echam A2 Hadley A2	-0.3	2.3	3.1	-0.5	1.8	3.1	-1.1 -9.1	2.6 -6.6	3.2 3.4

2.7 Sunshine Hours

Refer to www.caribsave.org for figures in supplementary information.

Jamaica

The number of 'sunshine hours' per day are calculated by applying the average clear-sky fraction from cloud observations to the number of daylight hours for the latitude of the location and the time of year. The observed number of sunshine hours, based on ISCCP satellite observations of cloud coverage, indicates statistically significant increases in sunshine hours in MAM and JJA over recent years (1983-2001).

The number of sunshine hours implied by most models to increases into the 21st century in Jamaica, reflecting reductions in average cloud cover fractions, although the GCM model ensemble spans both increases and decreases in all seasons and emissions scenarios. The changes in annual average sunshine hours are to span -0.2 to +0.9 hours per day by the 2080s under scenario A2. The increases are largest in JJA, with changes of -0.9 to +1.9 hours per day by the 2080s.

Comparison between GCM and RCM projections of sunshine hours for Jamaica shows that the HadCM3 driven RCM projections indicate particularly large increases (+1.4 hours per day by 2080s under A2) in mean annual sunshine hours, and that these increases lie beyond the envelope of changes indicated by GCMs. This RCM simulation reflects the particularly dry characteristics of the HadCM3 model. Driven by ECHAM4, the RCM indicates changes that lie towards the centre of the GCM ensemble range.

Montego Bay

Projections from the RCM for Montego Bay indicate increases in annual average sunshine hours of 0.1 to 1.3 hours of sunshine per day. Under driving data from HadCM3, the largest increases are seen in JJA and SON, whilst under ECHAM4 increases mainly affect DJF and MAM. The substantial increases indicated by the HadCM3 driven projections reflect the particularly dry conditions in the driving GCM and can be considered to represent the more extreme end of the range of projections.

Table 2.7-1: Observed and GCM ensemble simulated changes in the number of sunshine hours in Jamaica

	Observed	Observe	ed	Projected	changes	by the	•	changes b	y the	-	ted changes	by the
	Mean 1970-99	Trend 1983-20	001	2020s			2050s			2080	S	
		(change	e in									
	(hrs)	hrs decade,	per)	Change in	hrs		Change	in hrs		Chang	ge in hrs	
			A2	-0.2	0.2	0.5	-0.3	0.2	0.6	-0.2	0.4	0.9
Annual	6.4	0.28	A1B	-0.3	0.0	0.4	-0.2	0.2	0.4	-0.3	0.3	0.8
			B1	-0.4	0.2	0.3	-0.1	0.2	0.5	-0.2	0.3	0.6
			A2	0.0	0.2	0.5	-0.3	0.2	0.4	-0.5	0.3	0.6
DJF	7.5	0.19	A1B	-0.2	0.0	0.3	-0.4	0.2	0.5	-0.5	0.2	0.7
			B1	-0.1	0.0	0.3	-0.4	0.1	0.3	-0.1	0.0	0.6
			A2	-0.4	0.1	0.4	-0.4	0.2	0.6	-1.1	0.3	0.8
MAM	6.6	0.78*	A1B	-0.6	0.1	0.3	-0.8	0.2	0.5	-0.8	-0.1	0.7
			B1	-0.8	0.2	0.5	-0.6	0.0	0.4	-0.5	0.1	0.7
			A2	-0.5	0.2	1.0	-0.8	0.5	1.2	-0.9	0.8	1.9
JJA	5.7	0.40*	A1B	-0.7	0.2	0.7	-0.3	0.6	0.9	-0.7	0.8	1.6
			B1	-0.4	0.3	0.6	-0.5	0.5	0.8	-0.4	0.6	1.2
			A2	-0.1	0.1	0.6	-0.6	0.2	0.7	-0.4	0.4	1.0
SON	5.8	-0.26	A1B	-0.5	0.0	0.4	-0.2	0.0	0.7	-0.5	0.3	1.1
			B1	-0.5	0.1	0.6	-0.4	0.1	0.9	-0.6	0.1	0.6

Table 2.7-2: GCM and RCM projected changes in the number of sunshine hours in Jamaica.

		Projected 2080s	d Changes by	
		A2		
		Change ii	n hrs	
	GCM Ensemble	-0.2	0.4	0.9
Annual	RCM (Echam4)		0.8	
	RCM (HadCM3)		1.4	
	GCM Ensemble	-0.5	0.3	0.6
DJF	RCM (Echam4)		1.0	
	RCM (HadCM3)		1.0	
	GCM Ensemble	-1.1	0.3	0.8
MAM	RCM (Echam4)		0.5	
	RCM (HadCM3)		0.6	
	GCM Ensemble	-0.9	0.8	1.9
JJA	RCM (Echam4)		0.8	
	RCM (HadCM3)		1.9	
	GCM Ensemble	-0.4	0.4	1.0
SON	RCM (Echam4)		0.7	
	RCM (HadCM3)		2.0	

Table 2.7-3: Observed and RCM simulated changes in the number of sunshine hours in Montego Bay, Jamaica.

	Observed Mean 1970-99	Trend		Projected 2020s	changes	by the	Projected changes by the 2050s		Projected changes by the 2080s			
	(hrs)	(change hrs decade)	in per	Change in	hrs		Change	in hrs		Change	in hrs	
Annual			Echam A2 Hadley A2	-0.2	-0.1	0.1	0.0	0.2	0.3	0.1 0.7	0.2 1.0	0.5 1.3
JF			Echam A2 Hadley A2	-0.3	-0.1	0.2	-0.2	0.1	0.4	0.1 0.2	0.4 0.6	0.8 0.8
IAM			Echam A2 Hadley A2	-0.4	0.0	0.4	-0.1	0.2	0.4	0.0 0.1	0.3 0.4	0.6 0.7
A			Echam A2 Hadley A2	-0.1	0.1	0.4	-0.4	0.2	0.6	0.0 0.6	0.2 1.2	0.7 2.0
ON			Echam A2 Hadley A2	-0.6	-0.3	0.0	-0.1	0.2	0.6	-0.3 1.3	0.0 1.6	0.6 2.0

2.8 Sea Surface Temperatures

Refer to <u>www.caribsave.org</u> for figures in supplementary information.

Sea-surface temperatures from the HadSST2 gridded dataset indicate statistically significant increasing trends in JJA and SON of +0.7°C per decade in the waters surrounding Jamaica.

GCM projections indicate continuing increases in sea-surface temperatures throughout the year. Projected increases range between +0.9°C and +2.7°C by the 2080s, across all three emissions scenarios. Increases tend to be fractionally higher in SON than in other seasons (1.0 to 2.9°C by 2080). The range of projections under and single emissions scenario spans around 1.0 to 1.5°C.

Table 2.8-1: Observed and GCM ensemble simulated changes in sea surface temperatures in waters surrounding Jamaica

Jamaica	a: Country S	cale Chan	ges in Sea	-Surface T	emperati	ıre						
	Observed Mean 1970-99	Observed Trend 1960-2006			changes	by the	Projected 2050s	d changes b	y the	Projec 2080	ted changes S	by the
	(°C)		in oer	Change ir	n °C		Change ii	n °C		Chang	e in °C	
Annual	27.8	0.04	A2 A1B B1	0.5 0.3 0.3	0.7 0.7 0.6	0.9 0.8 0.8	1.0 0.9 0.6	1.3 1.5 1.0	1.6 1.6 1.2	1.9 1.3 0.9	2.3 2.2 1.4	2.7 2.6 1.8
DJF	26.9	0.01	A2 A1B B1	0.3 0.3 0.3	0.7 0.7 0.6	0.9 0.8 0.8	0.8 0.9 0.4	1.3 1.4 1.0	1.7 1.7 1.3	1.8 1.3 0.9	2.2 2.1 1.3	2.8 2.6 1.9
МАМ	27.1	0.02	A2 A1B B1	0.5 0.2 0.2	0.7 0.6 0.6	0.8 0.8 0.8	0.9 0.8 0.5	1.3 1.4 0.9	1.6 1.5 1.3	1.7 1.1 0.7	2.3 2.1 1.3	2.7 2.5 1.8
JJA	28.5	0.07*	A2 A1B B1	0.5 0.3 0.2	0.7 0.7 0.6	0.8 0.9 0.8	1.2 1.0 0.7	1.3 1.5 1.1	1.7 1.7 1.2	2.0 1.3 0.9	2.4 2.2 1.4	2.7 2.5 1.7
SON	28.7	0.07*	A2 A1B B1	0.5 0.4 0.3	0.7 0.7 0.7	0.9 0.9 0.8	1.0 1.0 0.7	1.4 1.5 1.1	1.7 1.8 1.3	2.0 1.5 1.0	2.5 2.3 1.4	2.9 2.9 1.8

2.9 Temperature Extremes

Refer to <u>www.caribsave.org</u> for figures in supplementary information.

'Extreme' hot or cold values are defined by the temperatures that are exceeded on 10% of days in the 'current' climate or reference period. This allows us to define 'hot' or 'cold' relative to the particular climate of a specific region or season, and determine changes in extreme events relative to that location.

In Jamaica, the frequency of days and nights that are classed as 'hot' for their season according to recent climate standards have increased in frequency at a statistically significant rate over the period 1973-2008. The annual average frequency of 'hot' days and nights have increased by an additional 6% of days and nights (an additional 22 days per year) every decade. The frequency of hot nights has increased particularly rapidly in JJA when their frequency has increased by 9.8 per cent (an additional 3 hot nights per month in JJA) per decade.

The frequency of 'cold' nights has decreased at a rate of 4% fewer 'cold' nights (14 fewer cold nights in every year) per decade.

GCM projections indicate continued increases in the frequency of 'hot' days and nights, with their occurrence reaching 30-98% of days annually by the 2080s. The rate of increase varies substantially between models for each scenario, such that under A2 the most conservative increases result in frequency of 49% by the 2080s, with other models indicating frequencies as high as 98%.

Those days/nights that are considered 'hot ' for their season are projected to increase most rapidly in JJA and SON, occurring on 60 to 100 percent of days/nights in JJA and SON by the 2080s.

'Cold' days/nights diminish in frequency, occurring on a maximum of 2% of days/nights by the 2080s, and do not occur at all in projections from some models by the 2050s. Cold days/nights decrease in frequency most rapidly in JJA.

Table 2.9-1: Observed and GCM ensemble projected changes in temperature extremes in Jamaica.

	Observed Mean	Observed Trend		Projected 2020s	changes	by the	Projected 2050s	changes	·	2080s	d changes by	
	1970-99	1960-2006		Min	Median	Max	Min	Median	Max	Min	Median	Max
	%	Change frequency	in				Future % fr	reallency		Future %	frequency	
	Frequency	per decade	•				ruture 70 ji	equency		ruture /t	Trequency	
Frequenc	cy of Hot Days	(TX90p)										
			A2				32	53	73	49	78	98
Annual	10.7	6.03*	A1B				36	53	68	41	71	96
			B1 A2				27 52	39 78	53 92	30 84	49 98	66 99
DJF	11.3	6.26*	A1B				56	82	89	73	96	99
			B1				34	62	70	58	75	89
			A2				39	78	97	70	96	99
MAM	12.8	5.63*	A1B				46	81	93	61	94	99
			B1 A2				32 67	55 87	84 95	37 89	75 99	91 100
JJA	10.9	6.19*	A2 A1B				72	86	94	79	98	99
	10.5	0.13	B1				43	67	79	59	83	96
			A2				30	86	99	58	99	100
SON	13.0	7.87*	A1B				33	79	99	42	97	99
_			B1				22	61	94	32	73	98
Frequen	cy of Hot Nigh	ts (TN90p)										
Annual	11.5	5.89*	A2 A1B				45 41	55 56	71 67	65 54	80 72	97 94
Alliudi	11.5	3.03	А1В В1				29	42	52	54 40	72 52	94 64
			A2				51	73	90	87	96	99
DJF	13.7	1.48	A1B				49	78	86	79	93	98
			B1				29	59	65	54	72	85
			A2				54	73	95	90	95	99
MAM	10.3	3.63*	A1B B1				45 27	77 58	90 79	78 49	93 74	99
			в1 A2				78	90	95	96	74 99	88 100
JJA	12.1	9.76*	A1B				68	92	93	91	99	99
			B1				40	76	85	68	88	97
			A2				74	85	98	93	99	100
SON	12.2	4.59*	A1B				75	88	98	86	97	99
F	of Cold Do-	(TV40)	B1				51	64	90	70	86	96
Frequen	cy of Cold Day	ys (TX10p)	A2				0	1	3	0	0	0
Annual			A1B				0	0	2	0	0	1
			B1				0	1	3	0	1	2
			A2				0	1	3	0	0	0
DJF			A1B				0	0	1	0	0	1
			B1				0	1 0	2	0 0	1 0	2
MAM			A2 A1B				0	0	3	0	0	0 1
IVIAIVI			B1				0	1	4	0	0	2
			A2				0	0	1	0	0	0
JJA			A1B				0	0	0	0	0	2
			B1				0	0	2	0	0	3
SON			A2 A1B				0 0	0 0	1 1	0 0	0 0	0 0
JUN			А1В В1				0	0	4	0	0	2
Fregueno	cy of Cold Nigl	hts (TN10n						•			•	-
	,	, y	, A2				0	1	2	0	0	0
Annual	10.8	-4.03*	A1B				0	1	2	0	0	1
			B1				0	2	3	0	1	2
	44.4	2 76*	A2				0	1	3	0	0	0
DJF	11.1	-3.76*	A1B B1				0	0	2	0	0	1
			B1 A2				0	1 0	4 2	0 0	1 0	2 0
MAM	12.0	-2.81*	A1B				0	0	2	0	0	0
•	-	- •	B1				0	1	3	0	Ō	2
			A2				0	0	0	0	0	0
JJA	11.9	-5.31*	A1B				0	0	0	0	0	0
			B1				0	0	3	0	0	0
SON	14.0	-7.58*	A2 A1B				0	0 0	1 2	0 0	0	0 0
,5,1	14.0	7.30	B1									
							0	0	2	0	0	1

2.10 Rainfall Extremes

Refer to <u>www.caribsave.org</u> for figures in supplementary information.

Changes in rainfall extremes based on peak 1- and 5-day rainfall totals, as well as exceedance of a relative threshold for 'heavy' rain, were examined. 'Heavy' rain is determined by the daily rainfall totals that are exceeded on 5% of wet days in the 'current' climate or reference period, relative to the particular climate of a specific region or season.

Observations indicate statistically significant decreases in the proportion of total rainfall that occurs in 'heavy' events at a rate of -8.3% per decade over the observed period 1973-2008 (where the threshold value for a 'heavy' events is determined according to the values exceeded on 5% of wet days in the reference period). The peak 1- and 5-day rainfalls have also decreased over this period. Decreases in 5-day maxima in DJF and MAM have decreased significantly at a rate of -33 and -18mm per decade, respectively. These 'trends' should all be interpreted cautiously given the relatively short period over which they are calculated, and the large inter-annual variability in rainfall and its extremes.

GCM projections of rainfall extremes are mixed across the ensemble, ranging across both decreases and increases in all measures of extreme rainfall. However, the model projections do tend towards decreases in rainfall extremes particularly in MAM. The range of changes in the proportion of rainfall during heavy events is -19 to +9% by the 2080s across all emissions scenarios and the range of changes in 5-day maxima spans -29mm to +25mm by the 2080s. Even the largest decreases simulated by models in the ensemble do not indicate long-term trends of the magnitudes that have appeared in recent years on the observed record.

Table 2.10-1: Observed and GCM ensemble projected changes in rainfall extremes in Jamaica.

	Observed Mean	Observe Trend	d	Projected cl 2020s	hanges by the		Projected 2050 s	changes	by the	Projecto 2080s	ed changes by	y the
	1970-99	1960-20	06	Min	Median	Max	Min	Median	Max	Min	Median	Max
% total r	ainfall falling	in Heavy	Events (R95pct)									
	%	Change per deca					Change in	%		Change	in %	
			A2				-11	0	6	-19	-1	7
Annual	35.3	-8.32*	A1B				-13	0	4	-13	-1	5
			B1				-14	0	6	-8	-2	9
			A2				-14	-1	12	-16	-3	13
DJF			A1B				-13	0	11	-14	-5	11
			B1				-12	-2	7	-15	2	8
			A2				-16	-4	2	-25	-10	4
MAM			A1B				-24	-5	3	-18	-8	2
			B1				-13	-6	8	-15	-1	11
			A2				-19	-1	5	-25	-8	8
JJA			A1B				-13	-4	4	-20	-6	8
			B1				-18	0	6	-19	-4	12
			A2				-11	-1	6	-17	0	8
SON			A1B				-12	-1	6	-13	0	8
			B1				-10	0	8	-15	0	4
Maximu	m 1-day rain	fall (RX1da	ay)									
	•	Change	in									
	Mm	mm	per				Change in	mm		Change	in mm	
		decade	r -					**				
			A2				-9	0	9	-10	0	11
Annual	214.5	-23.58	A1B				-4	0	6	-5	0	14
- Illiaai	214.5	25.50	B1				-6	1	7	-9	0	6
			A2				-5	0	6	-4	0	4
DJF	88.0	-28.70*	A1B				-4	0	8	-3	-1	6
ונט	88.0	-20.70	B1				-2	-1	3	-3 -4	0	2
	447.4	42.2	A2				-5	0	2	-8	-2	5
MAM	117.4	-13.3	A1B				-4	-1	3	-5 -	-1	5
			B1				-6	0	2	-7	0	4
			A2				-7	-1	4	-7	-2	5
JJA	109.2	-0.03	A1B				-5 -	-2	7	-6	-1	6
			B1				-7	0	5	-11	-1	2
			A2				-7	0	8	-8	0	12
SON	131.2	-2.92	A1B				-9	0	7	-7	0	8
			B1				-4	0	5	-3	0	4
Maximu	m 5-day Rain	ıfall (RX5d	ay)									
		Change	in									
	Mm	mm	per				Change in	mm		Change	in mm	
		decade	•				3,					
		accuae	4.2				10	4	10	20	2	22
Annual	100.4	40 FC*	A2				-18	-1	18	-29 10	-3	23
Annual	189.4	-48.56*	A1B				-22 15	-3	11	-19 25	-4 1	19 25
			B1				-15	0	21	-25	-1	25
			A2				-10	0	16	-12	-1	9
DJF	90.0	-32.94*	A1B				-10	0	27	-10	-3	14
			B1				-7	-2	4	-11	0_	5
			A2				-11	-4	10	-16	-7	18
MAM	79.2	-18.26*	A1B				-9	-4	11	-10	-4	9
			B1				-15	-2	11	-13	0	13
			A2				-16	-3	9	-23	-9	7
JJA	104.0	-32.64	A1B				-16	-8	10	-21	-7	4
			B1				-16	-3	19	-25	-7	5
			A2				-20	-1	14	-32	-2	27
SON	109.9	-24.88	A1B				-25	0	15	-26	-1	16
			B1				-12	0	18	-17	-1	20
			DI				14	U	10	1,		20

2.11 Hurricanes and Tropical Cyclones

Historical and future changes in tropical cyclone and hurricane activity have been a topic of heated debate in the climate science community. Drawing robust conclusions with regards to changes in climate extremes is continually hampered by issues of data quality in our observations, the difficulties in separating natural variability from long-term trends and the limitations imposed by spatial resolution of climate models.

Tropical cyclones and hurricanes form from pre-existing weather disturbances where sea surface temperatures (SSTs) exceed 26°C. Whilst SSTs are a key factor in determining the formation, development and intensity of tropical cyclones, a number of other factors are also critical, such as subsidence, wind shear and static stability. This means that whilst observed and projected increases in SSTs under a warmer climate potentially expand the regions and periods of time when tropical cyclones may form, the critical conditions for storm formation may not necessarily be met (e.g., Veccchi and Soden, 2007; Trenberth *et al.*, 2007), and increasing SSTs may not necessarily be accompanied by an increase in the frequency of tropical storm incidences.

Several analyses of global (e.g., Webster *et al.*, 2005) and more specifically North Atlantic (e.g., Holland and Webster, 2007; Kossin *et al.*, 2007; Elsner *et al.*, 2008) hurricanes have indicated increases in the observed record of tropical cyclones over the last 30 years. It is not yet certain to what degree this trend arises as part of a long-term climate change signal or shorter-term inter-decadal variability. The available longer term records are riddled with in homogeneities (inconsistencies in recording methods through time) - most significantly, the advent of satellite observations, before which cyclones were only recorded when making landfall or observed by ships (Kossin *et al.*, 2007). Recently, a longer-term study of variations in hurricane frequency in the last 1500 years based on proxy reconstructions from regional sedimentary evidence indicate recent levels of Atlantic hurricane activity are anomalously high relative to those of the last one-and -a -half millennia (Mann *et al.*, 2009).

