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The object of this column is to enhance our readers’ collections of interesting and novel prob-
lems in chemical engineering. Problems of the type that can be used to motivate the student by
presenting a particular principle in class, or in a new light, or that can be assigned as a novel
home problem, are requested, as well as those that are more traditional in nature and that eluci-
date difficult concepts. Manuscripts should not exceed 14 double-spaced pages and should be
accompanied by the originals of any figures or photographs. Please submit them to Professor
James O. Wilkes (e-mail: wilkes@umich.edu), Chemical Engineering Department, University

DATA ANALYSIS MADE EASY
WITH DATAFIT

JaMES R. BRENNER

Florida Institute of Technology « Melbourne, FL 32901

hortly after starting as an assistant professor, I real-

ized that quite a few of our students were unable to

analyze laboratory data at a level consistent with that
expected when I had worked in industry. Having been put in
charge of the Florida Institute of Technology’s introductory
chemical engineering course and its materials science and
engineering laboratory course, 1 decided that a strong em-
phasis on data analysis would be added to each of these
courses in order to satisfy ABET’s requirement regarding the
ability of students to analyze data.

Most departments emphasize spreadsheet calculations and
plotting of data in Microsoft Excel as part of their introduc-
tory chemical engineering course. Experience in our depart-
ment has shown that unless sufficient time is spent on data
analysis instruction such that spreadsheet calculations, plot-

ting, and curve fitting become second nature, such skills are
either forgotten or are never learned properly.

We have incorporated DataFit from Oakdale Engineering™
throughout the entire curriculum at Florida Tech, beginning
with CHE 1102, an eight-week, one-day-per-week, two-hour,
one-credit-hour, second-semester Introduction to Chemical
Engineering course in a hands-on computer classroom. The
syllabus for CHE 1102 is shown in Table 1. The examples

James R. Brenner received his B.S. degree from The Universily of Dela-
ware and M.S. and Ph.D. degrees from The University of Michigan. After a
postdoc at Argonne National Laboratory and industrial experience at
Westinghouse Savannah River Company, he became an assistant pro-
fessor of chemical engineering at Florida Institute of Technology. His re-
search interests are in hydrogen purification and sensing, electronic noses,
and nanoporous materials.
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It was felt that the bonus question worked well and that it
should be made mandatory for future labs. It was also conve-
nient for the teaching assistants that the lab could be run dif-
ferently for each group by simply changing the initial salt
concentration or flowrates. As well, this changeability pro-
vided the teaching assistants with an opportunity to learn more
about process control.

Overall, it was thought the lab performed very well and
showed much promise as well as many other areas of poten-
tial use. For instance, it would be useful in a more advanced
process control course where it could be used to demonstrate
system identification and model predictive control in a prac-
tical setting.

CONCLUSIONS

The introduction of this new lab was successful from the
students’ point of view. They enjoyed working with the latest
process control instrumentation. They also gained a new ap-
preciation of the problems associated with real plants, in the
form of noise and unexpected disturbances. The comparison
of conventional open-loop tuning methods and an automated
tuning package was appreciated, as was the chance to show
their creativity in the solution of the open-ended bonus
question.

From the instructors’ point of view, the laboratory was con-
sidered successful. The only real concerns with the lab were
based on the length of time it took to complete. This will be
addressed in coming years with the introduction of quizzes
and discussion while waiting for the process to reach steady
state. Despite these concerns the lab provided an effective
demonstration of a nonlinear and MIMO system. Most im-
portantly, it was felt the students were better able to under-
stand process behavior by being able to see many of the class-
room concepts on an actual process. The department also
gained a valuable tool for additional process control courses
due to this lab’s ability to have the control configuration
changed, the ease in which it can be upgraded or modified,
and its extensive data-collection and data-handling capa-
bilities.
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NOMENCLATURE

F volumetric flowrate [m*/min]
h level [m]
h_ level at the operating point [m]
K, valve coefficient [m*/min.m'?]

0 slope of conical section [radians]

Winter 2006

t time {min]
V  fluid volume [m?]

x Inlet salt concentration [kg/m?]
y Outlet salt concentration [kg/m?]

