Mitigation and Adaptation Strategies of Civil/Coastal Engineers for Sea Level Rise

University/ Academic Views

David R. Basco PhD, PE Coastal Engineering Centre Old Dominion University February 14, 2014

University/Academic Views

• The three traditional areas that university faculty contribute to society (**teaching, research, service**)

Presentation Outline

- Service -Mitigation Alternatives, Virginia Examples, What Can Virginia Do?, Federal Government (Corps)
- Research Sea Level Rise For Design, Storm Strength Index (COSI), MARI.
- Teaching The Coastal Engineering Certificate Program (CECP), Online to Local, State, National, and the World on the Internet

Service to Consulting Companies, A/E Firms and Federal Government Agencies

- Mitigation Alternatives
- Examples in Tidewater Virginia
- What Can Virginia Do ? (Individuals, cities, state)
- What Can Federal Government Do?

Mitigation of Coastal Hazards (Flooding, Waves, Erosion)

Structural

- Seawalls, Floodwalls
- Dikes, Revetments
- Breakwaters, Groins,
- Movable Gate Structures
- Beach/Dune Nourishment
- Wetlands Restoration

Non-Structural

- Elevated Structures
- Raise Grade
- Zoning (setbacks, land use, purchase of lands).
- Retreat
- Combinations

Civil/Coastal Engineering Definitions

MITIGATION

 to REDUCE (Mitigate) the damage caused by coastal storms and increased SLR using
 both structural and non-structural alternatives

ADAPTATION

 to CHANGE (Adapt) our present alternative methods (structural, non-structural) and decision making methods as caused by the predicted levels and uncertainty in SLR

The non-structural alternative is NOT adaptation

Service to Consulting Companies, A/E Firms and Federal Government Agencies

- Mitigation Alternatives
- Examples in Tidewater Virginia
- What Can Virginia Do Now ? (Individuals, cities, state)
- What Can Federal Government Do Now ?

Near shore Breakwaters and Living Shoreline Systems – **Chesapeake Bay**

Virginia Beach Hurricane Damage Mitigation Project –Open Ocean (Seawall and Beach Nourishment)

Future Adaptation ?

Chesapeake Bay

 Combine near shore breakwaters with wave energy conversion systems

Atlantic Ocean

 Permit near shore breakwaters on open Ocean front

1153 Lexan Ave

Since 1998 NFIP has paid out \$61,910.12 for damages from 5 flood events.

1153 Lexan Ave, Norfolk (severe damage from NorIDA ,Nov 12, 2009)

NFIP payout our \$51,309.34 in damages from NorIDA

1153 Lexan Ave, Homeowner Response to NorIDA Flood Damage-Refinance Mortgage

New Bottom Floor

Old Bottom Floor

3.67 ft

Architectural Building Contractors, LLC Norfolk

1153 Lexan Ave, NorfolkBeforeAfterFlood InsuranceFlood Insurance\$1374/yr\$349/yr

1153 Lexan Avenue, Norfolk

Mitigation

- Elevate structure
- What is the property value and value of piece of mind ?

Adaptation

- As of Jan 1, 2014 all new construction +3 ft above 100 year flood elevation
- Future Create special tax district (lower) if owner pays to elevate home.

Cities in Tidewater Virginia Need to Conduct Coastal Flooding Studies

Example- Fugro Atlantic for City of Norfolk

City of Norfolk City-wide Coastal Flooding Study Presentation to Storm Water Working Group

February 29, 2012

Kevin Smith Associate Engineering Geologist Fugro Atlantic

Recommended Alternative – Movable Storm Surge Barriers

Cities in Tidewater Virginia

Mitigation

- Studies needed to prioritize flooding damage mitigation options for 3 areas
 - property
 - infrastructure
 - transportation systems

Adaptation

- The future adaptation strategy may hinge on which flooding damage area
 - property
 - infrastructure
 - transportation systems
 - is highest priority.

Individual Cities Property **Owners** Commonwealth of Virginia What Can Commonwealth of Virginia?

Virginia General Assembly (SJ76ER,Feb24, 28, 2012)

- Conclusion...
- "...tide gates and storm surge barriers are likely to be a more appropriate strategy than levees for most areas" p 49-50

One Alternative – Movable Gate Storm Surge Barriers

CEE 403 Senior Civil Engineering Design Project – Spring 2014

Design Constraints

600

 Science
 Technology
 Economics
 Environment
 (Institutional, Political, Social)

- What type of movable gate works best ?
- What is the estimated cost ?

