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Application of the discrete transfer method is extended to solve transient radiative transport

problems with participating medium. A one-dimensional gray planar absorbing and aniso-

tropically scattering medium is considered. Both boundaries of the medium are black. The

incident boundary of the medium is subjected to pulse-laser irradiation, while the other

boundary is cold. For radiative parameters such as optical thickness, scattering albedo,

anisotropy factor, transmittance, and reflectance at the boundaries are found. Results ob-

tained from the present work are compared with those available in the literature. The dis-

crete transfer method has been found to give an excellent agreement.

INTRODUCTION

Thermal radiation is important in many applications, and its analysis is diffi-
cult in the presence of a participating medium. Thermal radiation being electro-
magnetic waves, it propagates at the speed of light. In most traditional engineering
applications, such as in the thermal analysis of boilers, furnaces, internal combustion
engines, etc., as temporal variations in thermal quantities of interest are much slower
than the time scale associated with the propagation of thermal radiation, the
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transient term from the radiative transfer equation is neglected, i.e., radiation is
assumed to be an instantaneous (steady-state) process. However, there are certain
situations in which temporal variations are required at time scales as low as 10712 to
10715 s. Therefore, such situations necessitate inclusion of the transient term in the
radiative transfer equation, thus making problems further complicated.

Some examples in which the transient nature of thermal radiation has to be
considered are microscale systems [1], pulsed-laser interactions with materials [2, 3],
laser-induced shock waves [4], laser therapy [5–7], optical tomography [8, 9], remote
sensing of turbid media of oceans and the atmosphere [10, 11], probing of the
characteristics of the particulate medium by examining the transmitted or back-
scattered intensities [12], and particle detection and sizing [13]. A detailed review
dealing with various aspects of transient radiative transport has been given by
Kumar and Mitra [14].

In the literature, applications of various existing methods used for solving
steady-state radiative transport problems have been extended for the analysis of
transient radiative transport in a participating medium. Rackmil and Buckius [15]
used the finite-difference method with an adding-doubling scheme to solve the
transient equation of transfer for a plane-parallel slab. Diffusion approximation has
been used by Flock et al. [16] and Yamada [8]. As is true with the solution of steady-
state radiative transport problems, diffusion approximation has been found to give
correct predictions only for optically thick conditions. For low to thin optical
thickness conditions, it has not been found suitable [17]. Kumar et al. [18] and Mitra
et al. [19] have extended the use of the P-1 approximation to the solution of transient
radiative transport for 1-D and 2-D rectangular geometries. Mitra and Churnside
[11] have applied the discrete ordinates method for the solution of a transient ra-
diative equation applied to oceanographic lidar. The Monte Carlo method has been
used by Guo et al. [20, 21] and Schweiger et al. [22]. Tan and Hsu [23] have used a
time-dependent integral formulation for modeling transient radiative transfer, and
application of the radiation element method for this class of problems has been
extended by Guo and Kumar [24].

NOMENCLATURE

c speed of light, m=s

I intensity, W=m2

L physical depth of the medium, m

n number of control volumes

p phase function

Q heat flux, W=m2

S source function, W=m2

t time, s

x space coordinate, m

b extinction coefficient, m7 1

y polar angle, rad

m cos y
m0 incident cosine angle of the collimated

beam

m0 incoming direction of propagation

ss scattering coefficient, m7 1

t optical thickness

f azimuthal angle, rad

o scattering albedo

Subscripts

c collimated

d diffuse

0 incident direction of collimated beam

Superscripts

* for nondimensional time
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A comparative study of the two-flux method, P-1 approximation, and the
discrete ordinates method has been presented by Mitra and Kumar [25]. They
compared the parabolic as well as hyperbolic nature of short-pulse radiative trans-
port. They found that for higher optical thickness, both hyperbolic and parabolic
solutions become identical. Further, they found that the wave propagation speed
depends on the method used. With P-1 approximation and the two-flux method, the
propagation speed of wave front has been found to be far away from the speed of the
pulse. This lower propagation speed could have the potential drawback of predicting
results that have a significant temporal mismatch with the observed data. But such
discrepancy is low with the discrete ordinates method. However, the discrete ordi-
nates method is prone to ray and false scattering effects, and it is severe in multi-
dimensional geometry. Hence, the scope for further study remains open to other
numerical methods.