REFERENCES

1. Rivera, D.E, K.S. Jun, V.E. Sater, and M.K. Shetty, “Teaching Pro-
cess Dynamics and Control Using an Industrial-Scale, Real-Time Com-
puting Environment,” Comp. Apps. in Eng. Ed., 4(3), 191 (1996)

General student comments
and laboratory reports
indicated that students
enjoyed working with

the new laboratory
experiment, and that it was
helpful to see a real process
that could provide them with a
feel for what types of
disturbances can be made
in a plant.

2. Badmus, 0.0., D.G. Fisher, and S.L. Shah, “Real-time, Sensor-based
Computing in the Laboratory,” Chem. Eng. Ed., 30(4), 280 (1996)

3. Braatz, R.D., and M.R. Johnson, “Process Control Laboratory Educa-
tion Using a Graphical Operator Interface,” Comp. Apps. in Eng. Ed.,
151 (1998)

4. Rusli, E., S. Ang, and R.D. Braatz, “A Quadruple-Tank Process Con-
trol Experiment,” Chem. Eng. Ed., 38(3), 171 (2004)

5. Svrcek, W.Y., D.P. Mahoney, and B.R. Young, “A Real-Time Approach
to Process Control Education—A Paradigm Shift,” ASEE99 Confer-
ence, Charlotte, NC, June (1999)

6. Aspen Dynamics and HYSYS, Products of AspenTech Inc., and sub-
sidiaries, Boston (2002)

7. Svreek, W.Y,, D.P. Mahoney, and B.R. Young, A Real-time Approach
to Process Control, John Wiley and Sons Ltd., Chichester, UK (2000)

8. Young, B.R., D.P. Mahoney, and W.Y. Svrcek, “Real-Time Simula-
tion Workshops for Undergraduate Process Control Education,” Pro-
ceedings, ACE2000, 5" IFAC/IEEE Symposium on Advances in Con-
trol Education, Nara, Gold Coast QLD, Australia, December (2000)

9. Skliar, M., J.W. Price, and C.A. Tyler, “Experimental Projects in Teach-
ing Process Control,” Chem. Eng. Ed., 32(4), 254 (1998)

10. Bequette, B.W., K.D. Schott, V. Prasad, V. Natarajan, and R.R. Rao,
“Case Study Projects in an Undergraduate Process Control Course,”
Chem. Eng. Ed., 32(3), 214 (1998)

11. Ang,S., and R.D. Braatz, “Experimental Projects for the Process Con-
trol Laboratory,” Chem. Eng. Ed., 36(3) (2002) O

59



chosen, shown in parentheses, are selected so as to be consis-
tent with concepts that students learn concurrently in other
courses. DataFit also has become commonly used in our
Physical Chemistry Lab and Materials Science and Engineer-
ing Lab courses, as well as in several courses in other engi-
neering departments. Our experience at Florida Tech is that
students retain data
analysis concepts
best when such con-
cepts are formally
taught to them in

TABLE 1
Data Analysis Curriculum

1) Statistics and Confidence Intervals

2) Introduction to Plotting and this short course and
Calculations in Excel then periodically re-
3) y = ax + b Fitting in DataFit inforced throughout

(Pressure Transducer Calibration)

4) y = ax Requires User-Defined
Models (Hygrometer Calibration)

5) Semi-Log Functions (First-Order
Rate Laws - Felder and Rousseau
2.34)

their academic ca-
reers. Several ex-
amples covered in
weeks three through
eight will be dis-

i . cussed here.
6) Plotting and Curve Fitting of

Power-Law Functions (Crystal
Growth - Felder and Rousseau

An introduction
to basic statistics is

2.37) . .
i included in nearly
7) Nonlinear Functions (Vapor C i
B all introductory
Pressures)

ChE courses and
will not be dis-
cussed in this ar-

8) Curve-Fitting in 3-D (Rate Laws
With Two Reactants)

Experience in our department has shown
that unless sufficient time is spent on data
analysis instruction such that spreadsheet

calculations, plotting, and curve fitting
become second nature, such skills are either
forgotten or are never learned properly.

X000

ticle. Students in CHE 1102 cover basic statistics during the
first week of the course and get constant reinforcement of these
concepts through the use of DataFit."] The second half of CHE
1102 consists of problems that require Polymath- or Excel-
based solutions to either sets of linear and nonlinear algebraic
equations or numeric integration, as suggested by Clough.™

All Excel and DataFit files are available at <http://my.fit.edu/
~jbrenner/dataanalysispaper1.zip>.