Climate models are still relatively primitive with respect to representing tropical cyclones, and this restricts our ability to determine future changes in frequency or intensity. We can analyse the changes in background conditions that are conducive to storm formation (boundary conditions) (e.g., Tapiador, 2008), or apply them to embedded high-resolution models which can credibly simulate tropical cyclones (e.g., Knutson and Tuleya, 2004; Emanuel *et al.*, 2008). Regional Climate Models are able to simulate weak 'cyclone-like' storm systems that are broadly representative of a storm or hurricane system but are still considered coarse in scale with respect to modelling hurricanes.

The IPCC AR4 (Meehl *et al.*, 2007) concludes that models are broadly consistent in indicating increases in precipitation intensity associated with tropical cyclones (e.g., Knutson and Tuleya, 2004; Knutson *et al.*, 2008; Chauvin *et al.*, 2006; Hasegawa and Emori, 2005; Tsutsui, 2002). The higher resolution models that simulate cyclones more credibly are also broadly consistent in indicating increases in associated peak wind intensities and mean rainfall (Knutson and Tuleya, 2004; Oouchi *et al.*, 2006). We summarise the projected changes in wind and precipitation intensities from a selection of these modelling experiments in Table 2.11-1 to give an indication of the magnitude of these changes.

With regards to the *frequency* of tropical cyclones in future climate, models are strongly divergent. Several recent studies (e.g., Vecchi and Sodon, 2007; Bengtssen *et al.*, 2007; Emanuel *et al.*, 2008, Knutson *et al.*, 2008) have indicated that the frequency of cyclones may decrease due to decreases in vertical wind shear in a warmer climate. In several of these studies, intensity of hurricanes still increases despite decreases in frequency (Emanuel *et al.*, 2008; Knutson *et al.*, 2008). In a recent study of the PRECIS regional climate model simulations for Central America and the Caribbean, Bezanilla *et al.*, (2009) found that the frequency

of 'Tropical -Cyclone-Like –Vortices' increases on the Pacific coast of Central America, but decreases on the Atlantic coast and in the Caribbean.

When interpreting the modelling experiments we should remember that our models remain relatively primitive with respect to the complex atmospheric processes that are involved in hurricane formation and development. Hurricanes are particularly sensitive to some of the elements of climate physics that these models are weakest at representing, and are often only included by statistical parameterisations. Comparison studies have demonstrated that the choice of parameterisation scheme can exert a strong influence on the results of the study (e.g., Yoshimura *et al.*, 2006). We should also recognise that the El Niño Southern Oscillation (ENSO) is a strong and well established influence on Tropical Cyclone frequency in the North Atlantic, and explains a large proportion of inter-annual variability in hurricane frequency. This means that the future frequency of hurricanes in the North Atlantic is likely to be strongly dependent on whether the climate state becomes more 'El-Niño-Like', or more 'La-Niña-like' — an issue upon which models are still strongly divided and suffer from significant deficiencies in simulating the fundamental features of ENSO variability (e.g., Collins *et al.*, 2005).

Table 2.11-1: Changes in Near-storm rainfall and wind intensity associated with Tropical cyclones in under global warming scenarios.

Reference	GHG scenario	Type of Model	Domain	Change in near- storm rainfall intensity	Change in peak wind intensity
Knutson <i>et al.</i> (2008)	A1B	Regional Climate Model	Atlantic	(+37, 23, 10)% when averaged within 50, 100 and 400km of the storm centre	+2.9%
Knutson and Tuleya (2004)	1% per year CO2 increase	9 GCMs + nested regional model with 4 different moist convection schemes.	Global	+12-33%	+5-7%
Oouchi <i>et al</i> (2006)	A1B	High Resolution GCM	Global	N/A	+14%
			North Atlantic		+20%

2.12 Sea Level Rise

Observed records of sea level from tidal gauges and satellite altimeter readings indicate a global mean sealevel rise of 1.8 (+/- 0.5) mm yr⁻¹ over the period 1961-2003 (Bindoff *et al.*, 2007). Acceleration in this rate of increase over the course of the 20th century has been detected in most regions (Woodworth *et al.*, 2009; Church and White, 2006).

There are large regional variations superimposed on the mean global sea-level rise rate. Observations from tidal gauges surrounding the Caribbean basin (Table 2.12-1) indicate that sea-level rise in the Caribbean is broadly consistent with the global trend (Table 2.12-2).

Table 2.12-1: Sea-level rise rates at observation stations surrounding the Caribbean Basin (NOAA, 2009).

Tidal Gauge Station	Observed trend (mm yr ⁻¹)	Observation period
Bermuda	2.04 (+/- 0.47)	1932-2006
San Juan, Puerto Rico	1.65 (+/- 0.52)	1962-2006
Guantanamo Bay, Cuba	1.64 (+/- 0.80)	1973-1971
Miami Beach, Florida	2.39 (+/1 0.43)	1931-1981
Vaca Key, Florida	2.78 (+/- 0.60)	1971-2006

Projections of future sea-level rise have recently become a topic of heated debate in scientific research. The IPCC's AR4 report summarised a range of sea-level rise projections under each of its standard scenarios, for which the combined range spans 0.18-0.59m by 2100 relative to 1980-1999 levels (see ranges for each scenario in Table 2.12-2). These estimates have since been challenged for being too conservative and a number of studies (e.g., Rahmstorf, 2007; Rignot and Kanargaratnam, 2006; Horton *et al.*, 2008) have provided evidence to suggest that their uncertainty range should include a much larger upper limit.

Total sea-level rises associated with atmospheric warming appear largely through the combined effects of two main mechanisms: (a) thermal expansion (the physical response of the water mass of the oceans to atmospheric warming) and (b) ice-sheet, ice-cap and glacier melt. Whilst the rate of thermal expansion of the oceans in response to a given rate of temperature increase is projected relatively consistently between GCMs, the rate of ice melt is much more difficult to predict due to our incomplete understanding of ice-sheet dynamics. The IPCC total sea-level rise projections comprise of 70-75% (Meehl *et al.*, 2007a) contribution from thermal expansion, with only a conservative estimate of the contribution from ice sheet melt (Rahmstorf, 2007).

Recent studies that observed acceleration in ice discharge (e.g., Rignot and Kanargaratnam, 2006) and observed rates of sea-level rise in response to global warming (Rahmstorf, 2007), suggest that ice sheets respond highly-non linearly to atmospheric warming. We might therefore expect continued acceleration of the large ice sheets resulting in considerably more rapid rates of sea-level rise. Rahmstorf (2007) is perhaps the most well cited example of such a study and suggests that future SLR might be in the order of twice the maximum level that the IPCC, indicating up to 1.4m by 2100.

Table 2.12-2: Projected increases in sea-level rise from the IPCC AR4 (Meehl *et al.*, 2007) contrasted with those of Rahmstorf (2007).

Scenario	Global Mean Sea Level Rise by 2100 relative to 1980-1999.	Caribbean Mean Sea Level Rise by 2100 relative to 1980-1999 (+/ 0.05m relative to global mean)	
IPCC B1	0.18-0.38	0.13-0.43	
IPCC A1B	0.21-0.48	0.16-0.53	
IPCC A2	0.23-0.51	0.18- 0.56	
Rahmstorf, 2007	Up to 1.4m	Up to 1.45m	

2.13 Storm Surge

Changes to the frequency or magnitude of storm surge experienced at coastal locations in Jamaica are likely to occur as a result of the combined effects of:

- (a) Increased mean sea-level in the region, which raises the base sea-level over which a given storm surge height is superimposed
- (b) Changes in storm surge height, or frequency of occurrence, resulting from changes in the severity or frequency of storms

(c) Physical characteristics of the region (bathymetry and topography) which determine the sensitivity of the region to storm surge by influencing the height of the storm surge generated by a given storm.

In Sections 2.11 and 2.12 we discuss the potential changes in Sea-level and hurricane intensity and frequency that might be experienced in the region under warming scenarios. The high degree of uncertainty in both of these contributing factors creates difficulties in estimating future changes in storm surge height or frequency.

Robinson and Khan (2008) make some estimates of future storm surge flood return periods at Jamaica's Sangster Airport based on projected changes in sea level, assuming that the storm magnitude and frequency remains constant under a warmer climate (Table 2.13-1). Further impacts on storm surge flood return period may include:

- Potential changes in storm frequency: some model simulations indicate a future reduction in storm frequency, either globally or at the regional level. If such decreases occur they may offset these increases in flood frequency at a given elevation.
- Potential increases in storm intensity: evidence suggests overall increases in the intensity of storms
 (lower pressure, higher near storm rainfall and wind speeds) which would cause increases in the
 storm surges associated with such events, and contribute further to increases in flood frequency at
 a given elevation.

Table 2.13-1: Approximate future return periods for storm surge static water levels that would flood current elevations above sea-level at Sangster International Airport. Data based on empirical examination of modelled return periods by Smith Warner International Ltd. for most likely static water elevations at Sangster (SWIL 1999). Wave run-up not included. Taken from Robinson and Khan (2008).

		Approximate Return elevation.	periods (years) for	flooding the current
			2050 Projection	2050 Projection
		Present day Return	(based on IPCC ,	(based on
	Current	Period	2007 SLR	Rahmstorf, 2007 SLR
	Elevations	SWIL 1999	Projections)	Projections)
	0.5	3.5 - 4	about 2	1.5
Sangster Airport	1.0	7	about 5.5	5
	1.5	15	11.5	9
	2.0	100	56	33

2.14 Conclusions and Recommendations

Recent and future changes in climate at Montego Bay have been explored using a combination of observations and climate model projections. Whilst this information can provide us with some very useful indications of the changes to the characteristics of climate that we might expect under a warmer climate we must interpret this information with due attention to its limitations.

- Limited spatial and temporal coverage restricts the deductions we can make regarding the changes that have already occurred. Those trends that might be inferred from a relatively short observational record may not be representative of a longer term trend, particularly where interannual or multi-year variability is high. Gridded datasets, from which we make our estimates of country-scale observed changes, are particularly sparse in their coverage over much of the Caribbean, because spatial averages draw on data from only a very small number of local stations combined with information from more remote stations.
- Whilst climate models have demonstrable skill in reproducing the large-scale characteristics of the global climate dynamics, there remain substantial deficiencies that arise from limitations in resolution imposed by available computing power, and deficiencies in scientific understanding of some processes. Uncertainty margins increase as we move from continental/regional scale to the local scale as we have in these studies. The limitations of climate models have been discussed in the context of tropical cyclones/hurricanes, and sea-level rise in the earlier sections of this report. Other key deficiencies in climate models that will also have implications for this work include:
 - o Difficulties in reproducing the characteristics of the El Niño Southern Oscillation which exerts an influence of the inter-annual and multi-year variability in climate in the Caribbean, and on the occurrence of tropical cyclone and hurricanes.
 - o Deficiencies in reliably simulating tropical precipitation, particularly the position of the Inter-tropical Convergence Zone (ITCZ) which drives the seasonal rainfalls in the tropics.
 - o Limited spatial resolution restricts the representation of many of the smaller Caribbean Islands, even in the relatively high resolution Regional Climate Models.

We use a combination of GCM and RCM projections in the investigations of climate change for a country and at a destination in order to make use of the information about uncertainty that we can gain from a multi-model ensemble together with the higher-resolution simulations that are only currently available from two sets of model simulations. Further information about model uncertainty at the local level might be drawn if additional regional model simulations based on a range of differing GCMs and RCMs were generated for the Caribbean region in the future.

3. VULNERABILITY PROFILE

3.1 Introduction and the Effects of Climate Variability

Climate variability affects operations and management practices in many sectors. The primary concern is the threat of heavy rain and hurricanes. Sectors keep in touch with the Meteorological Office on a regular basis. They recognise that weather patterns are changing.

Tourism is greatly affected by extreme weather events. Adverse rainfall and weather conditions cause cancellations and/or displacements for visitors and outdoor events are cancelled leading to a loss of revenue. Moderate rainfall may help attractions (e.g., river rafting) whilst inadequate rainfall levels do not help. During bad weather or heavy rainfall, tourists usually do not get outdoors to enjoy the attractions. In terms of heat, moderate is more favourable. The Planning Institute of Jamaica (PIOJ) is a multi-sectoral agency focusing on climate change and tourism, especially as it relates to GDP. The group looks closely at severe weather impacting on tourism and the social and economic impacts of these events. It examines how the macro economic targets might be shifted due to such events and influences policy based on the severity of these events (e.g., removal of informal settlements as a control measure with recommendations enforced by other sectors). The PIOJ currently lacks a Climate Change Policy/Action Plan but is in the process of developing one.

These extreme weather events also cause major infrastructure damage to roads, bridges, utilities and social dislocation.

3.2 Water Quality and Availability

Jamaica's freshwater resources come from groundwater sources (wells and springs), surface sources (rivers and streams) and rainwater harvesting. Groundwater sources supply the majority of the island's water demands (approximately 80%) and represents 84% of the island's exploitable water. The island's groundwater sources are associated with basement aquiclude, limestone aquifer and alluvium aquifer/aquiclude. The island is divided into ten hydrological basins (UNFCCC, 2000).

The availability of water in Jamaica is directly affected by climate variability and change, in particular reduced rain fall, potential sea-level rise and severe hurricanes. Changes in the amount, frequency and intensity of rainfall determine the amount of surface and groundwater that is available for exploitation (UNFCCC, 2000). Reduction of groundwater supplies is further exacerbated by sea-level rise, which can cause increased saline intrusion into coastal aquifers and into rivers or streams (UNFCCC, 2000). Increases in sea level may also shift freshwater resources close to or above the surface, resulting in evapotranspiration and a diminishment of the resource (Mimura *et al.*, 2007). Fresh water resources are also threatened by population growth and human activity such as contamination from sewage, agricultural runoff and vehicle pollution (Mimura *et al.*, 2007).

The scarcity of fresh water could limit social and economic development of Jamaica, in particular its key economic sectors of tourism, agriculture and industry. The country's agriculture sector accounts for approximately 75% of the country's water demand. Other key sectors of water consumption include urban domestic users (15%), rural domestic users (2%), industry (7%), in particular Bauxite—alumina and sugar cane processing industries in the south, and tourism (1%) (UNFCCC, 2000). The demand in the southern part of the island is greater due to extensive agriculture in areas of little rainfall, while demand in the north is less due to greater rainfall and less cultivatable land. Higher agricultural and industrial activity in the south has also created an increased demand for labour, which in turn has created higher population densities and higher water demands for the domestic sector (UNFCCC, 2000). Climate variability, in

particular reduced precipitation and increases in storm frequency, could also affect the supply of drinking water as it is dependent upon precipitation to recharge the watershed (Interview results).

Increased monitoring of the aquifer is planned through collection of groundwater measurement, and precipitation data. To combat this, a water reclamation facility has been built to recycle water and reuse it on property. However, during a hurricane or storm rainfall exceeds aquifer capacity, causing damage to infrastructure, bridges and roads etc...

Floodplain mapping has been carried out to reduce settlement in certain areas. Vulnerability and adaptation assessments of the south coast region have been carried out in relation to water levels, supply and security. Policies have been put into place to ensure that water supplies are secure in times of extreme weather conditions. Focus is being put into design specifications of gully and drainage systems as well as engineering designs to sustain 145 mph winds.

- The contribution of human activities to severe weather conditions (water shortages, water extraction, depletion of forest cover etc ...)
- Lack of water prevents development in the area.
- Data is collected on underground and surface water.
- Drought affects sanitation due to lack of water affecting the transmission of disease.

Westmoreland Parish Council deal with development issues concerning the provision of water within the Parish and are guided by development orders and plans. Plans are sent across agencies for proper guidance and enforcement. There is currently a lack of water within this parish which stems from development. However, the group is focussing on the generation of income and is looking at developing evacuation routes along the west-end coastline in the event of a climate change related disaster.

3.3 Energy Supply and Distribution (Regional, National & Destinational)

It is widely acknowledged that the Caribbean accounts only for 0.2% of global emissions of carbon dioxide (CO_2) , with a population of 40 million, corresponding to 0.6% of the world's population (Dulal et al., 2009). However, in many countries, and in particular those that have developed their tourism systems, per capita emissions are already exceeding levels that can be considered sustainable (Table 3.3-1). Countries like Aruba (21 t CO₂ per capita/year), Antigua and Barbuda (5 t CO₂ per capita/year), or the Bahamas (6 t CO₂ per capita/year) all have per capita emission levels that are close to or even exceed those in developed countries, and many exceed the global average of about 4.3 t CO₂ per capita, per year (UNSD 2009). Notably, even Jamaica is close to global average per capita emissions at 3.97 t CO₂ per capita per year. If the Caribbean's contribution to global emissions of CO₂2 is currently still comparably low on a regional basis (i.e., 0.2% of global emissions), this is largely due to populous islands including Cuba and Haiti and their comparably low per capita emission levels. If all countries had emission levels such as Jamaica, the region would considerably exceed its emission share to population ratio, i.e., be an above average contributor to climate change. This also means that countries like Aruba might face emission reduction demands as Annex I countries in the near future. Importantly, with the exception of Cuba, Martinique (negative) and Bahamas (modestly positive), all countries in Table 3.3-1 show strong growth in emissions (i.e., in the order of 17-145% since 1990). The islands are thus increasingly at odds with global climate policy.

Table 3.3-1: CO2 emissions per country, per capita and change since 1990

	Year	CO₂ emissions	Change since 1990	CO₂ emissions per capita/year
		mio. tonnes	%	Tonne / person
Antigua and Barbuda	2004	0.41	37.8	5.06
Aruba	2004	2.16	17.1	21.32
Bahamas	2004	2.01	3.0	6.29
Barbados	2004	1.27	17.7	4.36
Cayman Islands	2004	0.31	25.0	6.97
Cuba	2004	25.82	-19.5	2.30
Dominica	2004	0.11	81.2	1.56
Dominican Republic	2004	19.64	105.2	2.11
Grenada	2004	0.22	78.8	2.07
Guadeloupe	2004	1.73	35.1	3.99
Haiti	2004	1.76	76.8	0.19
Jamaica	2004	10.59	33.0	3.97
Martinique	2004	1.29	-37.4	3.27
Saint Kitts and Nevis	2004	0.12	88.9	2.57
Saint Lucia	2004	0.37	127.3	2.30
St. Vincent and the Grenadines	2004	0.20	145.5	1.67
Trinidad and Tobago	2004	32.56	92.4	24.68
US Virgin Islands	2003	13.55	60.1	121.30

Source: UNSD 2009

These insights are of importance in light of the post-Kyoto negotiations, which the IPCC recommends should aim at cutting global carbon dioxide emissions by at least 50% by 2050 (IPCC, 2007c). This would be a minimum requirement to avoid global average temperature increases beyond 2°C by 2100 (see Table 3.3-2), or what is generally seen as the maximum level of global warming "avoiding dangerous interference with the climate system" (e.g., Meinshausen *et al.*, 2008).

Table 3.3-2: Characteristics stabilisation scenarios and resulting long-term equilibrium global average temperature

Category	CO ₂ concentration at stabilisation (2005 = 379 ppm) ^b	CO ₂ -equivalent concentration at stabilisation including GHGs and aerosols (2005 = 375 ppm) ^b	Peaking year for CO₂ emissions a.º	Change in global CO₂ emissions in 2050 (percent of 2000 emissions) ac	Global average temperature increase above pre-industrial at equilibrium, using 'best estimate' climate sensitivity ^{4.}	Global average sea level rise above pre-industrial at equilibrium from thermal expansion only!	Number of assessed scenarios
	ppm	ppm	year	percent	°C	metres	
I II IV V VI	350 - 400 400 - 440 440 - 485 485 - 570 570 - 660 660 - 790	445 - 490 490 - 535 535 - 590 590 - 710 710 - 855 855 - 1130	2000 - 2015 2000 - 2020 2010 - 2030 2020 - 2060 2050 - 2080 2060 - 2090	-85 to -50 -60 to -30 -30 to +5 +10 to +60 +25 to +85 +90 to +140	2.0 - 2.4 2.4 - 2.8 2.8 - 3.2 3.2 - 4.0 4.0 - 4.9 4.9 - 6.1	0.4 - 1.4 0.5 - 1.7 0.6 - 1.9 0.6 - 2.4 0.8 - 2.9 1.0 - 3.7	6 18 21 118 9 5

Notes:

- a) The emission reductions to meet a particular stabilisation level reported in the mitigation studies assessed here might be underesti-
- mated due to missing carbon cycle feedbacks (see also Topic 2.3).
 b) Atmospheric CO₂ concentrations were 379ppm in 2005. The best estimate of total CO₂-eq concentration in 2005 for all long-lived GHGs is about 455ppm, while the corresponding value including the net effect of all anthropogenic forcing agents is 375ppm CO₂-eq.

c) Ranges correspond to the 15th to 85th percentile of the post-TAR scenario distribution. CO₂ emissions are shown so multi-gas scenarios can be compared with CO₂-only scenarios (see Figure SPM.3).