The discrete transfer method (DTM) [26] is one of the popular methods for
solving radiative transfer problems. It combines good features of the zonal method,
the flux method, and the Monte Carlo method. For steady-state problems in various
types of geometries, this method has been used extensively for pure radiation as well
as radiation, conduction, and=or convection heat transfer problems. However, for
the analysis of transient radiative heat transfer problems, applicability of this
method has not been explored so far. The present work thus aims at extending the
use of the DTM for a new class of problems.

In the present work, the effect of a short-pulse laser at one boundary of a
planar medium is investigated using the DTM. The other boundary is diffuse and is
at zero temperature. The cold medium is assumed to be absorbing and aniso-
tropically scattering. Temporal variations of transmissivity and reflectivity at the
medium boundaries are computed for different optical thicknesses, scattering albe-
dos, and anisotropy factors. Results from the present study are compared with those
from [27]. Very good agreement has been found between the two.

FORMULATION

Consider a plane-parallel absorbing and anisotropically scattering gray med-
ium (Figure 1). The top boundary is irradiated with a short-pulse laser beam of
magnitude Iðm0;fÞ at an angle ðm0;fÞ. The bottom boundary is cold. Both the
boundaries are assumed black. For azimuthally symmetric radiation [Iðm;fÞ ¼ IðmÞ],
which is always the case for radiative transport in a planar medium, the radiative
transfer equation (RTE) in any direction m is written as

1

c

qIðx; m; tÞ
qt

þ m
qIðx; m; tÞ

qx
¼ �bIðx; m; tÞ þ ss

2

Z 1

�1

Iðx; m0; tÞpðm0; mÞdm0 ð1Þ

where c is the speed of light, b is the extinction coefficient, ss is the scattering
coefficient, and pðm0; mÞ is the phase function. For the problem under consideration,
the intensity at the top boundary is given by

Iðm; tÞ ¼ Iðm0; tÞdðm� m0Þ ð2Þ

where d is the Dirac delta function. Since the top boundary is subjected to the
collimated laser beam, radiation inside the medium is composed of collimated Ic as
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well as the diffuse Id components, i.e., radiation at any physical depth x in any
direction m at any instant t can be written as

Iðx; m; tÞ ¼ Icðx; m; tÞ þ Idðx; m; tÞ ð3Þ

Substitution of Eq. (3) into Eq. (1) results in

qIdðt;m; t�Þ
qt�

þ m
qIdðt; m; t�Þ

qt
þ Idðx; m; t�Þ

¼ o
2

Z 1

�1

Idðt; m0; t�Þpðm0; mÞdm0 þ Scðx; m; t�Þ ð4Þ

where t� ¼ bct, t ¼ bx, and o is the scattering albedo. In the above equation, the
out-scattered radiation source SC formed because of the collimated irradiation is
given by

Scðt; m; t�Þ ¼
o
4p

Z 2p

0

Z 1

�1

pðm0; mÞIcðt; m0; t�Þdm0df ð5Þ

where Icðt; m; t�Þ is obtained by solving the RTE governing the attenuation of the
collimated beam and is given by

Icðt; m; t�Þ ¼ Iðm0; t�Þ exp � t
m0

� �

� H t� � t
m0

� �
�H t� � t�p �

t
m0

� �� �
dðm� m0Þdðf� f0Þ ð6Þ

where H is the Heaviside step function and t�p is nondimensional pulse width.