SOLVING PROBLEMS WITH DATAFIT

Problem 1. Calibration of a Pressure Transducer

Following the introduction to basic statistics, the first prob-
lem that I assign students is the calibration of a 0-250 psig
Span Instruments’ NTT-204 (now Millipore) pressure trans-
ducer against a 0-1000 psia Paroscientific pressure transmit-
ter. In addition to being useful for teaching students how to
make plots with error bars and determine the difference be-
tween absolute and gauge
pressures, it provides a rela-

300
250
200
150 -

<

100

Transducer pressure (psig)

50 -

0 50 100 150

y = (.998 + .005)*x + (-15.2 + .8)

Transmitter pressure (psia)

tively simple problem for
studying linear regression
with DataFit. The repeatabil-
ity and lack of drift of
Paroscientific pressure trans-
mitters is even superior to
that of a deadweight tester
that was calibrated at
NIST.® The repeatability of
the quartz oscillator that the
Paroscientific pressure
transmitters use is certainly
within the quoted 0.01% of
full-scale precision (i.e., 0.1
psia fixed error for a 1000-
psia transmitter). Span In-
struments’ pressure trans-
ducers output a signal that
ranges from 4-20 milliamps
to within 0.08 milliamps.

250 300

After having the students

Figure 1. Calibration of a Span Instruments’ pressure transducer against an NIST-
traceahle Paroscientific pressure transmitter.

Winter 2006

prepare a plot of the data
shown in Figure 1, includ-
ing error bars, I ask the stu-
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dents to copy and paste the data into DataFit, click on the
Solve Regression option, click on OK, select the y = ax + b
option, and let DataFit do the work for them. By clicking on
Results Detailed, the Fit Information output is obtained (Table
2). Included in the output are the residual sum of squares
(RSS), which is the sum of the squares of the differences
between the calculated values of Y, the pressure in psig as
determined by the pressure transducer, and the correspond-
ing experimental values. Also evaluated are the commonly
seen R2 correlation parameter as well as several more-
advanced goodness-of-fit parameters. Most importantly,
the 68%, 90%, 95%, and 99% confidence intervals are
conveniently tabulated. This is an excellent opportunity
to reinforce basic statistics, most notably the Gaussian
distribution, which is typically taught at the beginning of
CHE 1102.

98% replied correctly to a similar question during hourly
and final exams.

Once the students have realized that b is unnecessary, it is
time to teach them how to create a user-defined model in
DataFit, as y = ax is not one of the built-in models (one of
DataFit’s few shortcomings). This can be done by returning
to DataFit’s main menu and clicking on the Define User Model
option under the Solve menu. The user defines a Model ID,
(which I defined as “Linear, no intercept,” in this case). The
user also inputs the Model Definition, in this case Y = a*x.
Mathematical functions in DataFit, such as multiplication and
exponentiation, work in the same way as Excel.

In many cases, including this one and all cases where the
fitting is of a linear function, initial estimates are unneces-

Problem 2. Calibration of a
Hygrometer

TABLE 2

Fit Information for Pressure Transducer Calibration

The second problem that T as-
sign is Problem 2.32 from Felder
and Rousseau’s textbook.™ This
problem involves the correlation
of a signal from a hygrometer
versus the mass fraction of water
in the inlet stream to the hy grom-
eter. For this problem, first ask
students to do the y = ax + b fit as
described in the previous section.

DataFit version 6.1.10
Results from project

Equation ID: a*x+b

Solver type: Nonlinear

“F:\brenner\datafit\pcalib.dft”

Number of observations = 13
Number of missing observations = 0

Nonlinear iteration limit = 2000

Diverging nonlinear iteration limit =10
Number of nonlinear iterations performed = I
Residual tolerance = 0.0000000001

Sum of Residuals = 4.08562073062058E-14

Average Residual = 3.14278517740044E-15

Residual Sum of Squares (Absolute) = 5.2079916890674 1
Residual Sum of Squares (Relative) = 5.20799168906741
Standard Ervor of the Estimate = 0.688079784556427
Coefticient of Multiple Determination (R"2) = 0.99994096
Proportion of Variance Explained = 99.994096%