- d) The best estimate of climate sensitivity is 3°C.
 e) Note that global average temperature at equilibrium is different from expected global average temperature at the time of stabilisation of GHG concentrations due to the inertia of the climate system. For the majority of scenarios assessed, stabilisation of GHG concentrations occurs between 2100 and 2150 (see also Footnote 21).
- f) Equilibrium sea level rise is for the contribution from ocean thermal expansion only and does not reach equilibrium for at least many centuries. These values have been estimated using relatively simple climate models (one low-resolution AOGCM and several EMICs based on the best estimate of 3°C climate sensitivity) and do not include contributions from melting ice sheets, glaciers and ice caps. Long-term thermal expansion is projected to result in 0.2 to 0.6m per degree Celsius of global average warming above pre-industrial. (AOGCM refers to Atmosphere-Ocean General Circulation Model and EMICs to Earth System Models of Intermediate Complexity.)

Source: IPCC (2007c)

In this context it is important to understand the processes that generate emissions in the Caribbean. Figure 3.3-1 (UNFCCC, 2005) shows emissions by the non-Annex I region and sector, including energy, industrial processes, agriculture, waste and land use change and forestry. As the figure reveals, emissions in Latin America and the Caribbean arise largely from energy use (fossil fuels), agriculture and land-use change. Much of the total is a result of emissions in Brazil, while in the Caribbean accounts only for a small share of the overall total. Nevertheless, it seems clear that most of the emissions from the Caribbean are a result of emissions from energy use, and in particular fuels (e.g., Dept. of Statistics of the Bahamas 2009; Central Bureau of Statistics Aruba, 2009). Even though the statistical database for this is not always given, a considerable share of fuel imports can again be linked to tourism, particularly in those islands being highly dependent on tourism (Gössling *et al.*, 2008). Table 3.3-3 shows that in countries like Cuba, each tourist arrival entails emissions corresponding to roughly one third of the currently sustainable per capita emissions budget (cf. Gössling *et al.*, 2008). Jamaica has a considerably more favourable per tourist carbon footprint (0.6 t CO₂ per arrival) due to its greater proximity to its main market.

□ Waste

Land-use change

Other

Figure 3.3-1: Aggregate GHG emissions and removals by sector by region for the year 1994 of the closest year reported

6,000,000

5,000,000

4,000,000

4,000,000

2,000,000

1,000,000

Agriculture

Region

Latin America and the

Caribbean

Figure 3. Aggregate GHG emissions and removals by sector by region (Gg CO₂ equivalent) for the year 1994 or the closest year reported

Source: UNFCCC (2005)

-1,000,000

Table 3.3-3: Energy characteristics of tourism in case study islands, 2005

	Av weighted emissions per tourist,		Total emissions,	Emissions per tourist, main market (return flight; kg CO ₂) and
Communication	air travel (return	Internat tourist	air travel	percentage share
Country	flight; kg CO ₂)*	arrivals (2005)	(1000 ton CO ₂)	of total arrivals*
Anguilla	750	62 084	47	672 (USA; 67%)
Bonaire	1302	62 550	81	803 (USA; 41%)
Comoros	1734	17 603**	31	1929 (France; 54%)
Cuba	1344	2 319 334	3,117	556 (Canada; 26%)
Jamaica	635	1 478 663	939	635 (USA; 72%)
Madagascar	1829	277 422	507	2,159 (France; 52%)
Saint Lucia	1076	317 939	342	811 (USA; 35%)
Samoa	658	101 807	67	824 (New Zealand; 36%)
Seychelles	1873	128 654	241	1935 (France; 21%)
Sri Lanka	1327	549 309	729	606 (India; 21%)

Notes: *Calculation of emissions is based on the main national markets only, using a main airport to main airport approach (in the USA: New York; Canada: Toronto; Australia: Brisbane); **Figures for 2004. Source (tourist arrivals): UNWTO, Compendium of Tourism Statistics, Madrid: UNWTO, 2007; and UNWTO, Yearbook of Tourism S tatistics, Madrid: UNWTO, 2007.

Source: Gössling et al (2008)

Workshop results

Several concerns were raised during workshops regarding fossil fuels and power generation. First of all, stakeholders in the Caribbean have understood that global climate policy, as well as rising oil prices, increase their vulnerability to fuel imports. A first step towards reducing emissions is usually a review of energy use by sector (Simpson *et al.*, 2008). During the workshop it was reported that the first carbon audit for Jamaica has recently taken place and work is being established to find a baseline measure of the current footprint. Through measurement of these metrics, there can be an increase in efficiency, improvement in management and a reduction in costs (cf. Gössling, 2009). Another issue linked to this were concerns about hurricanes that can cause serious communication problems, and policies have been put into place to ensure that power supplies are secure in times of extreme weather conditions.

3.4 Agriculture, Fisheries and Food Security

Agriculture is one of the Jamaica's key economic sectors, as in 2000 it contributed approximately 7.3% of the island's gross domestic product (GDP), represented approximately 12% of foreign earnings, and employed approximately 25% of the population. The country is reasonably self sufficient in food production and domestic food crops include legumes, vegetables, fruits, condiments, herbs and tubers. Jamaica's main export crops are sugar, bananas, coffee, citrus, pimento, coconut and cocoa, with sugar cane (approximately 45% of export earnings) and bananas being the most important export crops. The island imports wheat, maize, meat, milk, dairy products, fish and lumber. A report by the FAO Commission on Genetic Resources found that Jamaica's ecological dependence on plant genetic resources was approximately 88% (Ximena, 1998).

The frequency, intensity and distribution of rainfall will significantly affect agricultural productivity and product quality. Projected impacts to agriculture and food security by climate change include soil degradation and loss of fertility, due to extended periods of drought and/or increased precipitation, and flooding due to increased storms (Mimura *et al.*, 2007). Increased precipitation and flooding could also lead to conditions more favourable for crop disease. Increased winds could lead to soil erosion, reduced soil moisture and damage of crops (UNFCCC, 2000).

The majority of Jamaica's coastal communities depend on coastal resources for their livelihood. In particular, reef fisheries are of major importance in the Jamaican food chain as the island's fringing reefs provide a livelihood for artisanal fisheries (UNFCCC, 2000). Coral reefs are already facing impacts from climate change (as detailed in section 3.6), which are affecting reef fisheries.

The Forestry Department state that the greatest impact is from storms affecting the planting regime and the working plan in fields. Species selection is very important e.g., Hurricane Gilbert changed the way pine was planted, due to it being susceptible to high winds. There is a move to shift to more robust species as loss of crop equals loss of income. The forest management plan does not address climate change however they are aware that it is an area that needs to be addressed.

Ketwaru-Nurmohamed (2008) studied two communities in Suriname. However, the findings are applicable to other countries. In both communities, flooding impacts women's agricultural production at many levels. There is the direct loss of crops when there are floods, and recovery is slow. It takes at least a year before the flooded soil has recovered sufficiently to produce a good harvest. Among the adaptation strategies reported during the interviews, were that women protected their crops from high flood waters in the wet season and avoided locations where there was the danger of flooding, by moving their plots to higher locations in the forest. This made cultivation more difficult since they had to establish new agricultural plots, which was both time consuming and arduous work. Relocating plots also increased the distance women had to walk from the village. This often took them between one to two hours, which, in addition to

being more inconvenient, made them very tired. Some women, particularly those who were elderly, continued to use their old plots after flooding, either because they were unable to find new plots or because they had limited resources or support to clear new land. As a result they experienced very poor harvests. There is a sexual division of labour in agriculture in the two communities. Men in Tepu clear land to establish agricultural plots. They also assist their spouses with planting and maintenance, and help to transport the harvested produce. In New Aurora, men also clear and prepare land for their wife, (or wives if they practice polygamy). This activity usually takes three weeks on average and the wife and children assist. However, men do not usually assist in the maintenance of the plots nor in harvesting of crops; these tasks are regarded as women's work. These findings indicate that after floods all interventions should be gendersensitive. This means that aid projects should ensure that women receive adequate agricultural training, equipment, tools and material so as to enable them to restart their agricultural production as soon as possible.

3.5 Human Health

Jamaica lies in a tropical zone with weather conducive to the transmission of vector-borne, as well as, food and water borne diseases. The rates of many of these diseases are increasing in small island states due to poor public health practices, inadequate infrastructure, poor waste management practices and increasing global travel (WHO, 2003). Climate change will lead to an increase in health related illness and disease in the island, through direct and indirect effects.

Direct effects of climate change on human health in Jamaica include deaths from extreme weather events (tropical cyclones, storm surges, hurricanes, flooding and heat waves). It is anticipated that an increased frequency or severity of heat waves in the Caribbean would cause an increase in human mortality and illness especially among poor communities without access to cooling aids like air conditioners or refrigeration. Increased frequency of other extreme weather events would also result in increased deaths, physical injury, increased disease transmission, decreases in agricultural productivity and increases in psychological disorders (Dulal *et al.*, 2009; Mimura *et al.*, 2007).

Indirect effects of climate change on human health include vector²-borne diseases (dengue fever, malaria and yellow fever and leptospirosis). As the replication rate of many infectious agents, vector organisms and non-human reservoir species are sensitive to climatic conditions; climate change is expected to increase the incidence of certain vector-borne diseases. For instance, temperature plays a very important role in speeding up the maturation of the malarial parasites inside the mosquitoes. An increase of 5°C, for example from 20°C (68°F) to 25°C (77°F) reduces the Plasmodium falciparum (malarial protozoa) maturity period by half the time (from 26 days to 13 days) (Dulal *et al.*, 2009).

With a rise in the occurrence of extreme events, availability of freshwater may also be constrained and contaminated. This could lead to communities experiencing food and water-borne and respiratory diseases (i.e., cholera, salmonellosis, and asthma) ³, especially in remote or rural communities that have minimal public health care infrastructures (Dulal *et al.*, 2009; Mimura *et al.*, 2007). Malnutrition resulting from disturbances in food production or distribution could also occur.

Another potentially important category of health impacts would result from the deterioration in social and economic circumstances that might arise from adverse impacts of climate change on patterns of

¹ Food survival packages were also supplied directly to the women.

² Insect and rodent.

³ Other water-borne diseases include schistosomiasis, cryptosporidium; other food-borne diseases include diarrhoeal diseases, food poisoning and typhoid; other respiratory diseases include bronchitis and respiratory allergies and infections (WHO, 2003).

employment, wealth distribution, population mobility, and limited resettlement prospects (Dulal *et al.,* 2009). Some people could suffer post-traumatic stress related to climate disasters (interview results). Access to health care could also be limited if infrastructure is damaged due to adverse weather conditions.

Policies have been put into place to improve roof security and ensure that water and power supplies are secure in times of extreme weather conditions. Health educators have also been working hard to raise awareness of the importance of these measures. A 30 year plan, which takes climate change into consideration, has been put into place by the University of West Indies.

3.6 Marine and Terrestrial Biodiversity, and Landscape Aesthetics

Jamaica has a rich biological marine and terrestrial biodiversity. Climate change could affect the habitat and distribution of many of the island's marine and terrestrial species. For instance, a 0.5m rise in sea-level in the Caribbean is projected to cause a decrease in turtle nesting habitat by up to 35% (Fish *et al.*, 2005). The turtle population is also experiencing changes in breeding patterns as their gender depends on sand temperatures (interview results). Terrestrial biodiversity, in particular forest biodiversity, are expected to have slow adaptation responses to extreme events such as hurricanes (Mimura *et al.*, 2007).

The island's coastal biodiversity includes wetlands, coral reefs, sea-grass beds, sandy beaches, rocky shores and estuaries. Jamaica's coastal wetlands, which include coral reefs, sea grass beds and mangrove forests, occupy nearly one third of the Jamaican coastline, mainly in the low coastal areas along the south coast (UNFCCC, 2000). Coastal wetlands provide wildlife habitat and maintain shoreline stability, by protecting it from wave action erosion and flooding. Their highly productive ecosystems are also capable of exporting energy and materials to adjacent, relatively deprived communities such as sea grass beds and mud flats. Sea-level rise and increases in storm surges, due to climate change, could erode the island's shores and habitat, increase salinity of estuaries and freshwater aquifers, alter tidal ranges, change sediment and nutrient transport and increase coastal flooding (Bergkamp and Orlando, 1999). Degraded wetlands have a reduced capability to serve as natural filters and buffering systems for shorelines and coral reefs against severe events, such as flooding (UNFCCC, 2000).

Coral reefs are of major importance to the island's marine biodiversity, as they serve as physical barriers to storm surge and ocean waves, provide a livelihood for artisanal fisheries and provide recreation for the local population and tourists. Since the 1950s, coral reefs in Jamaica have deteriorated due to overgrowth by algae and sponges, tropical cyclones, pollution from sewage and agricultural runoff, over fishing, and non-sustainable practices associated with diving and tourist related industries (UNFCCC, 2000). Climate change is expected to additionally stress coral reefs through higher sea surface temperatures, which can lead to coral bleaching (Mimura *et al.*, 2007). This has already been noted in Jamaica, as the death of a large number of corals in 1988 and 1990 was attributed to increases in the temperature of coastal waters (UNFCCC, 2000). Coral bleaching could become more frequent in the next 30 to 50 years or sooner without an increase in thermal tolerance of 0.2 to 1.0°C (Sheppard, 2003; Donner *et al.*, 2005). Bleaching further weakens reef systems and damages their ability to withstand the impact of other extreme events (i.e., hurricanes and storm surges) which reduces their ability to maintain protection against beach erosion. Coral reefs are also sensitive to heavy damage from hurricanes as they can become physically damaged and destroyed during high wave or storm surge events. The loss of corals leads to a reduction in fish habitat and subsequent decrease in fish populations (UNFCCC, 2000).

Sea grasses, marine flowering plants, are found in the shallow coastal waters around Jamaica. They provide a food source for many marine animals, ensure stability of the coastline and are indicators of healthy, high quality marine waters. Sea grasses currently face threats from sedimentation, direct dredge and fill

activities (including expansion of beaches) and wastewater discharge. Increased storm events, flooding or high intensity rainfall, attributed to climate change, could magnify this effect by increasing the volume of polluted runoff from these upstream sources. Sea grasses are also sensitive to thermal discharges and can only accept temperatures up to $2 - 3^{\circ}$ C above summer temperatures (UNFCCC, 2000).

Land, its settlements and infrastructure are projected to be further impacted by an increasing number and intensity of tropical cyclones due to rising sea levels and temperatures (see section 3.7 for more details). Inefficient land development can also lead to increased soil erosion, loss of agricultural productivity, deforestation, and deteriorating freshwater and marine water quality (UNFCCC, 2000).

Coastal erosion along the Palisadoes Spit, where the water from the southern side came across to the northern side, caused flooding and the deposit of sand and debris on the road access to the Norman Manley International Airport and rendered it impassable. Since then coastal defences (dunes) along the most vulnerable sections have been reconstructed and there has also been a mangrove replanting project in the most vulnerable areas.

Advanced planning is required to avoid the worst impacts. Assessment is needed for the modification of land use and implementation of land use guidelines. Public awareness and education needs improvement and support is necessary for conditional phase out of development in high risk areas.

3.7 Infrastructure and Settlements

Small islands have the majority of their infrastructure and settlements located at or near the coast, including government, health, commercial and transportation facilities. In the Caribbean more than half of the population live within 1.5 km of the shoreline. Jamaica is no exception to this, as approximately 90% of the island's GDP is produced within its coastal zone (tourism, industry, fisheries, agriculture) and in particular, on continuous corridors of development along the north coast (UNFCCC, 2000; Mimura *et al.*, 2007). Tourism, the largest and most important sector of the Jamaican economy, is the key activity in the island's coastal areas (in 1998 it contributed 20% of GDP (UNFCCC, 2000)). Coastal areas already face pressure from natural forces such as wind, waves, tides and currents, and human activities, such as beach sand removal and inappropriate construction of shoreline structures. The impacts of climate change, in particular sea-level rise and increased storm surges, could magnify these effects and have serious consequences for land uses along the coast (UNFCCC, 2000; Mimura *et al.*, 2007).

The IPCC (2007a) concludes that extreme weather events, rather than gradual change, result in the greatest vulnerability concerns for infrastructure and settlement. Changes in extremes events include increases in tropical cyclones, storm surges, extreme rainfall and heat waves, which can affect transport, tourism and infrastructure (IPCC, 2007a). However, the IPCC (2007a) also emphasizes that vulnerabilities are seldom associated with extreme events only; rather, aggregated stressors and impacts should be considered in multi-cause contexts. In general, poor communities are considered especially vulnerable, particularly when they are also located in high-risk areas including coastal and riverine areas. This is partially due to more limited adaptive capacities, but also greater dependency on climate-sensitive resources such as local water and food supplies. Note that communities depending on agricultural and forest products as well as tourism are also seen as particularly vulnerable.

The recent report, *Global Climate Risk Index*, reviewed current extreme weather impacts in forty countries and identified Jamaica as one of the six Caribbean islands experiencing the most adverse extreme weather impacts (Harmeling, 2009). As a result, key facilities of the island could be at risk from inundation, flooding and physical damage associated with coastal land loss (i.e., roads, hospitals, farm land and tourist facilities)

(Mimura *et al.,* 2007). The high density of population living in the coastal areas could also be displaced from these effects (UNFCCC, 2000). Socio-economic impacts of climate change in the island include a detrimental impact on employment and the economy through the loss of income and commercial and industrial infrastructure (UNFCCC, 2000).

Adaptation is feasible in many contexts, but only when there is capacity among individuals, communities, enterprises and local governments to cope with change, together with access to financial and other resources (IPCC, 2007a).

Figure 3.7-1: Selected examples of current and projected climate-change impacts on industry, settlement and society and their interaction with other processes

Climate Driven Phenomena	Evidence for Current Impact/ Vulnerability	Other Processes/ Stresses	Projected Future Impact/ Vulnerability	Zones, Groups Affected			
a) Changes in extremes							
Tropical cyclones, storm surge	Flood and wind casualties and damages; economic losses: transport, tourism, infrastructure (e.g., energy, transport), insurance (7.4.2; 7.4.3; Box 7.3; 7.5)	Land use/ population density in flood-prone areas; flood defences; institutional capacities	Increased vulnerability in storm- prone coastal areas; possible effects on settlements, health, tourism, economic and transportation systems, buildings and infrastructures	Coastal areas, settlements and activities; regions and populations with limited capacities and resources; fixed infrastructures; insurance sector			
Extreme rainfall, riverine floods	Erosion/landslides; land flooding; settlements; transportation systems; infrastructure (7.4.2) (see regional Chapters)	As for tropical cyclones and storm surge, plus drainage infrastructure	As for tropical cyclones and storm surge, plus drainage infrastructure	As for tropical cyclones and storm surge, plus flood plains			
Heat or cold- waves	Effects on human health; social stability; requirements for energy, water and other services (e.g., water or food storage), infrastructures (e.g., energy transportation) (7.2; Box 7.1; 7.4.2.2; 7.4.2.3)	Building design and internal temperature control; social contexts; institutional capacities	Increased vulnerabilities in some regions and populations; health effects; changes in energy requirements	Mid-latitude areas; elderly, very young, ill and/or very poor populations			
Drought	Water availability, livelihoods; energy generation; migration,; transportation in water bodies (7.4.2.2; 7.4.2.3; 7.4.2.5)	Water systems; competing water uses; energy demand; water demand constraints	Water resource challenges in affected areas; shifts in locations of population and economic activities; additional investments in water supply	Semi-arid and arid regions; poor areas and populations; areas with human-induced water scarcity			
b) Changes in m	eans						
Temperature	Energy demands and costs; urban air quality; thawing of permafrost soils; tourism and recreation; retail consumption; livelihoods; loss of melt water (7.4.2.1; 7.4.2.2; 7.4.2.4; 7.4.2.5)	Demographic and economic changes; land-use changes; technological innovations; air pollution; institutional capacities	Shifts in energy demand; worsening of air quality; impacts on settlements and livelihoods depending on melt water; threats to settlements/infrastructure from thawing permafrost soils in some regions	Very diverse, but greater vulnerabilities in places and populations with more limited capacities and resources for adaptation			
Precipitation	Agricultural livelihoods; saline intrusion; tourism; water infrastructures; energy supplies (7.4.2.1; 7.4.2.2; 7.4.2.3)	Competition from other regions/sectors. Water resource allocation	er Depending on the region, vulnerabilities in some areas to effects of precipitation increases (e.g., flooding, but could be positive) and in some areas to decreases (see drought above)				
Saline intrusion	Effects on water infrastructures (7.4.2.3)	Trends in groundwater withdrawal	Increased vulnerabilities in coastal areas	Low-lying coastal areas, especially those with limited capacities and resources			
Sea-level rise	Coastal land uses; flood risk, water logging; water infrastructures (7.4.2.3; 7.4.2.4)	Trends in coastal development, settlement and land uses	Long-term increases in vulnerabilities of low-lying coastal areas	As for saline intrusion,			

Source: IPCC (2007a)

The IPCC (2007a) also lists mitigation policies as an important aspect affecting economic sectors and groups in society, as greenhouse gas stabilization goals will incur a higher cost of carbon. Any economy whose development depends on abundant fossil-fuel resources, the IPCC (2007a) states, needs to be seen as particularly vulnerable. This should be very clearly seen in the light of the high dependence of many islands in the Caribbean on tourism, and their current focus on further development of this sector. Together with high oil prices, which are currently again on the increase, it is advisable to reconsider the focus on tourism as the primary sector for development (Gössling et al. 2008; Yeoman et al. 2007). Such ambitions need to go along with consideration of new concepts, such as destination carbon neutrality (e.g., Gössling 2009, Gössling and Schumacher 2010).