Senate Joint Resolution 3 – Current Legislature Session (Jan 24, 2014)

- Establish a 15-member sub-committee of state legislators and citizens
- Committee to "recommend strategies to address challenges" of coastal flooding
- Nov 15, 2015 deadline (\$20,000/year)
- Continuation of SJ76ER (Feb 2012)

Commonwealth of Virginia Future -Mitigation Adaptation

Movable Gate
 Storm Surge
 Barriers

State retain engineering consulting firm

 State be "Local Sponsor " with Corps of Engineers for Feasibility Studies for Tidewater Virginia

Virginia Needs to Do More Than Study the Problem (Again) with Another Committee

Service to Consulting Companies, A/E Firms and Federal Government Agencies

- Mitigation Alternatives
- Examples in Tidewater Virginia
- What Can Virginia Do Now ? (Individuals, cities, state)
- What Can Federal Government Do ?

The **Retreat Alternative** and the US Army **Corps of Engineers-** Example Baytown, Texas

Coastal Engineering Manual (CEM) 2008, Vol V, Section 3, p 82-84 US Army, Corps of Engineers, Wash DC.

Corps of Engineers, Galveston District Feasibility Study (1975), Final Report (1979)

- Routine flooding from storms and subsidence
- Studied **both** structural (earth dike, floodwall) and non-structural (retreat) alternatives
- **Retreat** alternative **recommended** (1975) and Congress **authorized** project (WRDA, 1978)
- Non-structural alternative- retreat (B/C = 1.3)
- Structural alternatives (B/C = 0.1-0.3)
- Corps projects require local funding

1979 Bond Election for Local Funding (20% in 1979)

- Community divided
- People not living in flood plain asked to help buy out those who did.
- Bond election, July 1979 FAILED by 60/40 % margin (Pendergrass and Pendergrass, 1990)
- Congress in 1980 cannot authorize funding
- Corps placed project in inactive category
- Local citizens decide to stay.

Future -Adaptation Strategy

- Congress eliminates the cost sharing part of WRDA projects (20% in 1979, 35% today) when the resulting B/C ratio is large enough (B/C » 1) to cover the standard cost share amount required of local governments.
- If active in 1980, the Federal Government would have saved \$\$ millions in flooding related problems in Baytown, Texas over the past 33 yrs.
- How much more saved in future SLR scenarios ?

Research

Sea Level Rise For Design

Sewells Point Tide Gage, Norfolk, 1927-2012 (85yrs)

⁽from Global Warming Art, 2014)

National Research Council(1987) Estimates of Future Sea Level Rise in 2100

NRC (1987) Committee Report

- 9 US faculty, 4 gov't agencies, met 3 times (2yrs)
- Chpt 2, Future GMSL changes to 2100 (7 pages)
- Because of uncertainty, postulated 3 scenarios for year 2100.

scenario | GMSL rise 0.5 meters

scenario II GMSL rise 1.0 meters

scenario III GMSL rise 1.5 meters

• Corps of Engineers adopts NRC (1987) report

Sea-Level Change Considerations for Civil Works Programs (2011) Corps of Engineers

EC 1165-2-212 (Oct 2011) Expired Sep 30, 2013

Estimating Future Change in Local MSL Corps of Engineers (2011)

- Uses GMSL rise rate of 1.7mm/yr
- Uses the **local MSL rate** to estimate the **local subsidence** (or uplift) rate
- Provides a website with online Sea
 Level Rise calculator for any tide gage
 location

Intergovernmental Panel on Climate Change (IPCC) http://www.ipcc.ch

- Established 1988 2500 scientists worldwide
- CC Assessments (1990,1995,2001,2007,2013)
- IPCC 2007 ,GMSL = 1.7±0.5 mm/year (20th C)
- IPCC 2007 did not include polar icecap melting
- Intermediate level **0.19-0.58m in 2100**
- What does IPCC 2013 say ?

SLR Seminar Announcement

Stay tuned for the rest of the SLR Seminar Series.