Adjusted coefficient of multiple determination
(Ra’2) = 0.9999355927

Durbin-Watson statistic = 2.88469613789683

The 95% confidence intervals on
the slope, a, and the intercept, b,

Variable Value
are as follows: a=470+20; b = a 0.998001779
0 %2, at the appropriate number b -15.1762779

of significant figures (proper use
of sxgmfu.:apt figures is an ex- Variable  Value
tremely difficult concept to get a
students to consistently apply). b
Then ask them whether the inter-
cept, b, is mathematically signifi-

0.998001779
-15.1762779

Regression Variable Results

Standard Error t-ratio Prob(t)
0.002312177 431.6287071 0
0.359917526 -42.1659876 0

68 % Confidence Intervals .
Upper Limit

8% (+/«} Lower Limit
(:002408132 0.995593648 100040991 1
0.374854103 ~15.551132 =14.8014238

90% Confidence Intervals

: o o Variable Value 90% (+/-) Lower Limit Upper Limit
cant (i.e., nonzero within the 95% a 0.998001779 0.004152438 0.993849342 1.002154217
confidence interval). They should b -15.1762779 0.646375884 -15.8226538 -14.529902
answer that b is not mathemati- SEo Gt s
. “pe o7 _ E X7 Lonlidence Intervals
c.ally significant at the 95% con Variable Value 95%:(+/-} Lower Limit Upper Limit
fidence level. Out of a sample of a 0.998001779 0.005089101 0992912679 100309088
100 students asked over the last b 151762779 0:792178474 -15.9684564 ~14.3840995
five years as part of an in-class .
exercise, only 50% have an- 99% Confidence Intervals
’ y . . Variable Value 99% (+/-) Lower Limit Upper Limit
swered correctly to this question; a 0.998001779 0.007181158 0.990820622 1.005182937
25% of students replied “don’t b -15.1762779 1117831851 -16.2941098 -14.0584461
know.” This is a surprisingly dif- T Ta—
. . o ariance Analysis
ficult concept to master that re :Source DE Sum of Square Mean Square F Ratio Prob(F)

quires consistent reinforcement

Regression ! 882006,02278 88206.02278 186303.3408 0
throughout CHE 1102. Yet, of Error 11 5:207991689 0:47345379 :
Total 12 88211.23071 s

the same sample of students,

62

Chemical Engineering Education




sary, but they become critical when doing some nonlinear
fitting. The default values of each of the curve-fit parameters
are unity in all cases. I look at this as one of DataFit’s very
few design flaws. When one goes through a Taylor series
expansion, terms involving higher-order parameters are sup-
posed to be corrections to the previous terms, meaning that
the product of the curve-fit coefficient multiplying a high-
order term and that higher-order term (i.e., d*x3) should be
less than those of previous terms. Without some exceptional
physical justification, it would be difficult to throw out con-
stant, linear, or quadratic terms and keep a cubic term.

After manually assigning initial estimates and/or constraints
on the curve-fit coefficients, clicking OK, clicking Solve Re-
gression, and OK again, the user will need to locate his or her
user-defined model in the list of models. After locating your
recently defined model, click on Solve, click OK, and then
click on Results Detailed to return to the Fit Information
screen once again. The models are ranked by the RSS, and so
the Fit Information that pops up first is the one with the low-
est RSS, not the one for the most recent fit. By clicking on
the uppermost dialog box to locate the user-defined model,
one will get the Fit Information associated with the user-de-
fined model, “Linear, no intercept.” Interestingly, scrolling down
to the 95% confidence interval shows that the confidence inter-
val for the one-parameter model (a = 473 * 8) is narrower than
the slope from the two-parameter model (a = 470 £ 20).

Problem 3. Fitting Water Vapor Pressures to the
Clausius-Clapeyron and Antoine Equations

Fitting water vapor-pressure data to the Clausius-Clapeyron
equation is challenging for underclassmen, but usually can
be done successfully if the previous examples have been
worked out in class or for homework. This problem, along
with the follow-up fitting of the same data to the Antoine
equation, typically is either the final in-class or homework
problem that students are asked to solve during CHE 1102.
Data for the vapor pressure of water is tabulated in Appendix
B.3 of Felder and Rousseau.”! The Clausius-Clapeyron equa-
tion is as follows, and requires conversion of temperatures
into Kelvin:

B
logigP=A—— i
210 T .