3.8 Comprehensive (Natural) Disaster Management

As detailed earlier, much of the biological diversity, infrastructure, industries and communities of Jamaica will be increasingly prone to natural disasters under climate change, in particular sea-level rise and extreme events such as hurricanes, floods and drought. Natural disasters such as tropical storms have had devastating consequences for the Caribbean islands in the past. While a comprehensive review is beyond the scope of this paper, detailed documentation of Storm Noel in the Dominican Republic indicates the scale of impacts. As indicated in Table 3.8-1, Noel was, in economic terms, not even the most devastating tropical storm in the past three decades.

Table 3.8-1: Economic cost of major disasters

Disasters in the Dominican Republic	Millions US \$
Hurricanes David and Federico, 1979	2,654.7
Hurricane Georges, 1998	3,116.1
Flooding 2003	49.3
Hurricane Jeanne, 2004	331.5
Tropical Storm Noel, 2007	439.0

Source: Adapted from Dunn (2008), based on CEPAL (2008)

Yet, according to Dunn, citing CEPAL (2008), over 6 million people (70 percent of the population) were affected. The death toll was 87 persons, 34,172 persons were displaced, 20,000 houses were affected, and 42 persons disappeared (See Table 3.8-2). Details on the economic cost of the disaster are provided in Table 3.8-3.

Table 3.8-2: Population in the Dominican Republic affected by Tropical Storm Noel

Category	Number	Percentage
Population affected	6,037,871	70.69
Population directly affected	75,305	0.88
-Total persons displaced	34,172	0.40
-Total deaths	87	
-Total Disappeared	42	
Total Population of the country (2004)	8,541,149	

Source: Adapted from Dunn (2008), based on CEPAL (2008)

Table 3.8-3: Summary of economic impact of Tropical Storm Noel (Millions of Dominican pesos)

	Damages	Losses	Total
<u>Total</u>	<u>8,533.30</u>	<u>6,174.35</u>	<u>14,707.65</u>
Social Sectors	2,236.04	495.81	2,731.85
Housing	1,704.38	368.93	2,073.31
Education	473.55	15.9	489.45
Culture, etc.		0.26	0.26
Health	58.12	110.72	168.83
Productive Sectors	2,102.36	5,170.84	7,273.20

Table 3.8-3: Summary of economic impact of Tropical Storm Noel (Millions of Dominican pesos)

	Damages	Losses	Total				
Agriculture	2,054.64	3,446.60	5,501.24				
Industry and Commerce	28.11	1,683.00	1,711.11				
Micro enterprises	19.62	41.24	60.86				
Micro enterprises of men	8.59	18.69	27.28				
Micro enterprises of women	11.03	22.55	33.57				
Infrastructure	4,078.90	507.70	4,586.60				
Transportation	1,354.00	70.00	1,424.00				
Sanitation and drainage	777.40	30.10	807.50				
Risk (including damage to agricultural infrastructure)							
Energy	1,866.00	401.60	2,267.60				
Telecommunications	81.50	6.00	87.50				
Environment	116.00		116.00				

Source: Adapted from Dunn (2008), based on CEPAL (2008)

Many country studies throughout the region indicate that women are generally at a higher risk and vulnerability to the effects of climate change (e.g., Castello, 2008; Dunn, 2008; Ellis, no year; Mendoza, no year; Senior and Dunn, no year; Vassell, 2008).

Research by Ketwaru-Nurmohamed (2008) shows that floods can have widespread consequences, including damage to crops, lack of firewood for cooking, dependence on food provisions from relatives, geographic isolation, reduced food security, lack of access to water, land erosion, damage to housing, interruption of economic earnings, and fear of future floodings.

Hurricanes Dean and Gustav resulted in extensive damage to the land, people and their property. These events have led to the establishing of a National Emergency Response GIS Team (NERGIST) to assist in disaster assessment and mitigation prior, during and post disaster in a joint government effort using GIS to minimize disaster effects and maximise GIS benefits.

The Social Development Commission works with community based groups to mobilise communities in times of extreme weather events. Their research is also community based. Parish councils assist during the rainy season and hurricanes with disaster committees. The Commission has also produced a second national communication on climate change, outlining the national situation, adaptation options, key sectors, planning and the policy and action plan required for development and implementation.

Based on collated national data, Disaster Preparedness Management teams have been formed by the Ministry of Tourism and stakeholders in the tourist industry.

Climate Data University of the West Indies (UWI) focuses primarily on research. It runs cross-sectoral consultations locally, regionally and international with links to research and planning. It also provides training in destination downscaling as in important strategy and produces regional modelling papers in order to inform about the impacts and importance of climate change.

Extreme weather conditions such as hurricanes and storm surges intensify the work that is done using GIS (e.g., damage assessment, vulnerability assessment, predictive models etc.). However, weather conditions may also limit operations as rainy or cloudy conditions can affect the use of GPS equipment or render

inaccurate readings due to conflict or interference with the signals. Rapid changes in the environment result in the redundancy of data collected on a particular area, and thus require frequent retakes and updates in order to ensure the information extracted is current and applicable (e.g., use of satellite imagery for classification or zoning etc.). However, this can be very expensive both in time and money.

To address disaster management in the Caribbean tourism sector, the Caribbean Disaster Emergency Response Agency (CDERA) with the support of the Inter-American Development Bank (IDB) and in collaboration with the Caribbean Tourism Organization (CTO), CARICOM Regional Organization for Standards and Quality (CROSQ), and the University of the West Indies (UWI) will be implementing a Regional Disaster Risk Management (DRM) Project for Sustainable Tourism over the period of January 2007 to June 2010. The project aims to reduce the Caribbean tourism sector's vulnerability to natural hazards through the development of a 'Regional DRM Framework for Tourism'. Under the Framework, a 'Regional DRM Strategy and Plan of Action' will be developed, with a fundamental component being the development of standardized methodologies for hazard mapping, vulnerability assessment and economic valuation for risk assessment for the tourism sector (CDERA 2007; CDERA 2009).

3.9 Identification of the Most Vulnerable

Impacts of climate change will be differently distributed among different regions/destinations, generations, age classes, income groups, occupations and genders (IPCC, 2007a). In light of the estimated current annual rate of climate change related deaths of 300,000, which is anticipated to increase to 500,000 by 2020 (Global Humanitarian Forum 2009), it is of great importance to identify the most vulnerable groups in society in order to develop adaptation strategies tailored to them. As outlined in the previous sections, adaptation will be particularly relevant in high-risk areas, including coastlines. Moreover, the most vulnerable groups are generally those with limited financial resources, and those who are also dependent on agriculture or forestry (IPCC, 2007a; Ketwaru-Nurmohamed, 2008). In the context of the Caribbean, those dependent on tourism might be added to this list, particularly when employed in low-paid service industry positions (cf. Massiah, 2006). Within these groups, yet another sub-division might be made between men and women, for reasons to be discussed in the following section (Gender). Dunn (2008) also distinguishes groups that are more vulnerable for various specific reasons, including restricted access to early warning systems, because of gender roles working to a disadvantage in disaster situations, limited social participation or social disadvantages such as lack of education, poor housing or inadequate food supplies, or the gender division of labour. Conclusions regarding vulnerability will be drawn based on these considerations.

3.9.1 Gender

It is now increasingly recognized that vulnerabilities are closely interlinked with gender, and that women in many areas are particularly vulnerable (for a discussion of exceptions to this general rule see e.g., Dunn, 2008). One example of this gender vulnerability is the 1991 cyclone disaster in Bangladesh, where 90% of casualties were reportedly women (Aguilar, 2004). With regard to the Caribbean, a number of general insights regarding vulnerabilities can be derived from Massiah's (2006) review of women's rights. Massiah (2006:60) concludes that, formally, much progress has been made with regard to women's rights, and that the Caribbean was the first region to united ratify the Convention on the Elimination of all Forms of Discrimination Against Women (CEDAW Convention): "it can be said that the region has embraced the principle of gender equality as a fundamental tenet of its development agenda". However, differences between countries in the Caribbean remain large, as reflected in the countries' respective ranking in

Gender Development Indices and the so-called Gender Empowerment Measure. Massiah (2006: 60) thus suggests that:

The reality is that the segregated nature of the labour market continues, there continue to be unacceptable levels of violence, particularly domestic violence, discrimination which once may have been institutionalised has gone underground bust still exists, women's right to control their own sexual and reproductive rights continues to be challenged, few women are to be found in key leadership positions and women continue to be disproportionately represented among the poor.

With regard to climate change and adaptation, Massiah (2006) does not make an explicit link to the topic, but lists several issues of importance. Firstly, a considerable share of women in the Caribbean have income levels beyond the poverty line, or are unemployed and engaged in the informal sector. The informal sector is generally characterized by a greater share of women, whose work yields lower and less stable earnings than the work of men. Garment, electronic factories, offshore financial sectors and tourism are mentioned by Massiah (2006) as sectors particularly vulnerable to change, and as exemplified by the consequences of globalization as experienced in the early 1990s. It might be argued, however, that shocks to the system could also result from extreme weather situations deterring, for instance, tourists.

More specifically, five gender-related areas of vulnerability can be derived from the literature, including:

- 1) Knowledge and abilities
- 2) Professional positions, division of labour, income levels and savings behaviour
- 3) Resource use, access and control
- 4) Health, insurance and security
- 5) Participation in decision-making, including politics

1) Knowledge and abilities

Women have usually central roles in household-related decision-making, and considerable power in influencing these decisions. In the Caribbean, the specific situation is that 40% of all households are headed by women (Massiah, 2006). Consequently, women are key decision-makers on the household level, though not on higher leadership and political levels, including community councils or groups, trade unions, political parties, religious bodies and other organisations (Massiah, 2006). It might thus be argued that women are currently key actors when it comes to climate change adaptation decision-making at the household level. The issues that need to be addressed at the household-level are various, including everything from the choice of location for housing, behaviour in extreme situations, or traditional knowledge (e.g., Lane and McNaught, 2009). While much of the knowledge and the abilities that are of importance to deal with extreme situations may be related to knowledge about the local environment, including physical resources and weather patterns, "expert" knowledge on climate change, or what could be termed a more formal understanding of when and why extremes occur, and how to adapt to these, would be of great importance to women. Many authors in various parts of the world have outlined the value of engendered local knowledge for adaptation, and greater recognition should be paid to this knowledge even in Caribbean contexts (e.g., Lane and McNaught, 2009; Terry, 2009).

2) Professional positions, division of labour, income levels and savings behaviour

In building on the previous section, the role of women in society deserves greater focus, as men usually occupy better professional positions, while women have more work to do, and have lower income levels. For instance, in Jamaica, Massiah (2006) reports that out of 14 trade unions, 12 have male Presidents and 10 have male General Secretaries, while of 31 publicly listed companies, all were chaired by men, and 30 had a male Managing Director. At the Board level, 90% of members were men. These examples illustrate the relative role held by women in terms of professional positions. With regard to the division of labour, women are likely to be in charge of much household work, with 40% of households being headed entirely

by women, and a larger share of the remainder being likely headed by women as well. This puts greater pressure on women both in terms of household work, responsibility for children and older household members, as well as simultaneous engagement in income-earning activities. With regard to income levels, there is evidence that women are more often unemployed, have more often low-paying jobs, and may be more likely to lose their employment in times of economic recession (cf. Massiah, 2006; Ellis, n.d.; Mendoza, n.d.; see also Ketwaru-Nurmohamed, 2008).). There is no information regarding savings, but as women are typically the lowest paid in society, it can be reasonably assumed that they have fewer options to put aside savings. Nevertheless, if savings are put aside, it may often be women actually putting aside money (or other resources). So women may, through their savings/storage of food etc., build resilience in times of hardship. However, as yet, these interrelationships are little explored.

3) Resource use, access and control

Natural resource management is complex and of great importance in ecosystem management. More recently, much attention has also been given to the role of traditional ecological knowledge in creating ecological resilience through adaptive management. Berkes *et al.* (2000: 1251) state, for instance, in a review of the field that:

Case studies revealed that there exists a diversity of local or traditional practices for ecosystem management. These include multiple species management, resource rotation, succession management, landscape patchiness management, and other ways of responding to and managing pulses and ecological surprises. Social mechanisms behind these traditional practices include a number of adaptations for the generation, accumulation, and transmission of knowledge; the use of local institutions to provide leaders/stewards and rules for social regulation; mechanisms for cultural internalization of traditional practices; and the development of appropriate world views and cultural values. Some traditional knowledge and management systems were characterized by the use of local ecological knowledge to interpret and respond to feedbacks from the environment to guide the direction of resource management. These traditional systems had certain similarities to adaptive management with its emphasis on feedback learning, and its treatment of uncertainty and unpredictability intrinsic to all ecosystems.

The role of women in adaptive management is, as yet, little explored, even though evidence would suggest that this should be a key issue to be researched (cf. Berkes *et al.*, 2000; Tomkins *et al.*, 2004). Notably, this would take into consideration the ecosystems on which most of the poor in developing countries depend in the Caribbean, i.e., coastal resources including wetlands, alluvial plain agriculture and coastal fisheries (Dulal *et al.*, 2009).

4) Health, insurance & security

There is a clear link between low income situations and limited capacity to adapt to extreme weather events. As women have been identified as belonging to low-income groups more often than men, health issues, including in the worst case risk of survival and death, are clearly a gender issue. Other aspects of health related to climate change include the spread of various vector-borne diseases, or heat stress. As outlined by Dulal *et al* (2009)

The incidence of non-vector-borne infectious diseases such as cholera, salmonellosis, and other food- and water-related infections may also potentially increase in the Caribbean, especially on islands such as Haiti and Grenada that have minimal public health care infrastructures and in remote, rural parts of larger countries such as Jamaica and Guyana.

Other issues, such as security (see discussion below) and security are also linked to gender, but no research is available that has investigated this, particularly with a focus on the Caribbean (see, however Ketwaru-Nurmohamed, 2008).

5) Participation in decision-making, including politics

Please refer to section 2 above, which details aspects of the professional positions women hold. From these discussions, it seems clear that women have disproportionally more power at the household level – generally because they are in charge of households while men seem to often live as singles -, but they are, in relative terms, practically disempowered on all other participative levels. Note, that in more traditional communities, power distribution can be more uneven, with land use and housing permissions being granted by the male Tribe Chief or Chief Captain, and where women may not even be allowed to speak publically or to travel outside villages (Ketwaru-Nurmohamed, 2008).

These aspects illustrate that women are generally put at a disadvantage in dealing with climate change and disaster situations more generally. Integrating gender perspectives into all dimensions of the adaptation/mitigation agenda is an important step towards building adaptive capacity. Schalatek (2009: 5) thus emphasizes the need to engender climate change adaptation funds:

The experiences of mainstreaming gender in development efforts can be instructive, and tools developed in this context can likewise be adapted and utilized for making climate financing instruments more gender equitable. These include, but are not limited to gender sensitive indicators; gender analysis of project and program designs; gender-inclusive consultation, implementation, monitoring and evaluation; possible gender finance quotas or set asides via gender responsive budgeting processes applied to project funding; as well as mandatory gender audits of funds spent. However, the single most important tool in advancing fair and gender-equitable climate finance mechanisms— and apparently still the most illusive— is a political commitment on every level to take gender seriously in combating climate change.

This view is also supported by Hemmati and Röhr (2009: 19): "The United Nations is formally committed to gender mainstreaming in all policies and programmes, and that should include policy-making processes relating to climate change. Yet gender aspects are rarely addressed in climate-change policy, either at the national or at the international levels". Thus, there is an overall need to improve participation, both with regard to gender and climate change adaptation more generally. As stated by Dulal *et al.* (2009) outline, participation based on social equity values will help to incorporate stakeholder knowledge, skills, and opinions, while increasing compliance and support. Participative action will also mean to provide fora for identification and negotiation of conflicts, thus contributing to local empowerment.

Workshop results

Data concerning gender information has primarily been provided by two main parties: The Centre for Gender Studies, University of the West Indies (UWI) and the Bureau of Women's Affairs (BWA).

The UWI is concentrating its studies on the following points:

- Measuring how men and women are affected by disasters
- Monitoring the fact that women are more involved in subsistence farming, the service sector and are more likely to be affected by climate change impacts
- The impact of climate change and how women are more at risk of unemployment and job losses should we target climate change messages to women?

The BWA are assessing issues of gender and climate change and have already held a regional conference. They are also involved in other workshops and future conferences.

Their focal points are:

- Embarking on 'gender mainstreaming'
- Seeking to integrate a gender perspective in all plans
- Tourism and gender issues
- Cross cutting

They have concerns regarding women as Centre Managers – and the role and safety of women in shelters, (vulnerable to sexual abuse).

In October 2005 an ECLAT report on hurricane Ivan pointed to the natural disaster effects on women and children in Grenada. Following recent hurricanes and floods, and after dialogue with the UN and ECLAT concerning impact assessment, a similar study has been proposed for Jamaica.

It is essential to use a gender lens in assessment of vulnerability so that a response can be implemented to suit the differing needs of men and women.

Jamaica workshop

- Women are more involved in subsistence farming and the service sector, more likely to be affected by climate change impacts.
- Women are more at risk of unemployment and job losses.
- It is essential to use a gender lens in assessment of vulnerability.

3.9.2 Poverty

The term "poverty" is contested in the field of development studies and is used here used to denote national poverty lines, i.e., it makes no reference to the distinction of relative and absolute poverty. Dulal *et al.* (2009) provides a general ranking of Caribbean countries with regard to poverty levels, and concludes that Haiti and Suriname show the highest levels of poverty in the region, with an estimated 65% and 63% respectively, of the populations living below the poverty line. The situation is better in a number of other countries, where the share of people below the poverty line is 30–40%, including Belize, Dominica, Grenada, Guyana, St. Kitts and Nevis and St. Vincent and the Grenadines. The situation is even better in Anguilla, British Virgin Islands, St. Lucia, Trinidad and Tobago and the Turks and Caicos Islands, where between 20% and 29% of the population fall below the poverty line. Barbados has the lowest poverty rate of 14% (based on data for 1997), while Jamaica has a poverty rate of approximately 20% in 2002 (see also Senior and Dunn, n.d.). National poverty lines hide, however, that poverty rates are higher for women (e.g., Ellis, n.d.).

A commonality in all countries is that poverty tends to be more predominant in rural areas than in urban areas, even though urban poverty is usually more visible. As Dulal *et al.* (2009) points out, rural poverty is characterized by lack of access to physical and financial resources, production support facilities, and social and physical infrastructure services such as electricity, water, sanitation, and roads and transportation. Urban poverty, on the other hand, would be characterized by high-density living, squatter settlements, and poor sanitation and waste disposal practices. Various researchers have presented models to understand how various factors interact in reinforcing poverty. Notably, climate change and in particular extreme events can trigger change that undermines livelihoods.

For example, Kates (2000: 14) provides a model derived from 30 case studies from all over the world of the underlying reasons for environmental degradation, outlines that locals in many rural areas may already face problems in maintaining access to natural resources for agriculture and herding or fishing, a process often related to population growth or competition for land due to development processes. Lands, water and

other resources are divided and reduced through various processes, including sharing with children or sales to cope with extreme losses (crop failure, illness, death), social requirements (marriages, celebrations), or subsistence. Degradation is also incurred in excessive or inappropriate use (clearing, overgrazing, unsuitable cropping), failure to maintain or restore protective works (canals, dams, drainage, terraces) and the loss of productive capacity from natural hazards. Together, these culminated in three "major spirals of impoverishment and environmental decline": displacement, division and degradation. Kates (2000:14) concludes that "the very development-commercialization activities that displace poor people are precisely those that would constitute adaptive strategies to climate change...".