Figure 1. One-dimensional planar geometry under consideration.
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In Eq. (5), if anisotropy is approximated by a linear anisotropic phase function
[ pðm0; mÞ ¼ 1þ amm0], the collimated source function for the south bound (04 m < 1)
and the north bound (�14 m4 0) intensities are given respectively by

SS
c ðt; m; t�Þ ¼

o
4p

ENIðm0; t�Þð1þ amm0Þ

� exp � t
m0

� �
H t� � t

m0

� �
�H t� � t�p �

t
m0

� �� �
ð7Þ

and

SN
c ðt; m; t�Þ ¼

o
4p

ENIðm0; t�Þð1� amm0Þ

� exp � t
m0

� �
H t� � t

m0

� �
�H t� � t�p �

t
m0

� �� �
ð8Þ

In the above equations, a is the anisotropy factor and its value ranges from þ1 to
7 1. For a > 0, scattering is forward; whereas for a < 0, it is backward. For a ¼ 0, it
is isotropic scattering, and in this case, for intensities in all directions, expressions of
SC are the same and are given by

Scðt; m; t�Þ ¼
o
4p

Iðm0; t�Þ exp � t
m0

� �
H t� � t

m0

� �
�H t� � t�p �

t
m0

� �� �
ð9Þ

Equation (4) is the required integro-differential equation to be solved. To make the
solution of the governing equation feasible by the DTM, the first term on the left-
hand side of this equation is written in finite-difference form using the backward
Euler scheme. This results in the following equation:

Idðt; m; t�Þ � Idðt; m; t� � Dt�Þ
Dt�

þ m
qIdðt; m; t�Þ

qt
þ Idðt; m; tÞ

¼ o
2

Z 1

�1

Idðt; m0; t�Þpðm0; mÞdm0 þ Scðt; m; t�Þ ð10Þ

Rearranging the terms in the above equation gives

Am
dIdðt; m; t�Þ

dt
þ Idðt; m; t�Þ

¼ AScðt; m; t�Þ þ ASdðt; m; t�Þ þ
Idðt; m; t� � Dt�Þ

1þ Dt�
ð11Þ

where A ¼ Dt�
ð1þDt�Þ and the source function

Sdðt; m; t�Þ ¼ ð1� oÞIbðt; t�Þ þ
o
4p

Gðt; t�Þ þ amqnetðt; t�Þ½ � ð12Þ

In Eq. (12), G and qnet are incident radiation and net heat flux, respectively, and this
form of Eq. (12) results from approximating the anisotropy by linear anisotropic
phase function. In the DTM, G and qnet are computed from
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Gðt; t�Þ ¼ 2p
Z p

y¼0

Iðt; m; t�Þ sin y d y ¼ 2p
Xm
i¼0

Iðt; mi; t�Þ sin yi sinðDyÞ ð13Þ

qnetðt; t�Þ ¼ 2p
Z p

y¼0

Iðt; m; t�Þ sin y cos y dy

¼ 2p
Xm
i¼0

Iðt; mi; t�Þ sin yi cos yi sinðDyÞ ð14Þ

where m is the total numbers of intensities considered over the spherical polar angle
for the numerical integration.

To facilitate evaluation of Eqs. (13) and (14), for any direction m at a given time
t�, Eq. (11) is integrated between upstream point tn and downstream point tnþ1 in the
following way:

Z tþ1

tn
d exp

t
m

� �
Idðt; m; t�Þ

� �

¼ A

Am

Z tnþ1

tn
Scðt; m; t�Þ exp

t
Am

� �
dtþ A

Am

Z tnþ1

tn
Scðt; m; t�Þ exp

t
Am

� �
dt

þ 1

ð1þ Dt�ÞAm

Z tnþ1

tn
Idðt; m; t� � Dt�Þ exp t

Am

� �
dt ð15Þ

If the optical path leg between the upstream and the downstream points in a given
intensity direction m is small enough, the source terms SC, Sd, and Id appearing inside
the integrals on the right-hand side of Eq. (13) can be assumed constant and equal to
the average of their values at the two points. Under this condition, Eq. (15) results in