At this point in the course, the students know that they
should plot pressure on a logarithmic scale on the y-axis and
reciprocal temperature on the x-axis. Students are asked to
plot 1000/T so that the values on the x-axis are between a
more aesthetically pleasing 0 and 10, to estimate the slope (-
B) and the intercept (A) graphically, to use DataFit to deter-
mine A and B, and finally to superimpose the curve fit (the
solid line) on top of the experimental points (Figure 2).

The Clausius-Clapeyron equation is a reasonably good fit
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of the vapor pressure of water data from 0 to 60 °C, but one
can see that there is a systematic deviation from linearity at
low temperature and pressure. By graphically extrapolating
a straight line through the portion of the data that appears to
be linear, one can estimate the slope (-B) as -2200 and the
intercept (A) as 109 from Figure 2. Interestingly, there are
slight differences in the DataFit estimates of the curve fit pa-
rameters, depending on whether the logarithm of the pres-
sure data and the inversion of the temperature data are taken
before curve fitting in DataFit or not (Table 3). In the case
where the data are not so linearized before entry into
DataFit and then a nonlinear model is generated in DataFit,
the points at low vapor pressures are de-emphasized rela-
tive to the other points.

If one tries to fit the Antoine equation for water vapor pres-

sures either below 60 °C or above 60 °C, in either case if one

does not manually change the default parameter guesses of

unity, DataFit’s “solution” will require more iterations than
the default number of iterations, which is 250.

B
logjgP=A~—— 2

210 (T +C) ( )

This problem can be changed using Edit Preferences.  have

changed the default number of iterations permanently to 2,000.

The problem with using the results for A and B from the
Clausius-Clapeyron equation as initial guesses for A and B
for the Antoine equation fit is that the Antoine equation re-
quires temperatures to be in degrees Celsius instead of in
Kelvin. In fact, if one uses the Clausius-Clapeyron equation
constants to fit the water-vapor pressures above 60°C and
lets DataFit set the default value of C to 1, then
cven after having made the appropriate conversion

TABLE 3

from 0 to 60 °C

Clausius-Clapeyron Constants for Vapor Pressure of Water

of the data from Kelvin into Celsius, DataFit will
erroneously return a “successful” result after only
one iteration that contuins errors larger than the val-
ues of the parameters themselves. The Antoine

Clausius-Clapeyron Linear Fit of

Nonlinear Fit of

Constants Linearized Data of Raw Data
A 9.091+ 0.004 9.003 + 0.004
B 2301+ 1 2274 + 1

equation cannot be solved for temperature ranges
in which the denominator, (T+C), switches from
negative to positive over the range of temperatures.
If one uses the values of A and B from the Clausius-

Clapeyron equation and an initial guess for C of

273.15, then the Antoine equation does converge

TABLE 4

Antoine Curve Fitting of Vapor Pressure of Water from 0 to 60 °C

properly to the answers below in Table 4 in the
“Proper Convergence” column.

This discrepancy proved a difficult chal-

lenge for even the best students. At a minimum,
the number of significant figures reported for
Antoine equation constants in the literaturet 5!
is grossly overstated, and, for some mol-
ecules, is just not quite right (see Table 5).

ASSESSMENT

In the first class exposed to this curricu-

lum, 17 of 20 students successfully com-

pleted both the Clausius-Clapeyron and
Antoine problems. Two of the three stu-
dents who failed to make a proper plot

*Pressures in mm Hg and temperatures in Kelvin
“Logarithm of pressure taken first
NLogarithm of pressure not taken first

Constants 250 iterations Proper Convergence Literature Datal*-3]
A 6.95 +0.08 8.124 + 0.002 8.10765
B 1180 + 40 1759.8 + 0.6 1750.286
C 186 + 4 235.8+ 0.1 235.000
TABLE 5
Clausius-Clapeyron Equation Parameters®
Molecule Al Bk AN

and a proper fit in DataFit attended class
BN less than one-third of the time, and the
other student, although in good atten-

Carbon Dioxide 7.58 +£0.02 865 + 4 7.58 £0.01 864 +3 dance, turned in less than half of the
Ethane 7.37+0.05 83749 7.127+0.008 78512 homework assignments and had signifi-
Propane 771 +0.08 1130+ 14 7.191 +0.007 1128 +3 ! bl Th f

Tsobutane 7.69 + 0.07 1274 +16  7.198 + 0.007 996 + 2 cant language problems. ‘he past tour
Butane 7.61 +0.06 1306 +7  7.256 + 0.009 1193 + 4 years of classes have had similar results.