Population Development Poverty Natural Events Commercialization Growth DISPLACEMENT DIVISION Inadequate Loss of Resource Productive Excessive Maintenance Capacity Use Inappropriate DEGRADATION Afigration Use

Figure 3.9-1 Model of the underlying reasons for environmental degradation

Source: Kates (2000)

In order to tackle poverty, it is important to understand these interrelationships, while considering the role of women. As Massiah (2006: 71) states, "In the area of poverty, we have learnt that poverty eradication programmes which are embedded in the prevailing global economic model provide little fundamental change to the circumstances of poor women". Thus, the research carried out by both Kates (2000) and Messiah (2006) suggests that fundamentally new models for poverty eradication have to be found for the Caribbean, aiming at building adaptive capacity and resilience to climate change.

3.10 International Climate Policy, Transport Costs and Tourism Arrivals

Small island developing states (SIDS) rely heavily on air transport to support their tourism economies. As the international community has reached consensus that deep greenhouse gas (GHG) emission reductions are necessary over the next 25-40 years to avoid dangerous climate change, all emission generating economic sectors are being required to find ways to reduce emissions. While the contribution of air travel to global climate change is argued by the aviation industry to be small, air travel is growing rapidly in both developed nations and emerging economies. Under a 'business as usual' scenario, as projected by the aviation industry (Boeing 2008), its contribution to global emissions would growth rapidly over the next 25 years as other sectors move to significantly reduce emissions significantly (Kahn et al. 2007). Because this

strong emissions growth trend is in conflict with the emission reduction targets of international climate policy, several policy proposals are being considered to end the exclusion of international aviation from emission reduction frameworks (see Lyle (2009) for a recent summary). The European Union will become the first to include all flights in and out of its airports to account for emissions as a part of the EU cap and trade program. The United States is also discussing similar policies (Ljunggren, 2008). With the establishment of emission caps and eventual reduction targets for aviation, coupled with projections for rising global oil prices, the cost of travelling by air is anticipated by many experts to increase which, in turn, could impact demand for to travel to island destinations. In addition, 'travelers guilt' due to the environmental impacts associated with air travel has been intensified by media and published pieces condemning air travel because of its disproportionate impact on climate change (i.e., "Flying on holiday 'a sin', says Bishop" (Barrow, 2006) and "Oz Fears Jet-flight Guilt" (Bartlett, 2007)).

Climate policy to reduce GHG emission within source market countries coupled with a potential increase in 'travelers guilt' are likely to be one of the most immediate challenges of climate change to tourism in the Caribbean. Other long-haul destinations (Australia, New Zealand) have expressed concern that the inclusion of aviation in climate mitigation policies could cause visitor numbers to decline as a consequence of associated increases in travel cost. A position paper by the Caribbean Hotel Association-Caribbean Tourism Organization (2007) states: "The immediate current threats are emerging as our major tourism markets seek to take urgent and decisive action to curb their own contributions to climate change. In so doing these developed nations risk curtailing the Caribbean region's efforts to develop its societies and economies through its participation in the global tourism industry."

Pentelow and Scott (2009) developed an economic model to examine the potential impact of increased air travel costs associated with climate policy and higher fuel prices to the 20 Caribbean Community (CARICOM) members and associate members, plus three other large island nations which are popular tourist destinations; Cuba, the Dominican Republic and Puerto Rico. This study modelled the impact that the European Union ETS, as is expected to be implemented (with established emission caps and anticipated low and high market costs of carbon emissions - (Deutsche Bank, 2008; European Climate Exchange, 2009; Fortis, 2008; JP Morgan, 2007), an identical ETS in North America (US and Canada), and future oil price projections from the United States Energy Information Agency (low and high scenarios) would have for air travel costs and the resulting impact on tourist arrivals in each CARICOM nation through to 2020. A serious climate policy with much deeper emission cuts and carbon costs that are considered more indicative of the social cost of carbon (as estimated by - (Clarkson and Deyes, 2002; National Round Table on the Environment and the Economy, 2007; Nordhaus and William, 2005; Plambeck and Hope, 1996; Stern *et al.*, 2006; Tol, 2008) was also modelled, though such a policy framework is not likely to occur until after 2020. To determine the response of travellers to an increase in air travel prices, a range of price elasticity values from economic studies of air travel was used.

The results of this study indicate strongly which conditions could lead to the region experiencing the greatest (and the least) change in arrival numbers from air travel by the year 2020 versus a BAU scenario. On a whole, when climate policy and future oil prices are taken into consideration the Caribbean region is expected to have fewer visitors in 2020 than would be projected under the 2020 BAU growth scenario. Figure 3.10-1 shows a 2000-2020 time series for a BAU scenario, scenarios of the minimum and maximum reductions in arrivals due to anticipated climate policy and fuel prices, and the serious climate policy scenario. Region wide arrivals were projected to decline by 1.3% to 4.3% in 2020 versus a BAU growth scenario. While climate policy and increased fuel prices are expected to have a negative impact on tourist arrivals, arrivals are still projected to double over the next decade. The 'serious' climate policy scenario had much greater impact on arrivals at 24% below BAU.

Importantly, because of the distances from main international markets, the composition of charter tourist arrivals and the climate policies in these markets, the impacts of climate policy and fuel prices on arrivals

differed among the Caribbean nations in the study. In all of the scenarios Jamaica was found to be among the moderately vulnerable nations, with arrivals declines of 1.3% to 3.7% from BAU under ETS based scenarios, and a more significant reduction of 20.5% under a serious climate policy scenario.

The modelling clearly showed that the potential impact of global climate policy and future oil prices on consumer demand to Jamaica must be taken seriously, particularly beyond the negotiations for the immediate successor to the Kyoto Protocol. Analysis of the policy implications of the COP-15 negotiations in Copenhagen on tourism should be a priority for future analysis, including a more detailed examination of the specific source markets of Jamaica, their price elasticity and options for reducing exposure to future changes in global or source market nation climate policy. Market surveys of 'traveller guilt' and willingness to pay for carbon offsetting or carbon neutral tourism products / holidays would also help inform tourism decision makers and communities about appropriate response strategies (e.g.,, new product development, development of local renewable power, marketing strategies) as part of overall climate change adaptation planning.

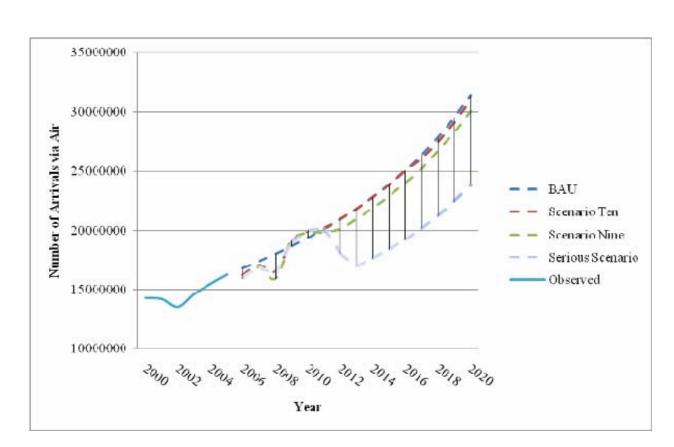


Figure 3.10-1: Projected Growth in Tourist Arrivals to the Caribbean by Air

3.11 Climatic Resources for Tourism

Numerous studies emphasize that climate, particularly temperature, is one of the most important resources of a tourist destination and a principal motivator for many travellers (Mintel International Group 1991; Morgan *et al.*, 2000; Lise and Tol, 2002; Gomez-Martin, 2005; Hamilton and Lau, 2005; Lohmann and Kaim, 1999; Gössling *et al.*, 2006; Scott *et al.*, 2008). One of the principal reasons behind the popularity of the Caribbean is the demand for a predictable sunny and warm destination, especially during the winter months in high latitude source markets. With the onset of climate change, this climatic parameter of

tourist destinations will change, leading some scientists and the media to claim that some destinations, including many Caribbean islands, could become "too hot" for tourist comfort during peak tourism seasons and a resultant decline in visitation. Tourists have the greatest capacity to adapt to the impacts of climate change, with comparative ease and freedom to avoid undesirable climatic conditions by either altering the timing of their trip or avoiding the destination altogether (UNWTO-UNEP-WMO, 2008). It is therefore imperative to understand what climatic conditions tourists deem as unsuitable for a holiday and if such conditions would occur regularly as a result of projected climate change.

A recent survey with European tourists sought to determine the perceived range of optimal temperatures for tourist satisfaction for beach tourism, as well as thresholds for unacceptably cool and unacceptably hot conditions (Rutty and Scott, 2009). Three classifications for beach holiday temperatures were defined by the majority of responses (>50%): optimal between 27°C and 32°C, unacceptably cool when less than 22°C, unacceptably hot when over 37°C.Transition zones were observed between ideal and unacceptably cool/hot.

To evaluate the suitability of climate conditions for beach holidays in Jamaica, the three temperature classifications have been compared with the monthly average daytime high temperatures from the baseline period of 1970-99 and under the median temperature scenario for the 2020s, 2050s, 2080s, and the maximum warming scenario for the 2080s (as set out in section 2.3) (Figure 3.11-1). Currently all monthly daytime high temperatures are within the optimal zone for beach tourism. Under all climate change scenarios, no month has daily average maximum temperatures projected to be in the unacceptably hot range. In the 2050s, the number of months in the optimal zone declines to 7. By the 2080s this number has declined to the 3 winter months (DJF), with the remaining months in the transition zone between optimal and too hot. In the 2080s, the summer months begin to approach the unacceptably hot threshold and with average humidity level considered would be considered unacceptably hot by the majority of tourists. The impact of projected warming temperatures on tourism in the Negril region is therefore considered a long-term risk.

Of greater potential consequence to tourist arrivals in Jamaica, are the projected changes in climate in major source markets. In high latitude markets, cold winter temperatures are a strong motivator for travel to the Caribbean and other sunshine destinations (Mintel International Group, 1991; Hamilton and Lau, 2005; Lohmann and Kaim, 1999). The relationship between average monthly temperatures in some regions of the US and Canadian markets and demand for tourism (arrivals) in Jamaica is highly correlated (see Figure 3.11-2 for the central Canada market), but weakens with latitude (see Table 3.11-1 for major US and Canadian regional markets). Travel to Jamaica from markets like New York, Chicago, and Toronto are strongly related to cold temperatures, while travellers from markets like Miami and motivated by other factors and there is a weak correlation with temperature. Using the current temperature-demand curves, the implications of projected future climate change in major source market regions was examined for the central Canadian market. The blue diamonds and regression line represent the current temperaturearrivals demand curve based on 2001-2007 data. The red circles represent the projected monthly temperatures in the 2050s (RCM A2 scenario - see Table 2.3) and illustrate how demand declines as average monthly temperatures warm substantially in SON, DJF, and MAM shifting these months down the demand curve. In each of the Canadian regional markets, projected warming in the winter and early spring, late fall months is similarly anticipated to reduce demand for sunshine holidays in Jamaica.

Figure 3.11-1: Ratings for Beach Tourism and Average Daily Maximum Temperature at Montego Bay

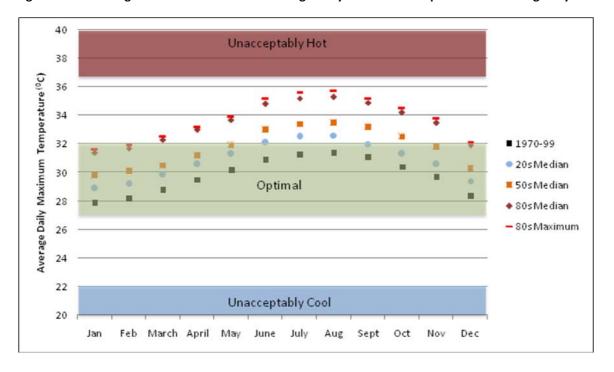
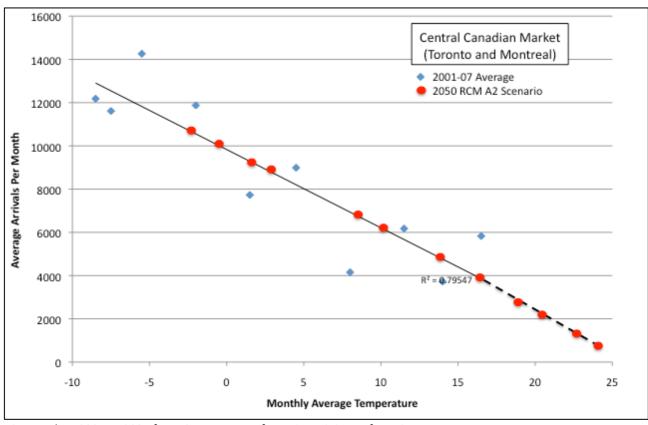



Figure 3.11-2: Relationship between Monthly Temperature at Source Market and Arrivals to Jamaica

Source data 2001 to 2007 from Government of Jamaica Ministry of Tourism

Table 3.11-1: Relationships between Monthly Temperature at Source Markets and Arrivals to Jamaica

Source Market	R ² (all data 2001 to 2007)		
Western Canada	0.82		
Prairie Canada	0.80		
Central Canada	0.80		
Northern Canada	0.74		
Northeast US	0.33		
Midwest US	0.39		

3.12 Conclusion

The previous sections have outlined some of the interrelationships of poverty and gender issues. Overall, poor women have been identified as one of the most vulnerable groups in society, whose livelihoods may be threatened by climate change. However, three more vulnerable groups in society may be added to this, including the elderly, children and indigenous people or ethnic minority groups.

4. ADAPTIVE CAPACITY PROFILE

4.1 Introduction

Information on the following factors was gathered to reflect adaptive capacity:

- Resource availability (financial, human, knowledge, technical)
- Institutional and governance networks and competence
- Political leadership and commitment
- Social capital and equity
- Information technologies and communication systems
- Health of environment

The stakeholders at the workshop, including the Tourism Development Group, listed the following key challenges to address climate change:

- Will political and social
- Education
- Financial
- Technical
- Human resources

They stated that there is insufficient knowledge about climate change and that more needs to be gained at local level. There are some experts dealing with crisis situations but further training is required. There is also a lack of weather stations and consequently a lack of sea level gauging. With regards to the financial situation there is no budget for dealing with climate change – it requires external funding. There is an adaptation deficit. The political will is there but constrained. Climate change is viewed as a long term issue which can be delayed. There is need for improvement in collaboration between organisations.

Adaptive capacity is the ability of a system to evolve in order to accommodate climate changes or to expand the range of vulnerability with which it can cope (Nicholls *et al.*, 2007). Many small island states have low adaptive capacity and adaptation costs are high relative to GDP (Mimura *et al.*, 2007). Overall the adaptive capacity of small island states is low due to the physical size of nations, limited access to capital and technology, shortage of human resource skills and limited access to resources for construction (IPCC, 2001). Low adaptive capacity, amongst other things, enhances vulnerability and reduces resilience to climate change (Mimura *et al.*, 2007). However, Mimura *et al* (2007) go on to suggest that very little work has been done on adaptive capacity of small island states. Despite this, even a high adaptive capacity may not translate into effective adaptation if there is no commitment to sustained action (Luers and Moser, 2006).

4.2 Resource Availability

The economic condition of nations and groups is a key determinant of adaptive capacity (Kates, 2000). Generally, wealthy countries are better prepared to bear the costs of adaptation to the potential impacts of a changing climate (Burton, 1996). Poverty is related directly to access to resources and the process of marginalisation (Kelly and Adger, 1999). Developing countries possess a lower adaptive capacity as a result of a greater reliance on climatic resources (Schelling, 1992; Fankhauser and Tol, 1997). Managing natural resource systems with the added stresses associated with climate change posses a challenge for socioeconomic systems and negatively affects adaptive capacity (Tompkins and Adger, 2004). The most

vulnerable communities such as indigenous group, farmers, fishing community, and tribes are tied to their local resources and local social dynamics (Dulal *et al.*, 2009). Reducing demand for resources such as water can improve adaptive capacity (Smith and Lenhart, 1996). However, people may also have developed a variety of adaptation strategies to cope with the climatic variability and change. Adaptive capacity can be strengthened through the application of traditional knowledge (Mimura *et al.*, 2007).

Dow (1992) describes poverty as "a rough indicator of the ability to cope". Pelling (1998) found that, in Guyana, social and political assets play important roles in shaping access to local, national and international resources for environmental management. Marginalised groups with limited social resources (women, children, the elderly, the economically poor) were excluded from local decision-making (Pelling, 1998). Poorer households will have a lower adaptive capacity as they will be dependent on a narrower range of resources and income sources (Kelly and Adger, 1999). Changes in population and income will also affect resource use (Smith and Lenhart, 1996). Lack of access to resources is considered as one of the major barriers to adaptation (Dulal *et al.*, 2009). Kelly and Adger (1999) report that resource availability and the entitlement to use these resources determines an individuals or groups vulnerability to climate change. More specifically, the adaptive capacity of the tourism sector is inhibited by the rapidly growing coastal population and coastal urbanisation.

A common constraint for most small island states is the lack of in-country adaptive capacity (Mimura *et al.,* 2007). Given that small island states are small, pooling of resources through regional or national cooperation would be an effective way to increase adaptive capacity. For example, the GEF-funded *Caribbean Planning for Adaptation to Global Climate Change* project was implemented by 12 Caribbean states.

4.3 Institutional and Governance Networks and Competence

Strong, stable, and efficient institutions and good governance enhance the adaptive capacity of the community, society, or the nation (Dulal *et al.*, 2009). Institutions in many wealthy industrialised countries are robust (Handmer *et al.*, 1999). When compared to a country with good organization and preparedness, a disorganized and unprepared government also means a lower adaptive capacity for a country (Vincent, 2007). Local institutions have three principle roles in adaptation: structuring impacts and vulnerability; defining individual and collective responsibility to adaptation; and defining relation with the external agencies (Agrawal, 2008). Handmer *et al* (1999) go as far as to suggest that institutional capacity and human behaviour are more important for adaptive capacity than biophysical impacts. Failure to invest in adaptation may leave a nation poorly prepared to cope with adverse changes and increases the probability of severe consequences (Smith and Lenhart, 1996).

Institutions are, perhaps, most significant at the national level. For example, in addition to availability of financial resources, adaptive capacity also reflects the degree of institutional capacity and organizational sophistication in targeting those resources effectively to the areas and groups of people that are most vulnerable (Kasperson and Kasperson, 2001). Regardless of poverty issues and the use of resources, it is the formal political institutions that devise and implement the legal enforcement of property rights (Kelly and Adger, 1999). Formal governance institutions are influenced by scientific consensus, exposure to specific hazards and formal or informal group action within their jurisdiction (Tompkins, 2003). However, inclusive institutions and the sharing of responsibility of natural resources required to increase climate change adaptive capacity, goes against the dominant hierarchical institutional forms of most Governments (Tompkins and Adger, 2004).

Within Jamaica, the following are key agencies:

- Office of the Prime Minister
- Local Parish Councils
- Office of Disaster Preparedness and Emergency Management
- National Environment and Planning Agency
- Planning Institute of Jamaica
- Ministry of Environment
- Ministry of Tourism
- Universities and research institutions

At the household level, adaptive capacity depends on factors such as knowledge base, which enables people to anticipate change and identify new or modified livelihood opportunities, and their access to resources required to maximize their livelihood opportunities [Vincent, 2007].

There are approaches to increase the adaptive capacity of various countries. For example, the UN-Habitat's Sustainable Urban Development Network (SUD-NET) is a global initiative advising and providing capacity-building support to local authorities. The Cities in Climate Change Initiative (CCCI), a component of SUD-NET, supports the improvements of governance structures, tests innovative financing, and advises on sustainable construction materials to enhance the adaptive capabilities of local government. The CCCI is operational in a number of Caribbean towns and cities.

4.4 Political Leadership and Commitment

There is growing evidence that adaptation and mitigation will not be considered separately in global policy and development aid, but rather as a combined strategy. Consequently, there will be a demand for developing countries to contribute to reductions of greenhouse gases through projects that simultaneously address poverty eradication and adaptation. Schalatek (2009:5) remarks that according to the UNFCCC's Bali Action Plan, financing for climate change will have to fulfil a set of non-negotiable criteria, i.e., projects will have to be adequate, sustainable, predictable, as well as new and additional, i.e., not replacing Overseas Development Assistance. This will have the purpose of securing commitment by the developing world to contribute to mitigation. On top of these demands, the gender dimension might become more relevant in the future. Governments and decision-makers need to be aware of these ongoing changes in global climate negotiations, as they are of great relevance for national policies seeking to support various economic sectors. Tourism in particular as a highly carbon-intense sector might be at a crossroads given these new realities of global climate policy.