Research Need Coastal Storm Severity Index

- The Saffir-Simpson (S-S) hurricane scale only considers hurricane wind speed
- Coastal storms produce elevated water levels and high waves over the duration of the storm.
- Forecasters, emergency managers and the public need a "Storm Severity Index" to supplement the wind-based, S-S scale

An Example- Hurricane Isabel Sep 18, 2003

Category I on S-S Scale Produced 2nd highest water level recorded at Sewells Point

The COastal Storm Impulse (COSI) Parameter

- Based on Newton's 2nd Law (F = ma) expressed as "storm impulse = change of momentum"
- The elevated water level plus mean wave thrust integrated over the storm duration is the storm Impulse.
- The coastal land mass impacted by the storm causes the **change in storm momentum**

Total Storm Momentum

Hurricane ISABEL September 2003

Total storm momentum, I (red)

- $I = \int (f_w(t) + f_p(t))dt$
- fw (t)= wave momentum
 (blue)
- fp (t) = pressure momentum (green)
- I = 1900 kN-hr/m (area beneath red)

Location of Data for Analysis

US Army, Corps of Engineers, Field Research Facility (FRF) at Duck, NC Data set for year 1994-2003

Chronological Display The COSI Parameter for the years 1994 to 2003

Research Needed to Determine COSI (x,tend) for Coastal Storms

X-axis along the coast.

> Atlantic Ocean

FRF Duck

COSI Parameter kN-Hours/meter

Hurricane ISABEL COSI ~ 1900 kN-Hrs/meter measured only at the FRF, Duck North Carolina,

References

- Mahmoudpour, N (2012) "The Modified Coastal Storm Impulse Parameter", unpublished, PhD Dissertation, Civil Engineering Department, Old Dominion University, Norfolk, VA, May.
- Basco, D.R. and N. Mahmoudpour (2014) "On the Hydrodynamic Strength of a Coastal Storm", *Coastal Engineering*, (in review) Elsevier, Holland.
- The National Academies, Ocean Studies Board, "Storm Severity Index", COSI presentation, *Board Meeting*, Mar 22, 2013, Wash DC.

Proposal for MARI presented to Board of Visitors (Feb 11, 2014). Awaits approval of ODU Budget

Other Topics

- Prioritizing Flooding Mitigation Projects
- The B/C Ratio and net (B-C) amount.
- Quantifying Risk
- Quantifying Resilience
- Mitigation Economics
- The Media When things go RIGHT ?

Student Enrollment 1986-2014 CECP and Online Courses Introduced in 2003

Location of CECP Students in US

226 Students from 31 States

Location of CECP Students Around World

67 (23%) Students from 14 Countries (Australia, Brazil, Canada, Dubai (UAE) France, Ireland, Jamaica, Malaysia, New Zealand, Oman, Portugal, Qutar, South Africa, United Kingdom

Reasons for Student Numbers (293) and Student Locations for CECP Courses

SLR Education at ODU

Traditional

Undergraduate and Graduate **Courses and Students on ODU campus** in Norfolk Adaptation **Online**, Certificate **Programs** in all Colleges and **Departments** with responsibilities in SLR education locally, state, US and around the world

Summary

- **Mitigation** Structural and non-structural alternatives known (combine with other CZ uses).
- Adaptation Many potential changes needed by institutions, political bodies, the public and the media.
- **Recommendations** Some adaptation strategies presented for individuals, cities, the Commonwealth of Virginia and the Federal Government (Corps).
- **Predicted SLR in 2100** What to use for **design**? Stay tuned for remaining lectures in series.

Seminar Series - Spring 2014 Mitigation and Adaptation Strategies of Civil/Coastal Engineers for Future Sea Level Rise

- •
- March 7, 2014:
- 1:00 2:00 PM
- •
- April 4, 2014:
- 2:00 3:00 PM
- •

- April 25, 2014
- 2:00 3:00 PM
- •
- •

- **Corps of Engineers Role in SLR Post Superstorm SANDY** Dr. Charlie Chesnutt, Chiefs Office, Washington, DC
- Adaptive Management Strategies for SLR: Ports, Beaches, Coastal Structures and Marsh Restoration Projects John Headland, Moffatt & Nichol Engineers, New York City

European Union Perspective on Adaptation and Mitigating SLR Impacts Professor Marcel Stive, Coastal Engineering, Delft Technical University, The Netherlands

University/ Academia