A similar problem, for butane vapor
pressures, has been assigned to sopho-
mores and graduate students, using data
from the NIST Chemistry WebBook.!!2
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All but one of 12 sampled students who came to Florida Tech
from other countries for ChE graduate school sought me out
for help. None of the eight students that went to Florida Tech
for both bachelor’s and master’s degrees needed help. Ninety
percent of sophomore students who took CHE 1102 as fresh-
men were also able to solve the butane problem successfully.

With the default guesses, DataFit failed to converge be-
cause it cannot handle the denominator changing from nega-
tive to positive, depending on temperature. When the second
term exceeds A, the solution also diverges. Under some sets
of initial estimates, DataFit “converges” to a flat line! When
the initial estimates are reasonably close to what DataFit re-
ports as the correct answer (A =7.44£0.04; B = 1330 + 30;
C = 294 * 4), the solution converges to what is shown in
Figure 3. Even this is clearly incorrect, as the low vapor pres-
sure data is de-emphasized, because the magnitude of the er-
ror in such a small quantity is dwarfed by a small percentage
error in the high vapor pressure points. This kind of error is not
unique to DataFit. I have seen it in Polymath curve fits as well.

CONCLUSIONS

Of the international graduate students asked to fit vapor-
pressure data for the previous problem, none had previous
exposure to either Polymath or DataFit. While each of them
also learned how to use Polymath in graduate school, 11 of

the 12 polled said that they found DataFit easier to use. The
reason that I downloaded DataFit in the first place was not
because of its excellent curve-fitting capabilities, but because
when I first started using it in industry in 1998, DataFit was
the only program that did proper 3-D scientific plotting for
less than $500. In 1999, when Florida Tech bought a site li-
cense for DataFit version 6.1, it cost only $750 for the entire
campus (albeit a relatively small campus), whereas a single
copy cost $100. Moreover, the site license allowed for stu-
dents and faculty to use DataFit at home as long as they were
doing academic work. A comprehensive set of solutions to
similar problems can be found at <http://my.fit.edu/~jbrenner/
dataanalysispaper!.zip>.
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Figure 3. Antoine fit of butane vapor pressure data clearly shows bias against low vapor pressure points.
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ENGINEERING ANALYSIS
IN THE CHEM-E-CAR COMPETITION

Ranpy S. LEWIS, ALIAKBAR MOSHFEGHIAN, AND SUNDARARAJAN V. MADIHALLY

Oklahoma State University « Stillwater, OK 74078

ince 1999, Chemical Engineering undergraduate stu-

dents have had the opportunity to participate in the

Chem-E-Car Competition at the regional and national
level under the direction of the American Institute of Chemi-
cal Engineers (AIChE). The competition was initiated by
AIChE members to (1) provide an opportunity for students
to participate in a team competition at the national level, (2)
encourage professional society interaction, and (3) increase
the awareness of chemical engineering in the public.!! Ex-
amples of national competitions in other engineering disci-
plines include the concrete canoe race (civil engineering), mini-
baja race (mechanical engineering), and International AIAA/
ONR Design, Build, Fly contest (aecrospace engineering).

The Chem-E-Car competition involves the design and con-
struction of a chemically powered car that has to travel a speci-
tied distance (50-100 ft) while carrying a certain amount of
water (0-500 ml). The car must fit into a box no larger than
40 cm X 30 cm X 18 cm and the team must be composed of
members from at least two undergraduate classes. Additional
rules are applicable to the competition.!" The objectives of
the competition are applicable to numerous ABET educational
outcomes including “an ability to design a system, compo-
nent, or process to meet desired needs,” “an ability to func-
tion on multidisciplinary teams,” and “an ability to commu-
nicate effectively.”!?
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