Workshop

It was stated that political leadership lacks cohesion and co-ordination. Enforcement is at parish level, but the information does not always reach this level. Their technology and infrastructure is lacking at the local level. Numerous parishes do not have a development plan, even less development enforcement.

Political commitment is essential. Information and expertise are not lacking but the communication between institutions is poor.

Legislative response is very slow; the authorities seem to be in denial.

A multi-sectoral approach needs to be used in tackling climate change as it has been used against HIV/aids.

4.5 Social Capital and Equity

As has been outlined in the previous sections, poor people, and in particular poor women, are the most vulnerable to extreme climate events. This is a result of their lack of financial resources and savings, the insecurity of their employment – particularly in tourism and agriculture -, their living in often more hazardous locations with greater exposure to floods, windstorms and landslides, and the general quality of housing, which may often not conform to codes for disaster-risk reduction (Dulal *et al.*, 2009). Increasing inequality within a population can heighten collective vulnerability (Kelly and Adger, 1999). These factors need to be considered when discussing social capital and equity.

Social equity is based on fair, just and equitable sharing of and access to resources. Dulal *et al.*, (2009) outline four rules to achieve this:

- (i) Access by all members of society to due process, equal protection by law and equal rights from existing policies and programs.
- (ii) Access to democratically managed goods and services and the right to benefit from such.
- (iii) A right to quality and consistency in existing goods and services provided in a democratically managed system.
- (iv) Policy outcomes that determine whether policies and programs have the same impact for all groups and individuals served.

Consequently, climate policies should work in particular for the benefit of poor groups, thus contributing to greater social equity. As many authors have emphasized, pro-poor policies, for instance in tourism, have often been successful in creating jobs and employment, but the already wealthy have usually profited disproportionally from these policies as well (Schilcher, 2007). Adaptation politics should consider this, and ensure that they do not "accentuate or perpetuate" already existing social, gender, economic or cultural inequities (Dulal *et al* 2009). Policies must be improved or developed to simultaneously promote socioeconomic development and social justice (Kasperson and Kasperson, 2001). Policies must also emphasize improving human skills through education and training; improving employment opportunities; improving access to resources; increasing income generation opportunities and improving healthcare (Dulal *et al.*, 2009). It is imperative that community policy includes and values everyone (Dulal *et al.*, 2009).

Kelly and Adger (1999) suggest that capacity is determined both by individual vulnerability (which includes access to resources, diversity of income sources and the social status of the household within the community) and the collective vulnerability of a social grouping determined by institutional and market structures. Based on a study conducted in Trinidad and Tobago, Tompkins and Adger (2004) found that community-based management enhances adaptive capacity. This was achieved by building networks that are important for coping with extreme events and by retaining the resilience of resources and ecological systems (Tompkins and Adger, 2004).

The ProVention Consortium (a global partnership on disaster risk reduction), in collaboration with the International Federation of Red Cross, hosted a workshop in Trinidad and Tobago (2008) with the objective of developing a Caribbean Programme of Action for strengthening community resilience and local adaptive capacity to the changing climate.

4.6 Information Technologies and Communication Systems

The climatechangejamaica.com website has been developed and provides an online forum for discussion, a document library and a collection of recent news articles on climate change and alternative energy.

The lack of appropriate technology and trained personnel, financial limitations, and legal institutions may all restrict a nation's ability to implement adaptation measures (Scheraga and Grambsch, 1998). Adaptive capacity depends on the availability of, and access to, technology (Burton, 1996). Adaptive capacity is largely dependent on development status (Nicholls *et al.*, 2007). An individual's, community's and a nation's ability to access and develop technologies will affect adaptive capacity. Greater access to wealth and technology generally increases adaptive capacity (Yohe and Tol, 2002). This includes training and skills. If a nation has a lack of skilled personnel they will have a lower adaptive capacity and have less ability to implement adaptation options (Scheraga and Grambsch, 1998). It is important to ensure that systems are in place for the dissemination of climate change and adaptation information nationally, regionally and locally. Whilst institutional networks are an important influence on adaptive capacity, the communication and information transfer linkages between formal governance institutions is also critical (Tompkins, 2003).

One of the responses to deal with skills and knowledge sources is overcome by using foreign experts and consultants. However, this does not solve the issue. It has been suggested that there is a need to promote voluntary assistance to overcome human resource deficit i.e., internships. Visiting scientists need to ensure that their results are returned to the governments, departments or institutions so that they can be used more widely within the country and surrounding areas.

Understanding adaptive capacity cannot be divorced from the issue of knowledge and power (Brown, 2009). However, Galvin (2009) suggests it is wrong to focus too much attention on top-down technology-based adaptations that address specific impacts. Instead, approaches and initiatives that increase human capacity to respond to climate change threats in creative and innovative ways should be encouraged (Galvin, 2009).

A GEF-funded project entitled *Caribbean Planning for Adaptation to Global Climate Change (CPACC)* supported Caribbean countries to prepare for the adverse effects of climate change. As a result of the project, amongst other things, all countries now have improved access and availability of data. Following this, the Canadian International Development Agency provided a grant to further capacity building efforts. The *Adapting to Climate Change in the Caribbean* project included public education, strengthening technical capacity and the development of adaptation strategies for water, human health and agriculture.

4.7 Health of Environment

Due to their size and narrow resource base, small island states have a lower capacity to deal with natural and/or environmental disasters. If this is coupled with a decline in traditional coping mechanisms, then adaptive capacity to climate change impacts will be further reduced. Existing threats to natural ecosystems and species diversity will affect ecosystem resilience and capacity to adapt to climate change (Scheraga and Grambsch, 1998). Fragmentation of habitat reduces adaptive capacity. Natural and manmade barriers, such as roads and bodies of water, and agricultural land may block the migration of species (Scheraga and Grambsch, 1998). Sensitive systems cannot be considered independently (Scheraga and Grambsch, 1998).

Adaptive capacity is reduced if agriculture is based on single monoculture crops as these and the surrounding environment is then more vulnerable to effects of climate change. In addition, conversion of

land for human activities (e.g., farming, urban settlements) can interfere directly with plant dispersal and species movement (Scheraga and Grambsch, 1998).

In most Caribbean islands, more than 50% of the population live within 2km of the coast (IPCC, 2001). With a limited amount of space and projected sea-level rise there will be increased competition for land. Current pressures are likely to adversely affect coastal ecosystems and their ability to cope with additional climate changes (Nicholls *et al.*, 2007).

Wetlands provide a range of essential goods and services and have a significant role in protecting both coastal and inland resources from climate change. Tropical island nations are highly dependent on coastal ecosystems and the ecosystem services that flow from them (Tompkins and Adger, 2004). Coastal development negatively affects adaptive capacity with regards to sea-level rise. Approaches designed to promote shoreline stabilization, such as sea walls, can also have a detrimental impact (Smith and Lenhart, 1996). However, maintaining and preserving coastal wetlands is a natural approach to sea-level rise and will increase an areas adaptive capacity. Wetlands can also improve water quality and flood control. The implementation of any adaptation options to protect shorelines will involve significant financial commitments. Bijlsma *et al.* (1996) suggests that for countries such as Antigua, Guyana and St. Kitts-Nevis, the costs involved are substantial compared to the nation's GNP.

4.8 Conclusion

Adaptive capacity is determined by complex inter-relationships of a number of factors at different scales and is multidimensional in nature (Dulal *et al.*, 2009). The determinants are not independent but nor are they mutually exclusive. Enhancing adaptive capacity will only be successful when it is integrated with other policies such as land-use planning, environmental conservation and national plans for sustainable development (Sutherland *et al.*, 2005). Sustainable development can enhance adaptive capacity and increase resilience. Policies that enhance social and economic equity, reduce poverty, improve environmental management and increase the quality of life, will advance sustainable development and, therefore, strengthen adaptive capacity (Nicholls *et al.*, 2007).

5. CONCLUSION, RECOMMENDATIONS and PLAN FOR ACTION

5.1 General Action Points

The next step in the process of policy and strategy development and implementation is to develop an Action Plan for destinations and for each nation in the Caribbean Basin. The following Summary Action Plan represents the first stage in that process and concludes the outputs from the seed funding stage of the DFID funded phase of CARIBSAVE.

Equity and gender issues should be of key relevance in developing national and regional climate change adaptation strategies in the Caribbean, considering other stressors such as population growth, poverty, health and resource depletion so climate change will interact with these in uncertain and cumulative ways. All strategies that are developed will have to be specific, considering power structures and cultural issues (e.g., Nelson and Stathers, 2009). With regard to policy action, several key issues have been emphasized in the literature. Dulal et al (2009) suggest that policy makers will need to proceed based on best practice examples. They provide three examples, addressing housing, transportation, and livelihoods, to improve social equity and climate change adaptive capacity (Table 5.1-1). With regard to housing, Dulal et al (2009) suggest that governments support family housing, with the need for new residential buildings to consider low-energy options to reduce energy use. Their transportation policy suggestion is to subsidize fuel for private cars, which however must be seen, however, as a measure encouraging greenhouse gas emissions, and is thus modified in the table to address public transport. Finally, with regard to livelihoods, they suggest investments in cleaner industries, eventually with a focus on environmental technology. While these are not mentioned by Dulal et al (2009), solar power including both electricity generation and warm water provision, groundwater-based cooling technologies, as well as biogas must all be seen as holding great potential for the islands, and in particular for tourism.

Table 5.1-1: Policy action examples for the Caribbean

	Policy Action	Impact on social equity	Case example
Housing	Government commitments to provide family housing for persons classified as low income groups	Reduces risk of poor families squatting in climate vulnerable areas such as coastal marshes	Tax breaks for residential and commercial installation of solar heaters and solar panels in Barbados; commitment to utilize low impact building materials in government housing projects in Dominica, Jamaica and other islands
Transportation	Improvement of public transport system, eventually provision of national subsidies for public transport to maintain affordable prices	Maintains transport links to workplace	
Livelihoods	Invest in development of cleaner industries and the human resources to be employed in these industries	Access to specialized education opportunities for new "green jobs"	Development of national education programmes and institutions. For example new national universities in Trinidad and Tobago and the French Antilles have been established over the last five years with heavy emphasis on "green skills" and environmental technology

Modified from Dulal et al (2009)

Recent reports also make a number of suggestions to link disaster risk management to gender issues. For instance, Ellis (n.d.) and Mendoza (n.d.) recommend to revise disaster policies to make them gender sensitive. This might also include gender training and gender-sensitive Management Information Systems, Risk Assessment, and Early Warning Systems.

There are several significant gaps in regional and local data regarding vulnerable social groups, without which policymakers will be unable to develop policies and adaptation action plans that fully meet the needs of these constituents. For instance, it will be very instructive if we can learn about the impacts that past hurricane catastrophes have had on rural and traditional livelihoods and community structures. Another area of interest revolves around the important economic and community activity of community based tourism. Traditionally rural livelihoods have revolved around some combination of farming, fishing, nontimber forest product harvesting and processing, all of which can lead to resource depletion if not adequately managed. Community-based tourism is the only solution that most Caribbean islands have come up with as alternatives or complements to these activities. Climate change is likely to threaten the tourism attractions on which this depends. Apart from the examples listed above, there is a need for research on the process of social adaptation in SIDS, including how to develop sustainable and results oriented projects to assist marginalized communities and equitable ways to build policies and institutions. This type of research would facilitate joint learning and consensus building among parties about policy responses in specific contexts for the purpose of developing practical policy options [41] understood and supported by the participating communities. Adaptation is as much about changing attitudes and behaviours as finding technical solutions. The development of adaptation planning processes and bestpractices are context specific. The tools and methods adopted to facilitate adaptation should create opportunities for participation and cater the needs of vulnerable population.

5.1.1 Completing the Adaptation Cycle

Part of the process in fully developing policies and strategies involves the implementation of the 'Adaptation Cycle' (Annex 1). In accordance with the terms of reference of the seed funding project, the 'Adaptation Cycle' has been successfully started by the completion of stages 1 -3: 'engage stakeholders'; 'define the problem (screening assessment for vulnerability)'; 'adaptive capacity assessment'. In addition, and beyond remit of the seed funding project, the finalisation phase of stage 4 in the 'Adaptation Cycle' has also been reached: 'identifying adaptation options'. A fundamental Action now is to complete the remaining stages in the cycle. The cycle towards effective implementation of adaptation strategies and completing one full 'round' of the cycle includes the following stages: 'evaluate adaptation options and select course of action (establish evaluation criteria and weighting)'; 'implement adaptation'; and 'monitor and evaluate adaptation'. This Action of completing the final four stages of the cycle will include taking the work conducted to date and, through semi-structured interviews, focus group meetings and electronic communication, re-engaging with the key stakeholders in the identified key sectors (water, energy, agriculture, health, biodiversity, infrastructure and settlement, and comprehensive disaster management). The focus will be on the dominant issues as identified in the work to date and on the adaptation options already identified. Further collaborative work will be conducted surrounding these actions and topics. Workshops will be facilitated to work through problem identification, the adaptation portfolio, the ranking of options and a short list will be agreed upon to proceed with and funds will be allocated accordingly. In addition to the key stakeholders from the seven identified sectors, work will be conducted at two specific echelons within Jamaica; government ministries will be involved in policy and strategy development and implementation and community stakeholders will be involved in the development and implementation of community-based adaptation strategies. This work will inform and build capacity in order to be able to implement strategies right across the key sectors and involving all levels of society. Other destinations, nations and communities will also benefit as many will face similar challenges and will respond by even better implementation of appropriate strategies

Nature of Action: Combination of Government Policies and Community Based-Adaptation Strategies

5.1.2 Climate Data Collection and Collation

The Caribbean, Jamaica included, is a region very short on observed climate data. The issue of data access and circulation was raised repeatedly at the workshop in Jamaica as a significant limitation in impact/vulnerability assessment and adaptation planning and is clearly a very important component of capacity building. There is however, a large volume of data that is held by individual meteorological departments that is currently not used because it is either (a) not yet digitised (b) not homogenised or (c) simply not passed on. It is a proposed Action for Jamaica that the climate dataset should be thoroughly assessed if necessary and a new one constructed or the existing one refined. This will include the collection and collating as much existing data as possible for Jamaica. This will involve:

- (a) seeking out undigitised data that can be added to the record
- (b) digitising data
- (c) homogenising data
- (d) gridding data
- (e) blending the station data with satellite records to fill in geographical gaps
- (f) making the datasets freely available via the internet

This Action will build capacity, contribute hugely to local climate change impact studies as well as climatological studies, hydrology, agriculture and also be very useful to the global climate change

community, contributing to global detection and attribution studies by assisting to fill in the current regional data gap.

Nature of Action: Government Policy overtones due to need for cross-ministerial cooperation and collaboration

5.1.3 Application of Vulnerability Indices

This sector will be further examined and developed whilst undertaking the Country profile.

5.2 Water

5.2.1 Water Assessment

Some work has been done in Jamaica on water quantity and quality. This is an important area to develop further for all the islands in the Caribbean. The Action here is to determine changed availability via detailed scenarios from the modelling work conducted as part of the CARIBSAVE seed funding project. Scenarios should be developed for future demand based on population and economic growth projections and increased need for users especially those directly related to the tourism sector. Broad scale modelling should first be implemented to identify areas of interest and vulnerability for more detailed analysis. Secondary data and literature should be used for range of scale and local, national, regional and international experts including the University of Oxford Water Research Centre should be involved in the process and identification of specific strategies.

5.3 Energy

5.3.1 Implementation of the Mitigation Spiral

When considering energy use for business and destinations in Montego Bay taking steps along the path of low carbon towards carbon neutrality is paramount. These steps are illustrated by the 'Mitigation Spiral' (Annex 2). To have the greatest impact this action must be coupled with cost savings for business. Savings to businesses along with a sustained approach towards carbon neutrality and 'greening' the destination will encourage commitment by the individual business owners. The stages towards carbon neutrality are: measurement; reduce energy use; employ the use of renewable (having researched the technologies, including new developments); offset the remaining emissions (using recognised gold standard offset projects, in the region if possible); and then reassess the process. The 'spiral' continues through steps 1-5 until the business or destination reaches the point of carbon neutrality.

5.3.2 Links with Existing and Forthcoming Energy Projects in the Region

To assist in the implementation of the steps of the 'Mitigation Spiral' and to provide crucial awareness and commitment by both the private and the public sector links to projects associated with energy use and the tourism sector are vital, e.g., a) Jamaica has been identified by the CCCCC and the University of Oxford as a Pilot Study Site for the Inter-American Bank funded Carbon Neutral Project. The involvement of Jamaica in this important project for the region will serve to lift the nation more quickly towards the goal of carbon neutrality; b) Links with the on-going Travel Foundation project working with Small, Medium and Micro Enterprises (SMMEs) to rationalise energy use in tourism accommodation providers should be established. A roll out of the initiative in Montego Bay and Jamaica should be assessed; c) The Caribbean Hotel Energy Efficiency Action (CHENACT) project (currently at shortlist stage) will establish an excellent platform for

hotels and accommodation providers throughout the region to both save money and increase the use of renewables in their businesses. Jamaica should engage with the implementation agencies and the project team (once selected) and take steps to learn from the pilot processes being undertaken in Barbados when they commence in the next few weeks.

5.3.3 Climate Policy and Carbon Neutrality Research Needs

Introduction to research

It is widely acknowledged that the Caribbean accounts only for 0.2% of global emissions of CO_2 , even though the region hosts a population of 40 million, corresponding to 0.6% of the world's population (Dulal et al 2009). However, in some countries, and in particular those that have developed their tourism systems, per capita emissions are exceeding levels that can be considered sustainable (Table 1). Countries like Aruba (21 t CO_2 per capita/year), Antigua and Barbuda (5 t CO_2 per capita/year), or the Bahamas (6 t CO_2 per capita/year) all have per capita emission levels that are close to or even exceed those in developed countries, and many exceed the global average of about 4.3 t CO_2 per capita per year (UNSD 2009). If the Caribbean's contribution to global emissions of CO_2 is currently still comparably low on a regional basis, i.e., 0.2% of global emissions, this is largely due to populous islands including Cuba and Haiti and their comparably low per capita emission levels. If all countries had emission levels such as the Jamaica, the region would considerably exceed its emission share to population ratio, i.e., contribute disproportionally to climate change.

This raises questions for the future, as there are global ambitions to reduce emissions of greenhouse gases, in particular addressing those countries emitting on above average per capita emission levels. More specifically, the IPCC recommends that global CO₂ emissions should be reduced by at least 50% by 2050 (IPCC 2007c). This would be a minimum required to avoid global average temperature increases beyond 2°C by 2100, or what is generally seen as the maximum level of global warming to avoid "dangerous interference with the climate system" (e.g., Meinshausen et al. 2008). Emission reductions are based on the principle of shared but differentiated responsibilities, which are negotiated during the so-called Conference of Parties meetings. Industrialized countries, or Annex I countries, are expected to contribute disproportionally higher to emission reductions, based on a per capita emission basis. This could mean for the Caribbean that in the future, emission reductions will be expected even from those countries exceeding average global per capita emission levels.

Method

Research is consequently needed to understand which sectors contribute to emissions of greenhouse gases, and how these could be reduced. Even though the statistical base for this needs to be developed, it seems clear that most of the emissions in the Caribbean are a result of fossil energy use, and in particular fuels (e.g., Dept. of Statistics of the Bahamas 2009, Central Bureau of Statistics Aruba 2009). A considerable share of fuel imports can again be linked to tourism, particularly in those islands being highly dependent on tourism (Gössling et al. 2008). Given the economic importance of tourism for the Caribbean, the project would consequently lay particular focus on this sector, and an understanding of its emissions, analyzed by sector. The methodology for this will be based on Forsyth *et al.* (2008) and Gössling and Hall (2008).

In a second step, it will be investigated how greenhouse gas emissions will grow in the future, and how global climate policy will affect growth in these sectors. Strategies for mitigation will be developed. In the case of tourism, focus will be on options to make the sector carbon neutral (Simpson et al 2008; Gössling and Schumacher 2010). There is huge potential to yield considerable additional funds from tourists to realize such concepts and these need to be developed for the Caribbean as well. The methodology for this specific project will be based on Gössling (2009) and Gössling and Schumacher (2010).

5.4 Agriculture

5.4.1 Development of Agriculture

To reduce food miles (greenhouse gas emissions) created by the importation of food for the tourism industry and encourage alternative and complimentary industries to tourism. School children are encouraged to see the value of farming, on an island where a great proportion of fresh produce needed by the tourism industry is imported. Agriculture in St Lucia is in decline. A career in agriculture offers children secure future employment and also reduces food miles for the huge amount of fresh produce required by the tourism industry. The school will also earn an income by selling herbs to hotels, enabling it to fund extra resources, such as books.

Nature of Action: Community Based-Adaptation Strategy with potential Policy overtones due to requirement of land use and funding for equipment to support the development of the sector.