Idðtnþ1; m; t�Þ ¼ Idðtn; m; t�Þ exp � Dt
Am

� �
þ ASav

c 1� exp � Dt
Am

� �� �

þ ASav
d 1� exp � Dt

Am

� �� �
þ Iavd
1þ Dt�

1� exp � Dt
Am

� �� �
ð16Þ

where

Sav
c ¼ o

8p
Iðm0; t�Þ exp � tnþ1

m0

� �
H t� � tnþ1

m0

� �
�H t� � t�p �

tnþ1

m0

� �� ��

þ exp � tn
m0

� �
H t� � tn

m0

� �
�H t� � t�p �

tn
m0

� �� ��
ð17Þ

Sav
d ¼ 1

2
Sdðtnþ1; m; t�Þ þ Sdðtn; m; t�Þ½ � ð18Þ

Iavd ¼ 1

2
Idðtnþ1; m; t� � Dt�Þ þ Idðtn; m; t� � Dt�Þ½ � ð19Þ
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With the recursive use of Eq. (16), at any time level t�, intensity distributions at
all the desired points are computed. In the expression for Sd [Eq. (12)], the values of
G and qnet are computed using Eqs. (13) and (14).

In transient radiative transport problems, transmittance and reflectance are the
main radiative quantities of interest. Transmittance is defined as net radiative heat
flux emerging out of the medium due to transmission, and in the problem under
consideration it is the net radiative heat flux Qþðt�; tLÞ at the bottom boundary
(t ¼ tL). Reflectance is the net radiative heat flux from the boundary which is sub-
jected to laser irradiation, and in the present case it is the reflected heat flux Q�ðt�; 0Þ
at the top boundary (t ¼ 0). For evaluation of these quantities, integration over
polar angle y in Eqs. (13) and (14) is performed over 0 to p=2.

RESULTS AND DISCUSSION

In the following sections, results of the time-varying nondimensional trans-
missivity and reflectivity obtained from the DTM are presented for various values of
optical thickness tL, scattering albedo o, and anisotropy factor a. For pulse-laser
irradiation normal to the top boundary (m0 ¼ 1), all these results are presented for
the nondimensional pulse width bctp ¼ 1. For calculation of transmissivity and re-
flectivity, intensity has been nondimensionalized by dividing it by the intensity of the
collimated laser beam IO. For some cases, DTM results are compared with the re-
sults obtained by the piecewise parabolic advection (PPA) scheme along with the
discrete ordinates method [27].

As the DTM is a ray-tracing method, and in the numerical scheme the solution
domain is divided into a finite number of control volumes, accuracy of the DTM
results depends on the number of rays, number of control volumes, and in the
present case of a transient problem, the time step used. In the present work, for
various sets of radiative parameters, for rays, spatial grid-and temporal grid-
independent situations, numerical experiments were performed, and beyond 45 rays,
500 control volumes, and a time step of Dt� ¼ 0.001, results have not been found to
change. However, for lower values of tL and o, for rays and grid-independent si-
tuation, fewer rays and control volumes are required. In the present work, all results
have been presented for rays and grid-independent situation.

In Figures 2 and 3, effects of optical thickness tL on time-varying transmittance
and reflectance are shown, respectively. For tL ¼ 1, 5, and 10, these results are
presented for isotropic scattering (a ¼ 0) with o ¼ 0:998.

It is seen from Figures 2a–2c that with increase in tL, not only the peak value of
the transmittance decreases, but also its decay rate decreases. In other words, for
lower values of tL, transmittance signal remains available only for a shorter dura-
tion. It is seen from Figures 3a–3c that the peak value of the reflectance is the same
for all values of tL, but the decay rates are different, and like the transmittance
signal, for higher tL, it takes longer time to die out.

In transient radiation analysis, radiation takes some finite time to travel the
optical depth of the medium. The greater the optical depth of the medium, the more
time is taken by the radiation to travel from one boundary to the other. Because of
this fact, as observed in Figures. 2a–2c, transmittance signals are found available
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only after the time radiation has reached the other (bottom) boundary, and this time
is different for different optical thicknesses. However, as seen from Figures 3a–3c,
the reflectance signal is available as soon as the boundary is subjected to the pulse-
laser source.