5.5 Biodiversity

This sector will be further examined and developed whilst undertaking the Country profile.

5.6 Human Health

This sector will be further examined and developed whilst undertaking the Country profile.

5.7 Infrastructure and Settlements

5.7.1 Sea Level Rise (SLR) Vulnerability Assessment of Tourism Assets, Infrastructure and Settlements

5.7.1.1 Light Detection and Ranging (LiDAR)

Using Light Detection and Ranging (LiDAR) data; connecting with remote sensing experts in the region and internationally, this Action will involve being placed onto a satellite based platform with appropriate resolutions that would meet the needs and purposes of Jamaica. In addition, the Action would involve flying specific shorelines to collect LiDAR data. Priority shorelines would be identified in coordination with stakeholders. Shorelines would be rated on criteria such as size, importance to tourism economy, population density, geology (i.e., sandy beach versus cliff profile), biodiversity, and ecology (i.e., shore and marine habitats and species). This approach would contribute to more accurate profiling for Comprehensive Disaster Management, the Biodiversity sector and insurance/actuarial assessments. Costs may be high and the process time-consuming, but these potential constraints should be investigated as the accuracy and use of LiDAR data for SLR assessments and storm surge impact predictions for a variety of sectors would be extremely advantageous. A LiDAR based study is recommended for the same areas where the GPS work has been completed in Montego Bay as part of the seed funding phase. This would enable triangulation of the data collected and also increase the robustness of the socioeconomic assessments conducted on infrastructure and settlements in those areas.

5.7.1.2 GPS Surveying

Using GPS Surveying; this Action recommends the importance of building on the demonstration project conducted in Montego Bay with the Jamaican Meteorological Service. This successful local and national capacity building, skills transfer and primary data gathering project should be expanded. The small-scale approach should be conducted in other study areas throughout Jamaica. As different shore reaches are completed, local staff will be trained on an on-going basis, these local experts will then train others and conduct additional shore reaches that the institution believe are priority areas. Equipment could be purchased or hired and this process would be rolled out over every nation in the Caribbean Basin delivering effective capacity building and quality data upon which pragmatic decisions and assessments can be made.

5.8 Identification of those Most Vulnerable

5.8.1 Vulnerabilities, Livelihoods, Gender and Climate Change

Introduction to research

Impacts of climate change will be differently distributed among different regions/destinations, generations, age classes, income groups, occupations and genders (IPCC, 2007a). In light of the estimated current rate of climate change related deaths of 300,000 per year, which is anticipated to increase to 500,000 by 2020 (Global Humanitarian Forum, 2009), it is of great importance to identify the most vulnerable groups in society in order to develop climate change adaptation strategies tailored to them.

Adaptation will be particularly relevant in high-risk areas, including coastlines. Moreover, the most vulnerable groups are generally those with no financial resources, who are also working in or dependent on 'high risk' sectors, such as tourism, agriculture or forestry, and in particular when employed in low-paid staff positions (cf. Massiah, 2006). Within these groups, yet another sub-division can be made, that between men and women because women are particularly vulnerable to climate change (e.g., Massiah, 2006; Dulal *et al.*, 2009), while their role in generating adaptive capacity is disproportionally important (cf. Berkes *et al.*, 2000). It is increasingly recognized that vulnerabilities are closely interlinked with gender, and that women in many areas are particularly vulnerable. One example of this comes from the 1991 cyclone disaster in Bangladesh, where 90% of casualties were reportedly women (Aguilar, 2004).

Consequently, vulnerability research should have a strong gender focus, a view that is supported by the UN: "The United Nations is formally committed to gender mainstreaming in all policies and programmes, and that should include policy-making processes relating to climate change. Yet gender aspects are rarely addressed in climate-change policy, either at the national or at the international levels" (cited in Hemmati and Röhr, 2009: 19). Engendering climate change vulnerability research will also help to develop the emerging field of gender-related studies in climate change (see the 2009 special issue of Gender & Development on climate change).

While not ignoring a focus on the poor and most vulnerable more generally, research will specifically seek to understand the importance of five aspects in the context of climate change, vulnerability, resilience and generation of adaptive capacity, i.e., women's:

- 1) Knowledge and abilities
- 2) Professional positions, division of labour, income levels and savings behaviour
- 3) Resource use, access and control
- 4) Health, insurance & security
- 5) Participation in decision-making, including politics

Method

A project covering as many issues of central importance as this one needs to build on a complex research methodology, which will have to be developed in more detail when the project is approved. Another compounding problem is that only little research has been carried out on climate change and gender issues, and a range of new insights can be expected from this project.

The following section detail, without description, of the methods that will be used and which data needs to be collected:

Statistical data and other relevant information will be gathered through:

- Identification of relevant reports, including national and international reports, working papers, policy documents, books and articles
- Consultation and participation of women's groups and related networks in the destinations and nations
- Stakeholder engagement (different sectors identified by the CARIBSAVE Partnership; water, energy, biodiversity, agriculture, infrastructure, disaster management, health)
- Requests and consultation with Government Ministries (including the Ministry of Tourism and those departments related to CARIBSAVE selected sectors)
- Coordination with University of West Indies (UWI) Centre for Gender Affairs and Development
- Secondary data collection though desktop studies

Statistical Information such as;

- Women's employment rate / ratio in the destination / nation
- Women's employment rate / ratio in the tourism sector in the destination / nation
- Women's employment rate / ratio in other related sectors in the destination / nation (as identified in CARIBSAVE project; water, energy, biodiversity, agriculture, infrastructure, disaster management)
- Women's salary levels in comparison to men
- Savings by women
- Women's access to credit (finance)
- Multiple income sources at household level and/or resource use systems (property rights, kinship or share systems)
- Division of labour in between men and women
- Health, insurance & security systems for women

Other Information such as:

- Government's role in mainstreaming gender perspectives into national policies and action plans related to climate change
- Identification of gender sensitive strategies for responding to environmental and humanitarian challenges presented by climate change

1) Knowledge and abilities

Lack of knowledge on climate change as a vulnerability issue - for example: if you do not know about sealevel rise, you will not choose a location for your home or business that is safe in a storm surge situation. As women may often have considerable power in making household-related decisions, basic knowledge about climate change would count as an important precondition for adaptation.

=> find out through consultation and workshop about knowledge of climate change in population, and particularly among women; find out whether there are other areas where women are disadvantaged because of lack of skills.

- => find out in addition, the differentials between women's and men's vulnerabilities i.e., how different climate change impacts (e.g., flooding and droughts) would affect men and affect women.
- => find out how men's and roles change and may complement each other when coping with climate change

2) Professional positions, division of labour, income levels and savings behaviour

Professional position – for example: women do household related work and have no access to a cash income. Or because of their positions in low-paid jobs in tourism, women may be the first to be dismissed from their job when tourist numbers decline. Or because they are lowest paid they have no option to ever put aside savings. BUT women may nevertheless in many households be those that actually put aside money (or other resources). So women may, through their savings/storage of food etc., build resilience in times of hardship. Women may also have different jobs to cope with risk.

=> find out about the share of women working for a cash income; which positions women typically occupy in tourism and other sectors; if they have multiple jobs; how much they typically earn, as well as their financial situation including savings. We may also try to find out whether there are social security systems for women.

3) Resource use, access and control

Role of women in use of natural resources, or access to resources - example: CC may affect in particular those ecosystems that are already degraded. Women might prevent destructive resource use practices, if they know about the consequences, or they may organize for this purpose if there are larger players (say the hotel industry building jetties through reefs etc.).

- => find out about the role of women in traditional resource use (and knowledge) systems, and their access to resources (land, water, etc.) Also the comparison between women and men's responsibilities for resources, i.e., issues referring to property rights.
- => **find out** about the role of women in food production.

4) Health, insurance & security

Women may be more vulnerable in disaster situations – example: when there is a disaster situation, such as for instance flooding, it may be women who are the least mobile, also taking care of the children.

=> find out about the health, insurance and security systems that are in place in case of risk, emergency or disaster.

5) Participation in decision-making, including politics

Participation in decision making – how are women organized, can they influence decisions with regard to CC? For instance, the growth paradigm in tourism may usually be a male concept?

=> **find out** about role of women in decision-making, and how their perspectives could influence adaptation and how women's roles in decision-making differs from men's

Additional questions that may serve as a non-exhaustive discussion guide to stimulate sharing of national/destinational level experiences, strategies and good practices in relation to gender and climate change.

 What steps are being taken / could be taken to mainstream gender perspectives into the climate change efforts at the destinational, national and regional levels – including in policies, strategies, action plans and programmes? What good practice examples can be provided?

- What steps are being taken / could be taken to reduce the vulnerability of women and to reduce
 the negative impacts of climate change, particularly in relation to their critical roles in rural areas in
 provision of water, food and energy? What good practice examples can be provided?
- What steps are being taken / could be taken to **increase the participation of women** in decision-making on climate change at different levels? What good practice examples can be provided?
- What are the major contributions of women as agents of change in mitigation and adaptation to climate change at local levels? What good practice examples exist, and how can these be made more visible and more effectively utilized?
- What are the critical issues for women in relation to **technology and finances** in addressing climate change at national and local levels?
- What are the major achievements and gaps and challenges in ensuring adequate attention to gender perspectives in climate change efforts, for example in relation to specific issues/contexts, such as natural disasters, i.e., floods and drought

5.9 Comprehensive (Natural) Disaster Management

Table 5.8-1: National disaster risk management agencies

Country	Name of disaster agency	Date establis hed	Mandate	Portfolio Ministry	Existence of legislative framework	Gender- sensitive policy
Belize	National Emergency Management Organization (NEMO)	1999	"the preservation of life and property"	Ministry of Transport, Public Utilities, Communications	Disaster Preparedness and Response Act, Cap 245 of the Laws of Belize, Revised Edition 2000-2003.	No
Dominica	Office of Disaster Management (ODM)	1983	"protection and safety of the people and assets of the country, the sustainability of our social and economic progress, and our future survival as an independent <i>nation</i> ". Policy and Mission Statement	ODM reports to the National Emergency Planning Organization (NEPO), in the Ministry of Public Utilities	Reports indicate that a legislative framework is currently being drafted.	No
Dominican Republic	National Commission for Emergencies	1966	Responsible for disaster risk management	Reports to the Office of the President	Extensive Legislative Framework (see below)	No
Guyana	Civil Defence Commission (CDC)	1982	Responsible for disaster risk management	Civilian agency in Office of the President	Operates under general legislation regulating the operations of the Office of the President.	No
Jamaica	Office of Disaster Preparedness and Emergency Management (ODPEM)	1980	Responsible for disaster risk management	Ministry of Local Government and Environment	Operates under Section 15 of the Disaster Preparedness and Emergency Management Act.	No

Source: UNDP (2008)

5.9.1 Mainstreaming Climate Change Impacts on Tourism into Comprehensive Disaster Management (CDM) using Evidence-based Planning

Jamaica has been involved as one of the Pilot Sites for the IDB/DFID funded and CDERA implemented Regional Disaster Risk Management for Sustainable Tourism in the Caribbean Project. The work conducted by the CARIBSAVE seed-funding project in Jamaica, including the climate modelling, vulnerability profile and adaptive capacity profile should be used to mainstream climate change factors into the tourism strategy and plan of action for CDM. This Action will be most effective once at least two further destinations have been assessed through the CARIBSAVE climate change analysis process (see Annex 3). This mainstreaming Action will not only enhance the Jamaican tourism sector's protection and resilience to natural disasters by taking full and evidence-based account of climate change impacts but also provide a template for this work in other countries across the Caribbean Basin. Once the climate change factor is taken into account in the sector, tourism is well placed to take a lead in CDM as it crosses institutional and organizational scales as well as interacting across sectors; as such it has the capacity for effective actions and providing an arterial network for dissemination. With its growing appreciation and understanding of the impacts and challenges presented by climate change it can offer leadership in initiating CDM processes that involve stakeholders, build on and learn from existing good practice, raise awareness of the challenges and of potential solutions, and develop sector-relevant disaster managements plans, systems and structures to take the region and individual nations forward to a more resilient future

6. ACKNOWLEDGEMENTS

We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison, and the World Climate Research Program (WCRP) Working Group on Coupled Modelling for their roles in making available the WCRP Coupled Model Inter-comparison Project 3 GCM multi-model dataset.

The regional climate model runs were performed as a joint enterprise between the Cuban Meteorological Institute (INSMET), The CCCCC and The University of the West Indies, Kingston, with support from the regional modelling team at the Hadley Centre, UK. Data were provided by INSMET, Cuba.

7. REFERENCES

- Agrawal, A. (2008) *The Role of Local Institutions in Adapation to Climate Change*. Social Dimentions of Climate Change; The World Bank: Washington, DC, USA.
- Aguilar, L. (2004). Climate change and disaster mitigation. IUCN. Switzerland.
- Barrow, B. (2006). Flying on Holiday 'a sin', says Bishop. Daily Mail [On-line]. Available: http://www.dailymail.co.uk/pages/live/articles/news/news.html?in_article_id=397228&in_page_id-1770
- Bartlett, L. (2007). Oz Fears Jet-Flight Guilt. Globe and Mail [On-line]. Available: https://www.theglobeandmail.com/servlet/story/LAC.20070425.OZ25/TPStory/specialTravel
- Bengtssen L., Hodges, K.I., Esch, M., Keenlyside, N., Kornblueh, L., Luo, J-J and Yamagata, T. (2007) How may tropical cyclones change in a warmer climate? *Tellus Series A-Dynamic Meteorology and Oceanography* 59(4) 539-561.
- Bergkamp, G. and Orlando, B. (1999) Wetlands *and Climate Change*. Exploring collaboration between the Convention on Wetlands (Ramsar, Iran, 1971) and the UN Framework Convention on Climate Change.
- Berkes, F., Colding, J and Folke, C. (2000) Rediscovery of traditional ecological knowledge as adaptive management. *Ecological Applications*: Vol. 10, No. 5, 1251-1262.
- Bezanilla *et al.* (*In preparation*) Tropical-cyclone-like-vortices in the Caribbean according the regional climate model PRECIS.
- Bijlsma, L., Ehler, C.N., Klein, R.J.T., Kulshrestha, S.M., McLean, R.F., Mimura, N., Nicholls, R.J., Nurse, L.A., Perez Nieto, H., Stakhiv, E.Z., Turner, R.K. and Warrick, R.A. (1996) *Coastal zones and small islands. In: Climate Change 1995: Impacts, Adaptations, and Mitigation of Climate Change: Scientific-Technical Analyses*. Contribution of Working Group II to the Second Assessment Report of the International Panel on Climate Change. Watson, R.T., Zinyowera, M.C., and Moss, R.H. (Eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 289-324.
- Bindoff, N.L., J. Willebrand, V. Artale, A, Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le Quéré, S. Levitus, Y. Nojiri, C.K. Shum, L.D. Talley and Unnikrishnan, A. (2007) *Observations: Oceanic Climate Change and Sea Level*. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
- Boeing (2008). Current Market Outlook 2008-2027. Boeing International [On-line]. Available: http://www.boeing.com/commercial/cmo/pdf/Boeing_Current_Market_Outlook_2008_to_2027.pd f
- Brown, K. (2009) What is a resilient community? Understanding the social dynamics of sustainability and adaptive capacities. 7th International Science Conference on Human Dimensions of Global Environmental Change, April 2009. http://www.openmeeting2009.org/abstracts/day4/D150.pdf
- Bueno, R.; Herzfeld, C.; Stanton, E.; Ackerman, F. (2008) *The Caribbean and Climate Change: The Costs of Inaction*; Tufts University: North Grafton, MA, USA, 2008. Available online: http://www.sei-us.org/climate-and-energy/Caribbean-full-Eng-lowres.pdf (accessed on 7 September 2009).
- Burton, I. (1996) *The growth of adaptation capacity: practice and policy. In: Adapting to Climate Change:*An International Perspective. Smith, J., Bhatti, N., Menzhulin, G., Benioff, R., Budyko, M.I., Campos, M., Jallow, B. and Rijsberman, F. (eds). Springer-Verlag, New York, NY, USA, pp. 55-67.

- Bynoe, P. (2008) Climate Change Adaptation with a Gender Perspective in the Caribbean: A Case Study of Surama, Guyana. University of Guyana.
- Caribbean Disaster Emergency Response Agency (2007) *The Regional Disaster Risk Management for Sustainable Tourism in the Caribbean Project (Summary document)*. Caribbean Disaster Emergency Response Agency and Inter-American Development Bank.
- Caribbean Disaster Emergency Response Agency (2008) WORKSHOP REPORT: Development of a Disaster Risk Management Strategy and Plan of Action for the Tourism Sector in the Caribbean. Consulting Engineers Partnership Ltd; Tourism Global Inc & Franklyn Michael
- Castello, J. (2008) Enhancing Gender Visibility in Disaster Risk Management and Climate Change in the Caribbean. Country Assessment Report on Guyana. Centre for Gender and Development Studies, The University of the West Indies.
- Central Bureau of Statistics Aruba 2009. Available at: http://www.cbs.aw/cbs/home.do (accessed 8 September 2009).
- CEPAL and Secretaría de Estado de Economía, Planificación y Desarrollo (2008). Evolución del impacto de la tormenta Noel en República Dominicana.
- Chauvin F., Royer, J-F and Déqué, M. (2006) Response of Hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. *Climate Dynamics* 27(4) p377-399.
- Church, J.A. and White, N.J. (2006) A 20th century acceleration in global sea-level rise. *Geophysical Research Letters* 33 L01602
- Clarkson, R. and Deyes, K. (2002) *Estimating the social cost of carbon emissions*. Government Economic Service Working Paper 140, HM Treasury and Defra
- Collins, M. and The CMIP Modelling Groups (2005) El Nino- or La Nina-like climate change? *Climate Dyanamics*, 24(1), p 89-104.
- Department of Statistics of the Bahamas 2009. Available at: http://statistics.bahamas.gov.bs/ (accessed 8 September 2009).
- Donner, S.D., Skirving, W.J., Little, C.M., Oppenheimer, M. and Hoegh-Guldberg, O. (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. *Global Change Biology* (11), 2251-2265.
- Dow, K (1992) Exploring differences in our common future(s): the meaning of vulnerabiltiy to global environmental change. *Geoforum*, 23(3) 417-436.
- Dulal, H.B., Shah, K.U., Ahmad, N. (2009) Social Equity Considerations in the Implementation of Caribbean Climate change Adaptation Policies. *Sustainability* 1(3), 363-383.
- Dunn, L.L. (2008) Enhancing Gender Visibility in Disaster Risk Management and Climate Change in the Caribbean. Country Assessment Report for The Dominican Republic. Centre for Gender and Development Studies, University of the West Indies, Jamaica.
- Ellis, E. (no year) Enhancing Gender Visibility in Disaster Risk Management and Climate Change in the Caribbean. Country Assessment Report for The Commonwealth of Dominica. Centre for Gender and Development Studies, University of the West Indies, Jamaica.
- Elsner J.B., Kossin, J.P. and Jagger, T.H. (2008) The increasing intensity of the strongest tropical cyclones *Nature* 455(7209), 92-95.
- Emanuel, K, Sundararajan, R, and Williams, J. (2008) 'Hurricanes and global warming Results from downscaling IPCC AR4 simulations', *Bulletin of the American Meteorological Society*, 89 (3), 347-+.

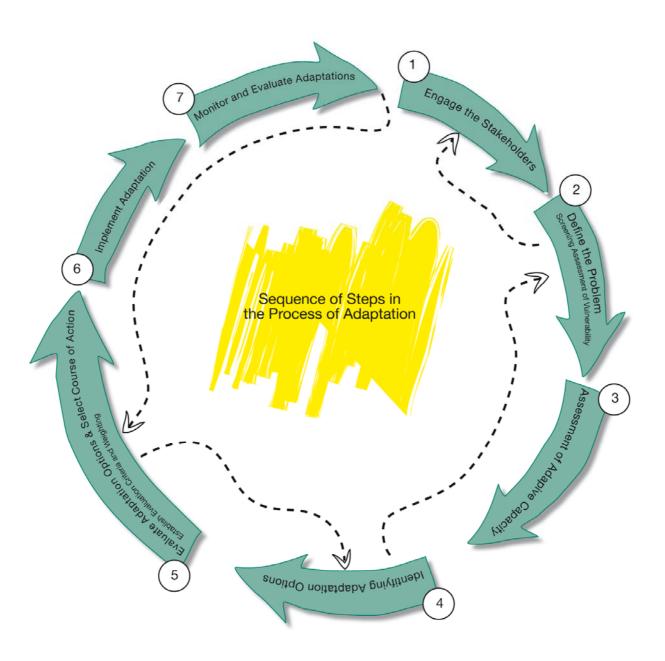
- Fankhauser, S. and Tol, R.S.J. (1997) The social costs of climate change: the IPCC second assessment report and beyond. *Mitigation and Adaptation Strategies for Global Climate* 1, 385-403.
- Fish, M.R., Cote, I.M., Gill, J.A., Jones, A.P., Renshoff, S. and Watkinson, A. (2005) Predicting the impact of sea level rise on Caribbean sea turtle nesting habitat. Conservation Biology (19), 482-491.
- Forsyth, P., Hoque, S., Dwyer, L., Spurr, R., Thiep, V., and Pambudi, D. (2008) *The carbon footprint of Australian tourism*. Gold Coast, Australia: STCRC.
- Galvin, K. (2009) Sustainability and Adaptive Capacity. 7th International Science Conference on Human Dimensions of Global Environmental Change, April 2009. http://www.openmeeting2009.org/abstracts/day4/D150.pdf
- Global Humanitarian Forum (2009) *Human Impact of Climate Change*. http://www.ghf-geneva.org/Portals/0/pdfs/2009forumreport.pdf.
- Gomez-Martin, M.B. (2005) Weather, climate and tourism. A geographical perspective. *Annals of Tourism Research* 32(3), 571-591
- Gössling, S. (2009) Carbon neutral destinations: a conceptual analysis. *Journal of Sustainable Tourism* 17(1): 17-37.
- Gössling, S. and Hall, C.M. (2008) Swedish tourism and climate change mitigation: An emerging conflict? Scandinavian Journal of Hospitality and Tourism 8(2), 141-158
- Gössing, S. and Schumacher, K. (2010) Implementing carbon neutral destination policies: Issues from the Seychelles. *Journal of Sustainable Tourism* 18(2), in press.
- Gössling, S., Bredberg, M., Randow, A., Svensson, P., and Swedlin, E. (2006) Tourist perceptions of climate change: a study of international tourists in Zanzibar. *Current Issues in Tourism* 9(4-5), 419-435.
- Gössling, S., Peeters, P., and Scott, D. (2008) Consequences of climate policy for international tourist arrivals in developing countries. *Third World Quarterly*, 29(5): 873-901.
- Gössling, S., Hall, C.M., Peeters, P., and Scott, D. (2010) The Future of Tourism: Can Tourism Growth and Climate Policy be Reconciled? A Climate Change Mitigation Perspective. *Tourism Recreation Research* 35(2), in press.
- Hamilton, J.M. and Lau, M.A. (2005) The Role of Climate Information in Tourist Destination Choice Decision-Making. Pp. 229-250. In: Gössling, S. and C.M. Hall (eds.). *Tourism and Global Environmental Change*. London: Routledge.
- Handmer, J., Dovers, .S. and Downing, T.E. (1999) Societal vulnerability to climate change and variability. *Mitigation and Adaptation Strategies for Global Change* 43(3-4), 399-406.
- Harmeling, S. (2008) *Global Climate Risk Index 2009*. Germanwatch, Bonn, Germany. http://www.germanwatch.org/klima/cri2009.pdf.
- Hasegawa A. and Emori S. (2005) Tropical Cyclones and associated precipitation over the western North Pacific: T106 atmospheric GCM simulation for present-day and doubles CO2 climates. *Scientific Online Letters on the Atmosphere* 1, 145
- Hemmati, M. and Röhr, U. (2009) Engendering the climate-change negotiations: experiences, challenges, and steps forward. *Gender and Development* 17(1), 19-32.
- Holland GJ and Webster PJ (2007) Heightened tropical cyclone activity in the North Atlantic: natural variability or climate trend? *Philosophical transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences*, 365(1860) 2695-2716.

- Horton. R., Herweijer, C., Rosenzweig, C., Liu, J., Gornitz, V. and Ruane, A.C. (2008) Sea level rise projections for current generation CGCMs based on the semi-empirical method. *Geophysical Research Letters* 35, L02715.
- Intergovernmental Panel on Climate Change (2001). Climate change 2001: Impacts, adaptation and vulnerability. Cambridge, UK: Cambridge University Press
- Intergovernmental Panel on Climate Change (IPCC). (2007a). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assistant Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (Eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Intergovernmental Panel on Climate Change (IPCC). (2007b). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovenrmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, EDS., Cambridge University Press, Cambridge, UK, 7-22.
- Intergovernmental Panel on Climate Change (2007c) 'Summary for Policymakers. Intergovernmental Panel on Climate Change Fourth Assessment Report Climate Change 2007: Synthesis Report', [Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., Davidson, O., Hare, W., Huq, S., Karoly, D., Kattsov, V., Kundzewicz, Z., Liu, J., Lohmann, U., Manning, M., Matsuno, T., Menne, B., Metz, B., Mirza, M., Nicholls, N., Nurse, L., Pachauri, R., Palutikof, J., Parry, M., Qin, D., Ravindranath, N., Reisinger, A., Ren, J., Riahi, K., Rosenzweig, C., Rusticucci, M., Schneider, S., Sokona, Y., Solomon, S., Stott, P., Stouffer, R., Sugiyama, T., Swart, R., Tirpak, D., Vogel, C., Yohe, G.] Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
- Kahn, R. S., Kobayashi, S., Beuthe, M., Gasca, J., Greence, D., Lee, D. S. et al. (2007). Transport and its Infrastructure. In B.Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), *Climate Change 2007: Mitigaion. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change* (pp. 323-386). Cambridge, UK and New York, USA.
- Kasperson, R. And Kasperson, J. (2001). *Climate change, vulnerability and social justice*. Stockholm Environment Institute, Somerville, MA, USA.
- Kates, R.W. 2000. Cautionary Tales: Adaptation and the Global Poor. Climatic Change 45(1): 5-17.
- Kelly, P.M. and Adger, W.N. (1999) Assessing vulnerability to climate change and facilitating adaptation. CSERGE Working Paper GEC 99-07.
- Ketwaru-Nurmohamed, S. (2008), 'Case Study on the Impact of Climate Change on Agriculture and Housing on Indigenous Communities in Suriname. UNDP/CRMI Risk Management Initiative Project. Centre for Gender and Development Studies, The University of the West Indies.
- Knutson T.R. and Tuleya R.E. (2004), 'Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization', *Journal of Climate* 17 (18), 3477-95.
- Knutson, T R, Sirutis, J.J., Garner, S.T., Vecchi, G. A., and Held, I. M. (2008), 'Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions', *Nature Geoscience* 1 (6), 359-64.
- Kossin, J.P., Knapp, K., Vimont, D.J., Murnane, RJ., and Harper, B.A. (2007) A globally consistent reanalysis of hurricane variability and trends, *Geophysical Research Letters* 34 (4).
- Lane, R. and McNaught, R. 2009. Building gendered approaches to adaptation in the Pacific. *Gender and Development* 17(1) 67-80.
- Lise, W. and Tol, R. (2002) Impact of climate on tourist demand. Climatic Change 55, 429-449.

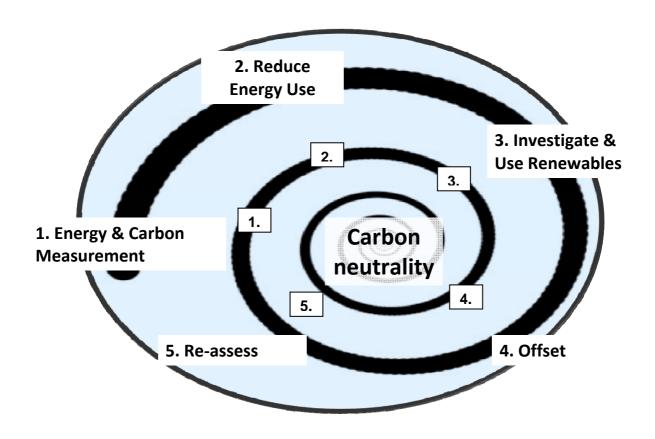
- Ljunggren, D. (2008). Canada wants North America cap-and-trade system. Reuters [On-line]. Available: http://www.reuters.com/article/environmentNews/idUSTRE4AI70120081119
- Lohmann, M. and Kaim, E. (1999) Weather and holiday preference image, attitude and experience. *Revue de Tourisme* 2, 54-64.
- Luers, A.L. and Moser, S.C. (2006) Preparing for the impacts of climate change in California: Opportunities and constraints for adaptation. Report CEC-500-2005-198-SF. California: Climate Change Center. 47pp.
- Lyle, C. (2009) The control of aviation emissions reaches a critical juncture. Available at: http://www.greenaironline.com/news.php?viewStory=545
- Mann, M.E., Woodruff, J.D., Donnelly, J.P. and Zhang, Z. (2009) Atlantic huricanes and climate over the past 1500 years. *Nature* 460, p880.
- Massiah, J. (2006) Ten years after Beijing. What more do Caribbean women want? *Journal of Eastern Caribbean Studies* 31(1), 55-79
- Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J. and Zhao, Z-C. (2007a) Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S.,D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Meehl, G. A., Covey, C., Delwoth, T., Latif, M., McAvaney, B., Mitchell, J.F.B., Stouffer, R.J. and Taylor, K.E. (2007b) The WCRP CMIP3 multi-model dataset: A new era in climate change research. *Bulletin of the American Meteorological Society* 88, 1383-1394.
- Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J. and Allen, M. R. (2008) Greenhouse-gas emission targets for limiting global warming to 2° C. *Nature*, 458 (7242), 1158-1162.
- Mendoza, P. (no year). Enhancing Gender Visibility in Disaster Risk Management and Climate Change in the Caribbean. Country Assessment Report for Belize. **A.B.E.N. Services and Consulting Limited.**
- Mimura, N., Nurse, L., McLean, R.F., Agard, J., Briguglio, L., Lefale, P., Payet, R. and Sem, G. (2007) Small Islands. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F.Canziani, J.P. Palutikof, P.J. van der Linden and C.E.Hanson, Eds., Cambridge University Press, Cambridge, UK, 687-716.
- Mintel International Group. (1991). *Special report holidays*. Leisure Intelligence. London, England: Mintel International Group.
- Morgan, R., Gatell, E., Junyent, R., Micallef, A., Ozhan, E. and Williams, A. (2000) An improved user-based beach climate index. *Journal of Coastal Conservation* 6, 41-50.
- National Round Table on the Environment and the Economy (2007). *Getting to 2050 Canada's Transition to a Low-emission Future: Advice for Long-term Reductions of Greenhouse Gases and Air Pollutants* Ottawa, Canada: Government of Canada.
- Nelson, V. and Stathers, T. (2009) Resilience, power, culture, and climate: a case study from semi-arid Tanzania, and new research directions. *Gender & Development* 17(1) 81-94.
- Nicholls, R.J., Wong, P.P., Burkett, V.R., Codignotto, J.O., Hay, J.E., McLean, R.F., Ragoonaden, S. and Woodroffe, C.D. (2007) Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of

- the Intergovernmental Panel on Climate Change. Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. and Hanson, C.E. (Eds) Cambridge University Press, Cambridge, UK, 315-356.
- Nordhaus & William (2005). Life After Kyoto: Alternative Approaches to Global Warming Policies. Life After Kyoto: Alternative Approaches to Global Warming Policies [On-line]. Available: http://www.econ.yale.edu/~nordhaus/kyoto_long_2005.pdf
- Oouchi, K., Yoshimura, J., Yoshimura, H., Mizuta, R., Kusunoki, S. and Noda, A. (2006) Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses *Journal of the Meteorological Society of Japan* 84(2), 259-276.
- Parry, M., Arnell, N., Berry, P., Dodman, D., Fankhauser, S., Hope, C., Kovats, S., Nicholls, R., Satterthwaite, D., Tiffin, R. and Wheeler, T. (2009) *Assessing the costs of adaptation to climate change. A review of the UNFCCC and other recent estimates.* ISBN: 978-1-84369-745-9 London: International Institute for Environment and Development (IIED).
- Pelling, M. (1998) The political ecology of flood hazard in urban Guyana Geoforum 30 (3), 249-261.
- Pentelow, L. and Scott, D. (2009) The impact of climate policy and oil price on tourist arrivals to the Caribbean Region. In: *Proceedings of 7th International Symposium on Tourism and Sustainability, Travel and Tourism in the Age of Climate Change.* University of Brighton, Brighton, England, July 8-10 2009.
- Plambeck, E. L. and Hope, C. (1996). PAGE95 An Updated Valuation of the Impacts of Global Warming. *Energy Policy, 24,* 783-793.
- Rahmstorf, S. (2007) A semi-empirical approach to projecting future sea-level rise. Science 315, 368.
- Rignot, E. and Kanagaratnam, P. (2006) Changes in the velocity structure of the Greenland Ice Sheet. *Science* 311, 986
- Robinson E. and Khan S. (2008) Draft Report on Costal Resources including Human Settlements. Second Communication to UNFCCC. Prepared for the Meteorological Service of Jamaica.
- Rutty, M., and Scott, D. (2009) *Will the Mediterranean be 'Too Hot' for Tourism*? In: Proceedings of 7th International Symposium on Tourism and Sustainability, Travel and Tourism in the Age of Climate Change. University of Brighton, Brighton, England, July 8-10.
- Schalatek, L. (2009) Gender and Climate Finance: Double Mainstreaming for Sustainable Development. Heinrich Böll Foundation North America. Washington D.C., Heinrich Böll Foundation.
- Schelling, T.C. (1992) Some economics of global warming. The American Economic Review, 82(1), 1-14.
- Scheraga, J. and Grambsch, A. (1998) Risks, opportunities, and adaptation to climate change. *Climate Research* 11, 85-95.
- Schilcher, D. (2007) Growth versus equity: The continuum of pro-poor tourism and Neoliberal Governance. *Current Issues in Tourism* 10(2-3), 166-193.
- Scott, D., Gossling, S., and de Freitas, C. (2008-accepted). Preferred climate for tourism: case studies from Canada, New Zealand and Sweden. *Climate Research* 38, 61-73.
- Senior, K. and Dunn, L. (no year) Enhancing Gender Visibility in Disaster Risk Management and Climate Change in the Caribbean. Country Assessment Report on Jamaica. Centre for Gender and Development Studies, University of the West Indies, Jamaica.
- Sheppard, C.R.C. 2003. Predicted recurrences of mass coral mortality in the Indian Ocean. *Nature* (425), 294-297.

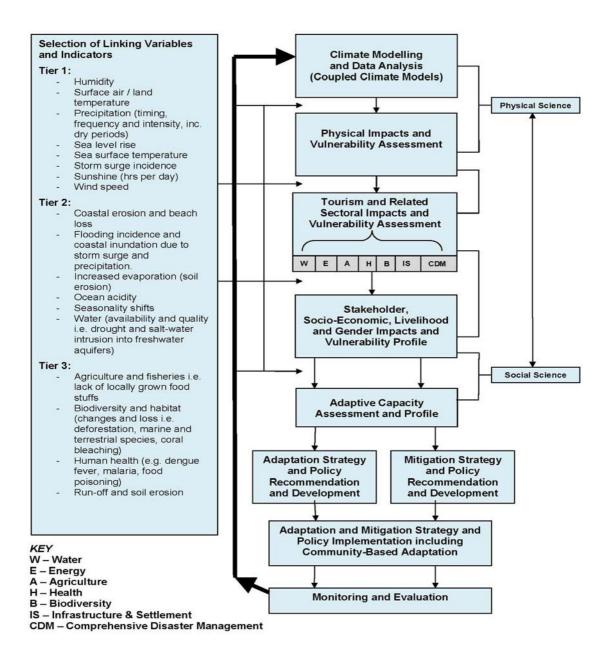
- Simpson, M., Gossling, S., & Scott, D. (2008). Report on the International Policy and Market Response to Global Warming and the Challenges and Opportunities that Climate Change Issues Present for the Caribbean Tourism Sector Barbados: Caribbean Regional Sustainable Tourism Development Programme (CRSTDP), Caribbean Tourism Organization.
- Smith, J.B. and Lenhart, S.S. (1996) Climate change adpatation policy options. Climate Reserach 6, 193-201
- Stern, N (2006) *The Economics of Climate Change.* <u>http://www.hm-treasury.gov.uk/stern_review_report.htm.</u>
- Sutherland, K., Smit.B., Wulf. V. and Nakalevu, T. (2005) Vulnerability to climate change and adaptive capacity in Samoa: the case of Saoluafata village. *Tiempo* 54, 11-15.
- Tapiador FJ. (2008) Hurricane Footprints in Global Climate Models. Entropy 10(4), 613-620.
- Terry, G.(2009) No climate justice without gender justice: an overview of the issues. *Gender and Development* 17(1), 5-18
- Tol, R. (2008). The Social Cost of Carbon: Trends, Outliers and Catastrophes. Economics E-Journal, 2.
- Tompkins, E.L. (2003) A theory of adaptive capacities. Tyndall Centre for Climate Change Research. http://www.tyndall.ac.uk/sites/default/files/flagship 0.pdf
- Tompkins, E.L. and W. N. Adger. 2004. Does adaptive management of natural resources enhance resilience to climate change? Ecology and Society 9(2): 10. [online] URL: http://www.ecologyandsociety.org/vol9/iss2/art10/
- Trenberth, K.E., P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker, F. Rahimzadeh, J.A. Renwick, M. Rusticucci, B. Soden and P. Zhai, 2007: Observations: Surface and Atmospheric Climate Change. In: *Climate Change 2007: The Physical Science Basis*. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Tsutsui (2002) Implications of anthropogenic climate change for tropical cyclone activity: A case study with the NCAR CCM2. *Journal of the Meteorological Society of Japan*, 80(1), 45-65
- UNDP (2008), Enhancing Gender Visibility in Disaster Risk Management and Climate Change in the Caribbean. United Nations Development Programme (UNDP) and Caribbean Risk Management Initiative (CRMI).
- UNFCCC (2000) *Jamaica Initial National Communication on Climate Change*. Submitted to the Secretariat of the United Nations Framework Convention on Climate Change for Presentation to the Conference of Parties. Government of Jamaica.
- UNFCCC (2005) Sixth compilation and synthesis of initial national communications from Parties not included in Annex I to the Convention. Addendum: Inventories of anthropogenic emissions by sources and removals by sinks of greenhouse gases. Available at: http://unfccc.int/resource/docs/2005/sbi/eng/18a02.pdf (accessed 8 September 2009).
- UNSD (2009). Environment Data. Available at: http://unstats.un.org/unsd/environment/air co2 emissions.htm (accessed 8 September 2009).
- UNWTO-UNEP-WMO (2008) *Climate Change and Tourism: Responding to Global Challenges*, (prepared by Scott, D., Amelung, B., Becken, S., Ceron, J.P., Dubois, G., Gössling, S., Peeters, P. and Simpson, M.C.), UNWTO, Madrid, and UNEP, Paris.
- Vassell, L. (2008) Climate Change Adaptation with a Gender Perspective in the Caribbean: A Case Study on Water and Sanitation in Jamaica. Centre for Gender and Development Studies, The University of the West Indies.



- Vecchi G.A. and Soden, B.J. (2007) Effect of remote sea surface temperature change on tropical cyclone potential intensity. *Nature*, 450 p1066.
- Vincent, K. (2007) Uncertainty in adaptive capacity and importance of scale. *Global Environmental Change*17, 12-24.
- Webster, P.J., Holland, G.J., Curry, J.A., and Chang, H.R. (2005) Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment, *Science*, 309 (5742), 1844-46.
- WHO (World Health Organization) (2003) *Report of Synthesis Workshop on Climate Change and Health in Small-Island States.* 1-4 December 2003. Republic of the Maldives. World Health Organization, 95 pp.
- Woodworth, P.L., White, N.J., Jevrejeva, S., Holgate, S.J., Church, J.A. and Gehrels, W.R. (2009) Evidence for the accelerations of sea level on multi-decade and century timescales. *International Journal of Climatology* 29, 777-789.
- Ximena, F.P. (1998) Contribution to the estimation of countries' inter-dependence in the area of plant genetic resources. Commission on Genetic Resources for Food and Agriculture, Background Study Paper No. 7, Rev. 1, Food and Agricultural Organization (FAO), Rome, 31 pp.
- Yeoman, I., Lennon, J. J., Blake, A., Galt, M., Greenwood, C. and McMahon-Beattiee, U. (2007) Oil depletion: What does this mean for Scottish tourism? *Tourism Management*, 28, 1354–1365.
- Yohe, G. and Tol, R.S.J. (2002) Indicators for social and economic coping capacity moving toward a working definition of adaptive capacity. *Global Environmental Change* 12, 25-40.
- Yoshimura J., Masato, S. and Akira N. (2006) Influence of greenhouse warming on tropical cyclone frequency *Journal of the Meteorological Society of Japan* 84(2), 405-428.


8. ANNEX

Annex 1: Adaptation Cycle



Annex 2: Mitigation Spiral

Annex 3: Flow Chart of Methodology

Flow Chart Summary: CARIBSAVE Climate Change Analysis, Strategy Development and Implementation (Component example)