Figure 2. Effects of optical thickness tL on time-varying transmittance ½Qþðt�; tLÞ�; a ¼ 0, o ¼ 0:998.
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For all the cases above, DTM results have been compared with the piecewise
parabolic advection (PPA) scheme along with the discrete ordinates method [27].
Results from both methods compare well.

In Figures 4 and 5, effects of scattering albedo o on transmittance and re-
flectance respectively, are shown. For a ¼ 0, these results are shown for tL ¼ 1, 5,

Figure 3. Effects of optical thickness tL on time-varying reflectance ½Q�ðt�; 0Þ�; a ¼ 0, o ¼ 0:998.
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and 10. It is seen from Figures 4a–4c that for any tL, the effect of o is very strong,
and this effect is more pronounced for higher values of tL. For lower values of tL, the
peak value of the transmittance is higher, and for different o, they do not differ
much. As time passes, this difference grows. For all tL values, it is observed that for

Figure 4. Effects of scattering albedo o on time-varying transmittance ½Qþðt�; tLÞ� for (a) optical thickness
tL ¼ 1, (b) tL ¼ 5, and (c) tL ¼ 10.
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higher values of o, the transmittance signal remains available for longer duration,
and this duration increases for higher tL values. However, this availability decreases
with decrease in o values. For a given tL, the above trend is due to the fact that the

Figure 5. Effects of scattering albedo o on time-varying reflectance ½Q�ðt�; 0Þ� for (a) optical thickness

tL ¼ 1, (b) tL ¼ 5, and (c) tL ¼ 10.

TRANSIENT RADIATION IN PARTICIPATING MEDIUM 193



higher the value of o, the higher is the scattering phenomenon, and hence radiation
suffers multiple scattering before emerging out of the medium.

Trends similar to these for the effects of o on transmittance are also observed
for reflectance calculations (Figures 5a–5c). For all tL, the peak values decrease with
decrease in o. Availability of the reflectance signal also decreases with decrease in o.

Figure 6. Effects of anisotropy a on transmittance ½Qþðt�; tLÞ� for (a) tL ¼ 1, (b) tL ¼ 5, and (c) tL ¼ 10;

o ¼ 0:998.
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Effects of anisotropy factor a on transmittance and reflectance are shown in
Figures 6 and 7, respectively. For o ¼ 0.998, effects of anisotropy are shown for
tL ¼1, 5, and 10. Two values of anisotropy factor (a ¼ þ0:9 and a ¼ �0:9) close to
the extreme limits of forward scattering (a ¼ þ1Þ and backward scattering (a ¼ �1)
are chosen. Results for isotropic scattering (a ¼ 0) are also given.

Figure 7. Effects of anisotropy a on reflectance ½Q�ðt�; 0Þ� for (a) tL ¼ 1, (b) tL ¼ 5, and (c) tL ¼ 10;

o ¼ 0:998.
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It is seen fromFigures. 6a–6c that the peak values of transmittance are higher for
the forward scattering ða > 0Þ than for the backward scattering ða < 0Þ. The differ-
ence in the peak values increases with increase in tL. Further, the signal decay rate is
also less for the backward scattering. A reduced decay rate for backward scattering is
because of the fact that in this case, as compared to the forward and isotropic scat-
tering situations, radiation tends to stay in the medium for longer duration.

As far as effect of a on decay rate of reflectance signal is concerned (Figures 7a–
7c), it is similar to its effects on transmittance. But unlike its effect on transmittance,
the effect is less pronounced for higher values of tL. In both Figures 6 and 7, for
a ¼ �9, DTM results are compared with those from the PPA [27]. Both methods are
found to compare very well.

CONCLUSIONS

Application of the discrete transfer method has been extended, for the first
time, to solve transient radiative transport problems in a participating medium. The
formulation presented has been validated by solving transient radiative transfer
problems in a one-dimensional planar absorbing and scattering medium, one
boundary of which is subjected to a short-pulse laser and the other boundary of
which is cold. Effects of optical thickness, scattering albedo, and anisotropy factor
on transmittance and reflectance have been studied. For some sample cases, results
have been compared with those available in the literature. The discrete transfer
method has been found to work well for the transient radiative transport problems.
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